mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Merge pull request #309 from danpovey/update_results
Update results; will further update this before merge
This commit is contained in:
commit
2a854f5607
@ -9,13 +9,15 @@ for how to run models in this recipe.
|
||||
There are various folders containing the name `transducer` in this folder.
|
||||
The following table lists the differences among them.
|
||||
|
||||
| | Encoder | Decoder | Comment |
|
||||
|---------------------------------------|-----------|--------------------|---------------------------------------------------|
|
||||
| `transducer` | Conformer | LSTM | |
|
||||
| `transducer_stateless` | Conformer | Embedding + Conv1d | |
|
||||
| `transducer_lstm` | LSTM | LSTM | |
|
||||
| `transducer_stateless_multi_datasets` | Conformer | Embedding + Conv1d | Using data from GigaSpeech as extra training data |
|
||||
| `pruned_transducer_stateless` | Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss |
|
||||
| | Encoder | Decoder | Comment |
|
||||
|---------------------------------------|---------------------|--------------------|---------------------------------------------------|
|
||||
| `transducer` | Conformer | LSTM | |
|
||||
| `transducer_stateless` | Conformer | Embedding + Conv1d | |
|
||||
| `transducer_lstm` | LSTM | LSTM | |
|
||||
| `transducer_stateless_multi_datasets` | Conformer | Embedding + Conv1d | Using data from GigaSpeech as extra training data |
|
||||
| `pruned_transducer_stateless` | Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss |
|
||||
| `pruned_transducer_stateless2` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss |
|
||||
|
||||
|
||||
The decoder in `transducer_stateless` is modified from the paper
|
||||
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/).
|
||||
|
@ -1,5 +1,103 @@
|
||||
## Results
|
||||
|
||||
### LibriSpeech BPE training results (Pruned Transducer 2)
|
||||
|
||||
This is with a reworked version of the conformer encoder, with many changes.
|
||||
|
||||
[pruned_transducer_stateless2](./pruned_transducer_stateless2)
|
||||
|
||||
using commit `34aad74a2c849542dd5f6359c9e6b527e8782fd6`.
|
||||
See <https://github.com/k2-fsa/icefall/pull/288>
|
||||
|
||||
The WERs are:
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|-------------------------------------|------------|------------|-------------------------------------------------------------------------------|
|
||||
| greedy search (max sym per frame 1) | 2.62 | 6.37 | --epoch 25 --avg 8 --max-duration 600 |
|
||||
| fast beam search | 2.61 | 6.17 | --epoch 25 --avg 8 --max-duration 600 --decoding-method fast_beam_search |
|
||||
| modified beam search | 2.59 | 6.19 | --epoch 25 --avg 8 --max-duration 600 --decoding-method modified_beam_search |
|
||||
| greedy search (max sym per frame 1) | 2.70 | 6.04 | --epoch 34 --avg 10 --max-duration 600 |
|
||||
| fast beam search | 2.66 | 6.00 | --epoch 34 --avg 10 --max-duration 600 --decoding-method fast_beam_search |
|
||||
| greedy search (max sym per frame 1) | 2.62 | 6.03 | --epoch 38 --avg 10 --max-duration 600 |
|
||||
| fast beam search | 2.57 | 5.95 | --epoch 38 --avg 10 --max-duration 600 --decoding-method fast_beam_search |
|
||||
|
||||
|
||||
|
||||
|
||||
The train and decode commands are:
|
||||
`python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp --world-size 8 --num-epochs 26 --full-libri 1 --max-duration 300`
|
||||
and:
|
||||
`python3 ./pruned_transducer_stateless2/decode.py --exp-dir pruned_transducer_stateless2/exp --epoch 25 --avg 8 --bpe-model ./data/lang_bpe_500/bpe.model --max-duration 600`
|
||||
|
||||
The Tensorboard log is at <https://tensorboard.dev/experiment/Xoz0oABMTWewo1slNFXkyA> (apologies, log starts
|
||||
only from epoch 3).
|
||||
|
||||
|
||||
The WERs for librispeech 100 hours are:
|
||||
|
||||
Trained with one job:
|
||||
`python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp_100h_ws1 --world-size 1 --num-epochs 40 --full-libri 0 --max-duration 300`
|
||||
and decoded with:
|
||||
`python3 ./pruned_transducer_stateless2/decode.py --exp-dir pruned_transducer_stateless2/exp_100h_ws1 --epoch 19 --avg 8 --bpe-model ./data/lang_bpe_500/bpe.model --max-duration 600`.
|
||||
|
||||
The Tensorboard log is at <https://tensorboard.dev/experiment/AhnhooUBRPqTnaggoqo7lg> (learning rate
|
||||
schedule is not visible due to a since-fixed bug).
