Add projection support to LayerNormLSTMCell.

This commit is contained in:
Fangjun Kuang 2021-12-03 16:47:40 +08:00
parent 1d004ca966
commit 2c7547e1b7
2 changed files with 278 additions and 15 deletions

View File

@ -30,7 +30,6 @@ import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
# TODO(fangjun): Support projection, see https://arxiv.org/pdf/1402.1128.pdf
class LayerNormLSTMCell(nn.Module): class LayerNormLSTMCell(nn.Module):
"""This class places a `nn.LayerNorm` after the output of """This class places a `nn.LayerNorm` after the output of
each gate (right before the activation). each gate (right before the activation).
@ -60,6 +59,7 @@ class LayerNormLSTMCell(nn.Module):
hidden_size: int, hidden_size: int,
bias: bool = True, bias: bool = True,
ln: nn.Module = nn.LayerNorm, ln: nn.Module = nn.LayerNorm,
proj_size: int = 0,
device=None, device=None,
dtype=None, dtype=None,
): ):
@ -70,7 +70,9 @@ class LayerNormLSTMCell(nn.Module):
be of shape (batch_size, input_size). be of shape (batch_size, input_size).
hidden_size: hidden_size:
The number of features in the hidden state `h` and `c`. The number of features in the hidden state `h` and `c`.
Both `h` and `c` are of shape (batch_size, hidden_size). Both `h` and `c` are of shape (batch_size, hidden_size) when
proj_size is 0. If proj_size is not zero, the shape of `h`
is (batch_size, proj_size).
bias: bias:
If ``False``, then the cell does not use bias weights If ``False``, then the cell does not use bias weights
`bias_ih` and `bias_hh`. `bias_ih` and `bias_hh`.
@ -78,19 +80,38 @@ class LayerNormLSTMCell(nn.Module):
Defaults to `nn.LayerNorm`. The output of all gates are processed Defaults to `nn.LayerNorm`. The output of all gates are processed
by `ln`. We pass it as an argument so that we can replace it by `ln`. We pass it as an argument so that we can replace it
with `nn.Identity` at the testing time. with `nn.Identity` at the testing time.
proj_size:
If not zero, it applies an affine transform to the output. In this
case, the shape of `h` is (batch_size, proj_size).
See https://arxiv.org/pdf/1402.1128.pdf
""" """
super().__init__() super().__init__()
factory_kwargs = {"device": device, "dtype": dtype} factory_kwargs = {"device": device, "dtype": dtype}
self.input_size = input_size self.input_size = input_size
self.hidden_size = hidden_size self.hidden_size = hidden_size
self.bias = bias self.bias = bias
self.proj_size = proj_size
if proj_size < 0:
raise ValueError(
f"proj_size {proj_size} should be a positive integer "
"or zero to disable projections"
)
if proj_size >= hidden_size:
raise ValueError(
f"proj_size {proj_size} has to be smaller "
f"than hidden_size {hidden_size}"
)
real_hidden_size = proj_size if proj_size > 0 else hidden_size
self.weight_ih = nn.Parameter( self.weight_ih = nn.Parameter(
torch.empty((4 * hidden_size, input_size), **factory_kwargs) torch.empty((4 * hidden_size, input_size), **factory_kwargs)
) )
self.weight_hh = nn.Parameter( self.weight_hh = nn.Parameter(
torch.empty((4 * hidden_size, hidden_size), **factory_kwargs) torch.empty((4 * hidden_size, real_hidden_size), **factory_kwargs)
) )
if bias: if bias:
@ -104,6 +125,13 @@ class LayerNormLSTMCell(nn.Module):
self.register_parameter("bias_ih", None) self.register_parameter("bias_ih", None)
self.register_parameter("bias_hh", None) self.register_parameter("bias_hh", None)
if proj_size > 0:
self.weight_hr = nn.Parameter(
torch.empty((proj_size, hidden_size), **factory_kwargs)
)
else:
self.register_parameter("weight_hr", None)
self.layernorm_i = ln(hidden_size) self.layernorm_i = ln(hidden_size)
self.layernorm_f = ln(hidden_size) self.layernorm_f = ln(hidden_size)
self.layernorm_cx = ln(hidden_size) self.layernorm_cx = ln(hidden_size)
@ -123,12 +151,15 @@ class LayerNormLSTMCell(nn.Module):
A 2-D tensor of shape (batch_size, input_size). A 2-D tensor of shape (batch_size, input_size).
