Merge 448c28b3cc8d1b42179d4ac20989a980133b8f3f into 34fc1fdf0d8ff520e2bb18267d046ca207c78ef9

This commit is contained in:
chanchongleong 2025-07-24 11:00:25 +08:00 committed by GitHub
commit 2d52221fcb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 65 additions and 40 deletions

View File

@ -366,13 +366,14 @@ def decode_dataset(
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
# try:
# num_batches = len(dl)
# except TypeError:
# num_batches = "?"
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
batch = batch[0]
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
@ -399,9 +400,8 @@ def decode_dataset(
num_cuts += len(batch["supervisions"]["text"])
if batch_idx % 100 == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
# batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_idx}, cuts processed until now is {num_cuts}")
return results
@ -547,20 +547,19 @@ def main():
test_sets = ["test"]
test_dls = [test_dl]
# for test_set, test_dl in zip(test_sets, test_dls):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
HLG=HLG,
H=H,
lexicon=lexicon,
sos_id=sos_id,
eos_id=eos_id,
)
for test_set, test_dl in zip(test_sets, test_dls):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
HLG=HLG,
H=H,
lexicon=lexicon,
sos_id=sos_id,
eos_id=eos_id,
)
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
save_results(params=params, test_set_name=test_sets[0], results_dict=results_dict)
logging.info("Done!")

View File

@ -22,9 +22,9 @@ from pathlib import Path
from shutil import copyfile
from typing import Optional, Tuple
import os
import k2
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from asr_datamodule import AishellAsrDataModule
from conformer import Conformer
@ -543,13 +543,9 @@ def train_one_epoch(
params.best_train_loss = params.train_loss
def run(rank, world_size, args):
def run(world_size, args):
"""
Args:
rank:
It is a value between 0 and `world_size-1`, which is
passed automatically by `mp.spawn()` in :func:`main`.
The node with rank 0 is responsible for saving checkpoint.
world_size:
Number of GPUs for DDP training.
args:
@ -560,13 +556,14 @@ def run(rank, world_size, args):
fix_random_seed(params.seed)
if world_size > 1:
setup_dist(rank, world_size, params.master_port)
setup_dist(use_ddp_launch=True, master_addr=params.master_port)
setup_logger(f"{params.exp_dir}/log/log-train")
logging.info("Training started")
logging.info(params)
local_rank = int(os.environ.get("LOCAL_RANK", 0))
if local_rank == 0:
logging.info(params)
if args.tensorboard and rank == 0:
if args.tensorboard and local_rank == 0:
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
else:
tb_writer = None
@ -577,7 +574,7 @@ def run(rank, world_size, args):
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", rank)
device = torch.device("cuda", local_rank)
graph_compiler = CharCtcTrainingGraphCompiler(
lexicon=lexicon,
@ -603,7 +600,8 @@ def run(rank, world_size, args):
model.to(device)
if world_size > 1:
model = DDP(model, device_ids=[rank])
torch.distributed.barrier() # Ensure all processes have the same model parameters
model = DDP(model, device_ids=[local_rank])
optimizer = Noam(
model.parameters(),
@ -629,7 +627,7 @@ def run(rank, world_size, args):
tb_writer.add_scalar("train/learning_rate", cur_lr, params.batch_idx_train)
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
if rank == 0:
if local_rank == 0:
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
params.cur_epoch = epoch
@ -644,12 +642,14 @@ def run(rank, world_size, args):
tb_writer=tb_writer,
world_size=world_size,
)
if world_size > 1:
torch.distributed.barrier()
save_checkpoint(
params=params,
model=model,
optimizer=optimizer,
rank=rank,
rank=local_rank,
)
logging.info("Done!")
@ -668,10 +668,7 @@ def main():
world_size = args.world_size
assert world_size >= 1
if world_size > 1:
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
else:
run(rank=0, world_size=1, args=args)
run(world_size=world_size, args=args)
torch.set_num_threads(1)

View File

@ -23,6 +23,7 @@ from functools import lru_cache
from pathlib import Path
from typing import Any, Dict, List, Optional
from lhotse.cut import MonoCut
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
from lhotse.dataset import (
CutConcatenate,
@ -180,7 +181,34 @@ class AishellAsrDataModule:
help="When enabled, select noise from MUSAN and mix it"
"with training dataset. ",
)
def to_dict(self, obj):
"""
Recursively convert an object and its nested objects to dictionaries.
"""
if isinstance(obj, (str, int, float, bool, type(None))):
return obj
elif isinstance(obj, list):
return [to_dict(item) for item in obj]
elif isinstance(obj, dict):
return {key: to_dict(value) for key, value in obj.items()}
elif hasattr(obj, '__dict__'):
return {key: to_dict(value) for key, value in obj.__dict__.items()}
else:
raise TypeError(f"Unsupported type: {type(obj)}")
def my_collate_fn(self, batch):
"""
Convert MonoCut to dict.
"""
return_batch = []
for item in batch:
if isinstance(item, MonoCut):
processed_item = self.to_dict(item)
return_batch.append(processed_item)
elif isinstance(item, dict):
return_batch.append(item)
return return_batch
def train_dataloaders(
self, cuts_train: CutSet, sampler_state_dict: Optional[Dict[str, Any]] = None
) -> DataLoader:
@ -353,9 +381,10 @@ class AishellAsrDataModule:
)
test_dl = DataLoader(
test,
batch_size=None,
batch_size=100, # specified to some value
sampler=sampler,
num_workers=self.args.num_workers,
num_workers=4, # if larger, it will be more time-consuming for decoding, may stuck
collate_fn=self.my_collate_fn
)
return test_dl