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|-------------------------------------|------------|------------|-------------------------------------------------------|
|
||||
| greedy search (max sym per frame 1) | 7.12 | 18.42 | --epoch 19 --avg 8 |
|
||||
| greedy search (max sym per frame 1) | 6.71 | 17.77 | --epoch 29 --avg 8 |
|
||||
| greedy search (max sym per frame 1) | 6.64 | 17.19 | --epoch 39 --avg 10 |
|
||||
| fast beam search | 6.58 | 17.27 | --epoch 29 --avg 8 --decoding-method fast_beam_search |
|
||||
| fast beam search | 6.53 | 16.82 | --epoch 39 --avg 10 --decoding-method fast_beam_search |
|
||||
|
||||
Trained with two jobs:
|
||||
`python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp_100h_ws2 --world-size 2 --num-epochs 40 --full-libri 0 --max-duration 300`
|
||||
and decoded with:
|
||||
`python3 ./pruned_transducer_stateless2/decode.py --exp-dir pruned_transducer_stateless2/exp_100h_ws2 --epoch 19 --avg 8 --bpe-model ./data/lang_bpe_500/bpe.model --max-duration 600`.
|
||||
|
||||
The Tensorboard log is at <https://tensorboard.dev/experiment/dvOC9wsrSdWrAIdsebJILg/>
|
||||
(learning rate schedule is not visible due to a since-fixed bug).
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|-------------------------------------|------------|------------|-----------------------|
|
||||
| greedy search (max sym per frame 1) | 7.05 | 18.77 | --epoch 19 --avg 8 |
|
||||
| greedy search (max sym per frame 1) | 6.82 | 18.14 | --epoch 29 --avg 8 |
|
||||
| greedy search (max sym per frame 1) | 6.81 | 17.66 | --epoch 30 --avg 10 |
|
||||
|
||||
|
||||
Trained with 4 jobs:
|
||||
`python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp_100h_ws4 --world-size 4 --num-epochs 40 --full-libri 0 --max-duration 300`
|
||||
and decoded with:
|
||||
`python3 ./pruned_transducer_stateless2/decode.py --exp-dir pruned_transducer_stateless2/exp_100h_ws4 --epoch 19 --avg 8 --bpe-model ./data/lang_bpe_500/bpe.model --max-duration 600`.
|
||||
|
||||
|
||||
The Tensorboard log is at <https://tensorboard.dev/experiment/a3T0TyC0R5aLj5bmFbRErA/>
|
||||
(learning rate schedule is not visible due to a since-fixed bug).
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|-------------------------------------|------------|------------|-----------------------|
|
||||
| greedy search (max sym per frame 1) | 7.31 | 19.55 | --epoch 19 --avg 8 |
|
||||
| greedy search (max sym per frame 1) | 7.08 | 18.59 | --epoch 29 --avg 8 |
|
||||
| greedy search (max sym per frame 1) | 6.86 | 18.29 | --epoch 30 --avg 10 |
|
||||
|
||||
|
||||
Trained with 1 job, with --use-fp16=True --max-duration=500, i.e. with half-precision
|
||||
floats and max-duration increased from 300 to 500, after merging <https://github.com/k2-fsa/icefall/pull/305>.