state: state:
If not ``None``, it contains the hidden state (h, c) for each If not ``None``, it contains the hidden state (h, c) for each
element in the batch. Both are of shape (batch_size, hidden_size). element in the batch. Both are of shape (batch_size, hidden_size)
if proj_size is 0. If proj_size is not zero, the shape of `h` is
(batch_size, proj_size).
If ``None``, it uses zeros for `h` and `c`. If ``None``, it uses zeros for `h` and `c`.
Returns: Returns:
Return two tensors: Return two tensors:
- `next_h`: It is of shape (batch_size, hidden_size) containing the - `next_h`: It is of shape (batch_size, hidden_size) if proj_size
next hidden state for each element in the batch. is 0, else (batch_size, proj_size), containing the next hidden
state for each element in the batch.
- `next_c`: It is of shape (batch_size, hidden_size) containing the - `next_c`: It is of shape (batch_size, hidden_size) containing the
next cell state for each element in the batch. next cell state for each element in the batch.
""" """
@ -162,6 +193,9 @@ class LayerNormLSTMCell(nn.Module):
cy = self.layernorm_cy(cy) cy = self.layernorm_cy(cy)
hy = out_gate * torch.tanh(cy) hy = out_gate * torch.tanh(cy)
if self.weight_hr is not None:
hy = torch.matmul(hy, self.weight_hr.t())
return hy, cy return hy, cy
def extra_repr(self) -> str: def extra_repr(self) -> str:
@ -172,8 +206,9 @@ class LayerNormLSTMCell(nn.Module):
def reset_parameters(self) -> None: def reset_parameters(self) -> None:
stdv = 1.0 / math.sqrt(self.hidden_size) stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters(): for name, weight in self.named_parameters():
nn.init.uniform_(weight, -stdv, stdv) if "layernorm" not in name:
nn.init.uniform_(weight, -stdv, stdv)
class LayerNormLSTMLayer(nn.Module): class LayerNormLSTMLayer(nn.Module):
@ -199,6 +234,7 @@ class LayerNormLSTMLayer(nn.Module):
hidden_size: int, hidden_size: int,
bias: bool = True, bias: bool = True,
ln: nn.Module = nn.LayerNorm, ln: nn.Module = nn.LayerNorm,
proj_size: int = 0,
device=None, device=None,
dtype=None, dtype=None,
): ):
@ -211,6 +247,7 @@ class LayerNormLSTMLayer(nn.Module):
hidden_size=hidden_size, hidden_size=hidden_size,
bias=bias, bias=bias,
ln=ln, ln=ln,
proj_size=proj_size,
device=device, device=device,
dtype=dtype, dtype=dtype,
) )
@ -228,13 +265,14 @@ class LayerNormLSTMLayer(nn.Module):
We use `batch_first=True` here. We use `batch_first=True` here.
state: state:
If not ``None``, it contains the hidden state (h, c) of this layer. If not ``None``, it contains the hidden state (h, c) of this layer.
Both are of shape (batch_size, hidden_size). Both are of shape (batch_size, hidden_size) if proj_size is 0.
If proj_size is not 0, the shape of `h` is (batch_size, proj_size).
Note: Note:
We did not annotate `state` with `Optional[Tuple[...]]` since We did not annotate `state` with `Optional[Tuple[...]]` since
torchscript will complain. torchscript will complain.
