mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-22 16:26:15 +00:00
update
This commit is contained in:
parent
eb25b173dc
commit
2e3ff0b31f
@ -166,6 +166,41 @@ def add_model_arguments(parser: argparse.ArgumentParser):
|
||||
help="Number of entries in the memory for the Emformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--enable-distillation",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to eanble distillation.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--distillation-layer",
|
||||
type=int,
|
||||
default=8,
|
||||
help="On which encoder layer to perform KD"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-codebooks",
|
||||
type=int,
|
||||
default=16,
|
||||
help="Number of codebooks"
|
||||
)
|
||||
|
||||
# distillation related args
|
||||
parser.add_argument(
|
||||
"--distil-delta",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Offset when doing KD"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--codebook-loss-scale",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The scale of codebook loss.",
|
||||
)
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
@ -358,41 +393,6 @@ def get_parser():
|
||||
help="Whether to use half precision training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--enable-distillation",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to eanble distillation.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--distillation-layer",
|
||||
type=int,
|
||||
default=8,
|
||||
help="On which encoder layer to perform KD"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-codebooks",
|
||||
type=int,
|
||||
default=16,
|
||||
help="Number of codebooks"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--distil-delta",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Offset when doing KD"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--codebook-loss-scale",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The scale of codebook loss.",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
@ -444,6 +444,7 @@ def get_params() -> AttributeDict:
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"frame_shift_ms": 10.0,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
@ -652,6 +653,9 @@ def extract_codebook_indexes(batch):
|
||||
cuts_pre_mixed = [
|
||||
c if isinstance(c, MonoCut) else c.tracks[0].cut for c in cuts
|
||||
]
|
||||
for cut in cuts_pre_mixed:
|
||||
cb = cut.codebook_indexes
|
||||
print(f"All cuts have codebook indexes")
|
||||
codebook_indexes, codebook_indexes_lens = collate_custom_field(
|
||||
cuts_pre_mixed, "codebook_indexes", pad_value=-100
|
||||
)
|
||||
@ -969,6 +973,11 @@ def run(rank, world_size, args):
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
|
||||
# Note: it's better to set --spec-aug-time-warpi-factor=-1
|
||||
# when doing distillation with vq.
|
||||
if params.enable_distillation:
|
||||
assert args.spec_aug_time_warp_factor < 1, "You need to disable time warp in MVQ KD"
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
@ -1034,10 +1043,10 @@ def run(rank, world_size, args):
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
train_cuts = librispeech.train_clean_100_cuts()
|
||||
if params.full_libri:
|
||||
train_cuts = librispeech.train_all_shuf_cuts()
|
||||
else:
|
||||
train_cuts = librispeech.train_clean_100_cuts()
|
||||
train_cuts += librispeech.train_clean_360_cuts()
|
||||
train_cuts += librispeech.train_other_500_cuts()
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
@ -1067,14 +1076,14 @@ def run(rank, world_size, args):
|
||||
valid_cuts += librispeech.dev_other_cuts()
|
||||
valid_dl = librispeech.valid_dataloaders(valid_cuts)
|
||||
|
||||
if not params.print_diagnostics:
|
||||
scan_pessimistic_batches_for_oom(
|
||||
model=model,
|
||||
train_dl=train_dl,
|
||||
optimizer=optimizer,
|
||||
sp=sp,
|
||||
params=params,
|
||||
)
|
||||
# if not params.print_diagnostics:
|
||||
# scan_pessimistic_batches_for_oom(
|
||||
# model=model,
|
||||
# train_dl=train_dl,
|
||||
# optimizer=optimizer,
|
||||
# sp=sp,
|
||||
# params=params,
|
||||
# )
|
||||
|
||||
scaler = GradScaler(enabled=params.use_fp16)
|
||||
if checkpoints and "grad_scaler" in checkpoints:
|
||||
|
Loading…
x
Reference in New Issue
Block a user