|
||||
Train command was
|
||||
`python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp_100h_fp16 --world-size 1 --num-epochs 40 --full-libri 0 --max-duration 500 --use-fp16 True`
|
||||
|
||||
The Tensorboard log is at <https://tensorboard.dev/experiment/Km7QBHYnSLWs4qQnAJWsaA>
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|-------------------------------------|------------|------------|-----------------------|
|
||||
| greedy search (max sym per frame 1) | 7.10 | 18.79 | --epoch 19 --avg 8 |
|
||||
| greedy search (max sym per frame 1) | 6.92 | 18.16 | --epoch 29 --avg 8 |
|
||||
| greedy search (max sym per frame 1) | 6.89 | 17.75 | --epoch 30 --avg 10 |
|
||||
|
||||
|
||||
|
||||
|
||||
### LibriSpeech BPE training results (Pruned Transducer)
|
||||
|
||||
Conformer encoder + non-current decoder. The decoder
|
||||
@ -17,11 +115,15 @@ The WERs are:
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|-------------------------------------|------------|------------|------------------------------------------|
|
||||
| greedy search (max sym per frame 1) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 |
|
||||
| greedy search (max sym per frame 2) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 |
|
||||
| greedy search (max sym per frame 3) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 |
|
||||
| modified beam search (beam size 4) | 2.56 | 6.27 | --epoch 42, --avg 11, --max-duration 100 |
|
||||
| beam search (beam size 4) | 2.57 | 6.27 | --epoch 42, --avg 11, --max-duration 100 |
|
||||
| greedy search (max sym per frame 1) | 2.62 | 6.37 | --epoch 42 --avg 11 --max-duration 100 |
|
||||
| greedy search (max sym per frame 2) | 2.62 | 6.37 | --epoch 42 --avg 11 --max-duration 100 |
|
||||
| greedy search (max sym per frame 3) | 2.62 | 6.37 | --epoch 42 --avg 11 --max-duration 100 |
|
||||
| modified beam search (beam size 4) | 2.56 | 6.27 | --epoch 42 --avg 11 --max-duration 100 |
|
||||
| beam search (beam size 4) | 2.57 | 6.27 | --epoch 42 --avg 11 --max-duration 100 |
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
The decoding time for `test-clean` and `test-other` is given below:
|
||||
(A V100 GPU with 32 GB RAM is used for decoding. Note: Not all GPU RAM is used during decoding.)
|
||||
@ -111,7 +213,7 @@ The WERs are
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|---------------------------|------------|------------|------------------------------------------|
|
||||
| greedy search | 2.85 | 6.98 | --epoch 28, --avg 15, --max-duration 100 |
|
||||
| greedy search | 2.85 | 6.98 | --epoch 28 --avg 15 --max-duration 100 |
|
||||
|
||||
The training command for reproducing is given below:
|
||||
|
||||
@ -171,8 +273,8 @@ The WERs are
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|-------------------------------------|------------|------------|------------------------------------------|
|
||||
| greedy search (max sym per frame 1) | 2.64 | 6.55 | --epoch 39, --avg 15, --max-duration 100 |
|
||||
| modified beam search (beam size 4) | 2.61 | 6.46 | --epoch 39, --avg 15, --max-duration 100 |
|
||||
| greedy search (max sym per frame 1) | 2.64 | 6.55 | --epoch 39 --avg 15 --max-duration 100 |
|
||||
| modified beam search (beam size 4) | 2.61 | 6.46 | --epoch 39 --avg 15 --max-duration 100 |
|
||||
|
||||
The training command for reproducing is given below:
|
||||
|
||||
@ -241,10 +343,10 @@ The WERs are
|
||||
|
||||
| | test-clean | test-other | comment |
|
||||
|-------------------------------------|------------|------------|------------------------------------------|
|
||||
| greedy search (max sym per frame 1) | 2.67 | 6.67 | --epoch 63, --avg 19, --max-duration 100 |
|
||||
| greedy search (max sym per frame 2) | 2.67 | 6.67 | --epoch 63, --avg 19, --max-duration 100 |
|
||||
| greedy search (max sym per frame 3) | 2.67 | 6.67 | --epoch 63, --avg 19, --max-duration 100 |
|
||||
| modified beam search (beam size 4) | 2.67 | 6.57 | --epoch 63, --avg 19, --max-duration 100 |
|
||||
| greedy search (max sym per frame 1) | 2.67 | 6.67 | --epoch 63 --avg 19 --max-duration 100 |
|
||||
| greedy search (max sym per frame 2) | 2.67 | 6.67 | --epoch 63 --avg 19 --max-duration 100 |
|
||||
| greedy search (max sym per frame 3) | 2.67 | 6.67 | --epoch 63 --avg 19 --max-duration 100 |
|
||||
| modified beam search (beam size 4) | 2.67 | 6.57 | --epoch 63 --avg 19 --max-duration 100 |
|
||||
|
||||
|
||||
The training command for reproducing is given below:
|
||||
|
@ -89,7 +89,7 @@ def fast_beam_search(
|
||||
# (shape.NumElements(), 1, joiner_dim)
|
||||
# fmt: off
|
||||
current_encoder_out = torch.index_select(
|
||||
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1)
|
||||
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
||||
)
|
||||
# fmt: on
|
||||
logits = model.joiner(
|
||||
|
Loading…
x
Reference in New Issue
Block a user