Return: Return:
- output, a tensor of shape (batch_size, seq_len, hidden_size) - output, a tensor of shape (batch_size, seq_len, hidden_size)
- (next_h, next_c) containing the hidden state of this layer - (next_h, next_c) containing the next hidden state
""" """
inputs = input.unbind(1) inputs = input.unbind(1)
outputs = torch.jit.annotate(List[torch.Tensor], []) outputs = torch.jit.annotate(List[torch.Tensor], [])
@ -270,6 +308,7 @@ class LayerNormLSTM(nn.Module):
hidden_size: int, hidden_size: int,
num_layers: int, num_layers: int,
bias: bool = True, bias: bool = True,
proj_size: int = 0,
ln: nn.Module = nn.LayerNorm, ln: nn.Module = nn.LayerNorm,
device=None, device=None,
dtype=None, dtype=None,
@ -283,6 +322,7 @@ class LayerNormLSTM(nn.Module):
hidden_size=hidden_size, hidden_size=hidden_size,
bias=bias, bias=bias,
ln=ln, ln=ln,
proj_size=proj_size,
device=device, device=device,
dtype=dtype, dtype=dtype,
) )
@ -293,7 +333,7 @@ class LayerNormLSTM(nn.Module):
for i in range(1, num_layers): for i in range(1, num_layers):
layers.append( layers.append(
LayerNormLSTMLayer( LayerNormLSTMLayer(
input_size=hidden_size, input_size=proj_size if proj_size > 0 else hidden_size,
**factory_kwargs, **factory_kwargs,
) )
) )
@ -313,7 +353,9 @@ class LayerNormLSTM(nn.Module):
We use `batch_first=True` here. We use `batch_first=True` here.
states: states:
One state per layer. Each entry contains the hidden state (h, c) One state per layer. Each entry contains the hidden state (h, c)
for a layer. Both are of shape (batch_size, hidden_size). for a layer. Both are of shape (batch_size, hidden_size) if
proj_size is 0. If proj_size is not 0, the shape of `h` is
(batch_size, proj_size).
Returns: Returns:
Return a tuple containing: Return a tuple containing:

View File

@ -55,6 +55,14 @@ def test_layernorm_lstm_cell_constructor():
assert len(self_cell.state_dict()) == len(torch_cell.state_dict()) assert len(self_cell.state_dict()) == len(torch_cell.state_dict())
def test_layernorm_lstm_cell_with_projection_jit():
input_size = 10
hidden_size = 20
proj_size = 5
self_cell = LayerNormLSTMCell(input_size, hidden_size, proj_size=proj_size)
torch.jit.script(self_cell)
def test_layernorm_lstm_cell_forward(): def test_layernorm_lstm_cell_forward():
input_size = torch.randint(low=2, high=100, size=(1,)).item() input_size = torch.randint(low=2, high=100, size=(1,)).item()
hidden_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item()
@ -90,6 +98,54 @@ def test_layernorm_lstm_cell_forward():
assert_allclose(x.grad, x_clone.grad) assert_allclose(x.grad, x_clone.grad)
def test_layernorm_lstm_cell_with_projection_forward():
input_size = torch.randint(low=2, high=100, size=(1,)).item()
hidden_size = torch.randint(low=10, high=100, size=(1,)).item()
bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0
proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item()
self_cell = LayerNormLSTMCell(
input_size,
hidden_size,
bias=bias,
ln=nn.Identity,
proj_size=proj_size,
)
torch_cell = nn.LSTM(
input_size,
hidden_size,
bias=bias,
proj_size=proj_size,
batch_first=True,
)
with torch.no_grad():
for name, self_param in self_cell.named_parameters():
getattr(torch_cell, f"{name}_l0").copy_(self_param)
N = torch.randint(low=2, high=100, size=(1,))
x = torch.rand(N, input_size).requires_grad_()
h = torch.rand(N, proj_size)
c = torch.rand(N, hidden_size)
x_clone = x.detach().clone().requires_grad_()
self_h, self_c = self_cell(x.clone(), (h, c))
_, (torch_h, torch_c) = torch_cell(
x_clone.unsqueeze(1), (h.unsqueeze(0), c.unsqueeze(0))
)
torch_h = torch_h.squeeze(0)
torch_c = torch_c.squeeze(0)
assert_allclose(self_h, torch_h)
assert_allclose(self_c, torch_c)
(self_h.sum() * self_c.sum()).backward()
(torch_h.sum() * torch_c.sum()).backward()
assert_allclose(x.grad, x_clone.grad)
def test_layernorm_lstm_layer_jit(): def test_layernorm_lstm_layer_jit():
input_size = 10 input_size = 10
