diff --git a/egs/librispeech/ASR/transducer/beam_search.py b/egs/librispeech/ASR/transducer/beam_search.py index f45d06ce9..404c1db20 100644 --- a/egs/librispeech/ASR/transducer/beam_search.py +++ b/egs/librispeech/ASR/transducer/beam_search.py @@ -54,7 +54,8 @@ def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]: # fmt: off current_encoder_out = encoder_out[:, t:t+1, :] # fmt: on - logits = model.joiner(current_encoder_out, decoder_out) + logits = model.joiner( + current_encoder_out.unsqueeze(2), decoder_out.unsqueeze(1)) # logits is (1, 1, 1, vocab_size) log_prob = logits.log_softmax(dim=-1) diff --git a/egs/librispeech/ASR/transducer/joiner.py b/egs/librispeech/ASR/transducer/joiner.py index 2ef3f1de6..16a38264a 100644 --- a/egs/librispeech/ASR/transducer/joiner.py +++ b/egs/librispeech/ASR/transducer/joiner.py @@ -30,21 +30,17 @@ class Joiner(nn.Module): """ Args: encoder_out: - Output from the encoder. Its shape is (N, T, C). + Output from the encoder. Its shape is (N, T, S_range, C) for + training and (1, 1, 1, C) for decoding. decoder_out: - Output from the decoder. Its shape is (N, U, C). + Output from the decoder. Its shape is (N, T, S_range, C) for + training and (1, 1, 1, C) for decoding. Returns: - Return a tensor of shape (N, T, U, C). + Return a tensor of shape (N, T, S_range, C) for training and + (1, 1, 1, C) for decoding. """ - assert encoder_out.ndim == decoder_out.ndim == 3 - assert encoder_out.size(0) == decoder_out.size(0) - assert encoder_out.size(2) == decoder_out.size(2) - - encoder_out = encoder_out.unsqueeze(2) - # Now encoder_out is (N, T, 1, C) - - decoder_out = decoder_out.unsqueeze(1) - # Now decoder_out is (N, 1, U, C) + assert encoder_out.ndim == decoder_out.ndim == 4 + assert encoder_out.shape == decoder_out.shape logit = encoder_out + decoder_out logit = torch.tanh(logit) diff --git a/egs/librispeech/ASR/transducer/model.py b/egs/librispeech/ASR/transducer/model.py index fa0b2dd68..e5563319e 100644 --- a/egs/librispeech/ASR/transducer/model.py +++ b/egs/librispeech/ASR/transducer/model.py @@ -14,15 +14,9 @@ # See the License for the specific language governing permissions and # limitations under the License. -""" -Note we use `rnnt_loss` from torchaudio, which exists only in -torchaudio >= v0.10.0. It also means you have to use torch >= v1.10.0 -""" import k2 import torch import torch.nn as nn -import torchaudio -import torchaudio.functional from encoder_interface import EncoderInterface from icefall.utils import add_sos @@ -102,24 +96,34 @@ class Transducer(nn.Module): decoder_out, _ = self.decoder(sos_y_padded) - logits = self.joiner(encoder_out, decoder_out) - # rnnt_loss requires 0 padded targets # Note: y does not start with SOS y_padded = y.pad(mode="constant", padding_value=0) - assert hasattr(torchaudio.functional, "rnnt_loss"), ( - f"Current torchaudio version: {torchaudio.__version__}\n" - "Please install a version >= 0.10.0" - ) + boundary = torch.zeros((x.size(0), 4), + dtype=torch.int64, device=x.device) + boundary[:, 2] = y_lens + boundary[:, 3] = x_lens - loss = torchaudio.functional.rnnt_loss( - logits=logits, - targets=y_padded, - logit_lengths=x_lens, - target_lengths=y_lens, - blank=blank_id, - reduction="sum", - ) + y_padded = y_padded.to(torch.int64) + + simple_loss, (px_grad, py_grad) = k2.rnnt_loss_simple( + decoder_out, encoder_out, y_padded, blank_id, boundary, True) + + # TODO: make s_range configurable + ranges = k2.get_rnnt_prune_ranges(px_grad, py_grad, x_lens, s_range=5) + + am_pruned, lm_pruned = k2.do_rnnt_pruning( + encoder_out, decoder_out, ranges) + + logits = self.joiner(am_pruned, lm_pruned) + + # boundary may change after pruning + boundary[:, 2] = ranges[:,-1,-1] + + pruned_loss = k2.rnnt_loss_pruned( + logits, y_padded, ranges, blank_id, boundary) + + loss = -(torch.sum(simple_loss) + torch.sum(pruned_loss)) return loss