diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.prompt_tuning.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.prompt_tuning.py.swp index 30bc235e8..2dc1681ed 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.prompt_tuning.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.prompt_tuning.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/prompt_tuning.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/prompt_tuning.py index 173404859..7d52e4240 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/prompt_tuning.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/prompt_tuning.py @@ -1575,6 +1575,7 @@ def run_adapter(rank, world_size, args, wb=None): logging.info("Using DDP") model = DDP(model, device_ids=[rank], find_unused_parameters=True) + ''' adapter_names = [] adapter_param = [] for n, p in model.named_parameters(): @@ -1585,6 +1586,12 @@ def run_adapter(rank, world_size, args, wb=None): p.requires_grad = True else: p.requires_grad = False + ''' + + for n, p in model.named_parameters(): + p.requires_grad = False + + prompt = torch.nn.Parameter(torch.randn(50, 512)) optimizer_adapter = ScaledAdam( adapter_param,