hidden_size = 20 hidden_size = 20
@ -97,6 +153,78 @@ def test_layernorm_lstm_layer_jit():
torch.jit.script(layer) torch.jit.script(layer)
def test_layernorm_lstm_layer_with_project_jit():
input_size = 10
hidden_size = 20
proj_size = 5
layer = LayerNormLSTMLayer(
input_size,
hidden_size=hidden_size,
proj_size=proj_size,
)
torch.jit.script(layer)
def test_layernorm_lstm_layer_with_projection_forward():
input_size = torch.randint(low=2, high=100, size=(1,)).item()
hidden_size = torch.randint(low=10, high=100, size=(1,)).item()
bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0
proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item()
self_layer = LayerNormLSTMLayer(
input_size,
hidden_size,
bias=bias,
proj_size=proj_size,
ln=nn.Identity,
)
N = torch.randint(low=2, high=100, size=(1,))
T = torch.randint(low=2, high=100, size=(1,))
x = torch.rand(N, T, input_size).requires_grad_()
h = torch.rand(N, proj_size)
c = torch.rand(N, hidden_size)
x_clone = x.detach().clone().requires_grad_()
self_y, (self_h, self_c) = self_layer(x, (h, c))
torch_layer = nn.LSTM(
input_size=input_size,
hidden_size=hidden_size,
num_layers=1,
bias=bias,
proj_size=proj_size,
batch_first=True,
dropout=0,
bidirectional=False,
)
with torch.no_grad():
for name, self_param in self_layer.cell.named_parameters():
getattr(torch_layer, f"{name}_l0").copy_(self_param)
torch_y, (torch_h, torch_c) = torch_layer(
x_clone, (h.unsqueeze(0), c.unsqueeze(0))
)
assert_allclose(self_y, torch_y)
assert_allclose(self_h, torch_h)
assert_allclose(self_c, torch_c)
self_hc = self_h * self_c.sum()
torch_hc = torch_h * torch_c.sum()
self_hc_sum = (self_hc.reshape(-1) * torch.arange(self_hc.numel())).sum()
torch_hc_sum = (torch_hc.reshape(-1) * torch.arange(torch_hc.numel())).sum()
self_y_sum = (self_y.reshape(-1) * torch.arange(self_y.numel())).sum()
torch_y_sum = (torch_y.reshape(-1) * torch.arange(torch_y.numel())).sum()
(self_hc_sum * self_y_sum).backward()
(torch_hc_sum * torch_y_sum).backward()
assert_allclose(x.grad, x_clone.grad, atol=1e-5)
def test_layernorm_lstm_layer_forward(): def test_layernorm_lstm_layer_forward():
input_size = torch.randint(low=2, high=100, size=(1,)).item() input_size = torch.randint(low=2, high=100, size=(1,)).item()
hidden_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item()
@ -169,6 +297,24 @@ def test_layernorm_lstm_jit():
torch.jit.script(lstm) torch.jit.script(lstm)
def test_layernorm_lstm_with_projection_jit():
input_size = 2
hidden_size = 5
proj_size = 3
num_layers = 4
bias = True
lstm = LayerNormLSTM(
input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
bias=bias,
proj_size=proj_size,
ln=nn.Identity,
)
torch.jit.script(lstm)
def test_layernorm_lstm_forward(): def test_layernorm_lstm_forward():
input_size = torch.randint(low=2, high=100, size=(1,)).item() input_size = torch.randint(low=2, high=100, size=(1,)).item()
hidden_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item()
@ -235,6 +381,75 @@ def test_layernorm_lstm_forward():
assert_allclose(x.grad, x_clone.grad) assert_allclose(x.grad, x_clone.grad)
def test_layernorm_lstm_with_projection_forward():
input_size = torch.randint(low=2, high=100, size=(1,)).item()
hidden_size = torch.randint(low=10, high=100, size=(1,)).item()
proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item()
num_layers = torch.randint(low=2, high=100, size=(1,)).item()
bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0
self_lstm = LayerNormLSTM(
input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
bias=bias,
proj_size=proj_size,
ln=nn.Identity,
)
torch_lstm = nn.LSTM(
input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
bias=bias,
proj_size=proj_size,
batch_first=True,
bidirectional=False,
)
assert len(self_lstm.state_dict()) == len(torch_lstm.state_dict())
with torch.no_grad():
for name, param in self_lstm.named_parameters():
# name has the form layers.0.cell.weight_hh
parts = name.split(".")
