mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 17:42:21 +00:00
Merge 448c28b3cc8d1b42179d4ac20989a980133b8f3f into 34fc1fdf0d8ff520e2bb18267d046ca207c78ef9
This commit is contained in:
commit
2d52221fcb
@ -366,13 +366,14 @@ def decode_dataset(
|
||||
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
# try:
|
||||
# num_batches = len(dl)
|
||||
# except TypeError:
|
||||
# num_batches = "?"
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
batch = batch[0]
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
@ -399,9 +400,8 @@ def decode_dataset(
|
||||
num_cuts += len(batch["supervisions"]["text"])
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
# batch_str = f"{batch_idx}/{num_batches}"
|
||||
logging.info(f"batch {batch_idx}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
@ -547,20 +547,19 @@ def main():
|
||||
|
||||
test_sets = ["test"]
|
||||
test_dls = [test_dl]
|
||||
# for test_set, test_dl in zip(test_sets, test_dls):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
lexicon=lexicon,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
)
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dls):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
lexicon=lexicon,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
)
|
||||
|
||||
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||
save_results(params=params, test_set_name=test_sets[0], results_dict=results_dict)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
@ -22,9 +22,9 @@ from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import os
|
||||
import k2
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import AishellAsrDataModule
|
||||
from conformer import Conformer
|
||||
@ -543,13 +543,9 @@ def train_one_epoch(
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
def run(world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
@ -560,13 +556,14 @@ def run(rank, world_size, args):
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_dist(use_ddp_launch=True, master_addr=params.master_port)
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
||||
if local_rank == 0:
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
if args.tensorboard and local_rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
@ -577,7 +574,7 @@ def run(rank, world_size, args):
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
device = torch.device("cuda", local_rank)
|
||||
|
||||
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||
lexicon=lexicon,
|
||||
@ -603,7 +600,8 @@ def run(rank, world_size, args):
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
torch.distributed.barrier() # Ensure all processes have the same model parameters
|
||||
model = DDP(model, device_ids=[local_rank])
|
||||
|
||||
optimizer = Noam(
|
||||
model.parameters(),
|
||||
@ -629,7 +627,7 @@ def run(rank, world_size, args):
|
||||
tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
if rank == 0:
|
||||
if local_rank == 0:
|
||||
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
||||
|
||||
params.cur_epoch = epoch
|
||||
@ -644,12 +642,14 @@ def run(rank, world_size, args):
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
rank=local_rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
@ -668,10 +668,7 @@ def main():
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
run(world_size=world_size, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
|
@ -23,6 +23,7 @@ from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from lhotse.cut import MonoCut
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||
from lhotse.dataset import (
|
||||
CutConcatenate,
|
||||
@ -180,7 +181,34 @@ class AishellAsrDataModule:
|
||||
help="When enabled, select noise from MUSAN and mix it"
|
||||
"with training dataset. ",
|
||||
)
|
||||
def to_dict(self, obj):
|
||||
"""
|
||||
Recursively convert an object and its nested objects to dictionaries.
|
||||
"""
|
||||
if isinstance(obj, (str, int, float, bool, type(None))):
|
||||
return obj
|
||||
elif isinstance(obj, list):
|
||||
return [to_dict(item) for item in obj]
|
||||
elif isinstance(obj, dict):
|
||||
return {key: to_dict(value) for key, value in obj.items()}
|
||||
elif hasattr(obj, '__dict__'):
|
||||
return {key: to_dict(value) for key, value in obj.__dict__.items()}
|
||||
else:
|
||||
raise TypeError(f"Unsupported type: {type(obj)}")
|
||||
|
||||
def my_collate_fn(self, batch):
|
||||
"""
|
||||
Convert MonoCut to dict.
|
||||
"""
|
||||
return_batch = []
|
||||
for item in batch:
|
||||
if isinstance(item, MonoCut):
|
||||
processed_item = self.to_dict(item)
|
||||
return_batch.append(processed_item)
|
||||
elif isinstance(item, dict):
|
||||
return_batch.append(item)
|
||||
return return_batch
|
||||
|
||||
def train_dataloaders(
|
||||
self, cuts_train: CutSet, sampler_state_dict: Optional[Dict[str, Any]] = None
|
||||
) -> DataLoader:
|
||||
@ -353,9 +381,10 @@ class AishellAsrDataModule:
|
||||
)
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
batch_size=100, # specified to some value
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
num_workers=4, # if larger, it will be more time-consuming for decoding, may stuck
|
||||
collate_fn=self.my_collate_fn
|
||||
)
|
||||
return test_dl
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user