layer_num = parts[1]
getattr(torch_lstm, f"{parts[-1]}_l{layer_num}").copy_(param)
N = torch.randint(low=2, high=100, size=(1,))
T = torch.randint(low=2, high=100, size=(1,))
x = torch.rand(N, T, input_size).requires_grad_()
hs = [torch.rand(N, proj_size) for _ in range(num_layers)]
cs = [torch.rand(N, hidden_size) for _ in range(num_layers)]
states = list(zip(hs, cs))
x_clone = x.detach().clone().requires_grad_()
self_y, self_states = self_lstm(x, states)
h = torch.stack(hs)
c = torch.stack(cs)
torch_y, (torch_h, torch_c) = torch_lstm(x_clone, (h, c))
assert_allclose(self_y, torch_y)
self_h = torch.stack([s[0] for s in self_states])
self_c = torch.stack([s[1] for s in self_states])
assert_allclose(self_h, torch_h)
assert_allclose(self_c, torch_c)
s = self_y.reshape(-1)
t = torch_y.reshape(-1)
s_sum = (s * torch.arange(s.numel())).sum()
t_sum = (t * torch.arange(t.numel())).sum()
shc_sum = s_sum * self_h.sum() * self_c.sum()
thc_sum = t_sum * torch_h.sum() * torch_c.sum()
shc_sum.backward()
thc_sum.backward()
assert_allclose(x.grad, x_clone.grad)
def test_layernorm_gru_cell_jit(): def test_layernorm_gru_cell_jit():
input_size = 10 input_size = 10
hidden_size = 20 hidden_size = 20
@ -332,7 +547,7 @@ def test_layernorm_gru_layer_forward():
torch_y, torch_h = torch_layer(x_clone, h.unsqueeze(0)) torch_y, torch_h = torch_layer(x_clone, h.unsqueeze(0))
assert_allclose(self_y, torch_y, atol=1e-6) assert_allclose(self_y, torch_y, atol=1e-6)
assert_allclose(self_h, torch_h) assert_allclose(self_h, torch_h, atol=1e-6)
self_y_sum = (self_y.reshape(-1) * torch.arange(self_y.numel())).sum() self_y_sum = (self_y.reshape(-1) * torch.arange(self_y.numel())).sum()
torch_y_sum = (torch_y.reshape(-1) * torch.arange(torch_y.numel())).sum() torch_y_sum = (torch_y.reshape(-1) * torch.arange(torch_y.numel())).sum()
@ -416,19 +631,25 @@ def test_layernorm_gru_forward():
s_state_sum.backward() s_state_sum.backward()
t_state_sum.backward() t_state_sum.backward()
assert_allclose(x.grad, x_clone.grad) assert_allclose(x.grad, x_clone.grad, atol=1e-6)
def test_lstm(): def test_lstm():
test_layernorm_lstm_cell_jit() test_layernorm_lstm_cell_jit()
test_layernorm_lstm_cell_constructor() test_layernorm_lstm_cell_constructor()
test_layernorm_lstm_cell_with_projection_jit()
test_layernorm_lstm_cell_forward() test_layernorm_lstm_cell_forward()
test_layernorm_lstm_cell_with_projection_forward()
# #
test_layernorm_lstm_layer_jit() test_layernorm_lstm_layer_jit()
test_layernorm_lstm_layer_with_project_jit()
test_layernorm_lstm_layer_forward() test_layernorm_lstm_layer_forward()
# test_layernorm_lstm_layer_with_projection_forward()
test_layernorm_lstm_jit() test_layernorm_lstm_jit()
test_layernorm_lstm_with_projection_jit()
test_layernorm_lstm_forward() test_layernorm_lstm_forward()
test_layernorm_lstm_with_projection_forward()
def test_gru(): def test_gru():