add symlink to steaming onnx ctc export

This commit is contained in:
Fangjun Kuang 2023-12-13 15:20:00 +08:00
parent 130f2916eb
commit 29130fbf27
4 changed files with 464 additions and 4 deletions

View File

@ -2,6 +2,10 @@
set -ex
git config --global user.name "k2-fsa"
git config --global user.email "csukuangfj@gmail.com"
git config --global lfs.allowincompletepush true
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
@ -24,7 +28,10 @@ rm -fv epoch-20.pt
rm -fv *.onnx
ln -s pretrained.pt epoch-20.pt
cd ../data/lang_bpe_2000
ls -lh
git lfs pull --include L.pt L_disambig.pt Linv.pt bpe.model
git lfs pull --include "*.model"
ls -lh
popd
log "----------------------------------------"
@ -53,7 +60,10 @@ cp -v $repo/data/lang_bpe_2000/bpe.model $dst
mkdir -p $dst/test_wavs
cp -v $repo/test_wavs/*.wav $dst/test_wavs
cd $dst
git lfs track "*.onnx"
git lfs track "*.onnx" "bpe.model"
ls -lh
file bpe.model
git status
git add .
git commit -m "upload model" && git push https://k2-fsa:${HF_TOKEN}@huggingface.co/k2-fsa/$dst main || true
@ -103,8 +113,6 @@ log "test int8"
$repo/test_wavs/DEV_T0000000000.wav
log "Upload onnx transducer models to huggingface"
git config --global user.name "k2-fsa"
git config --global user.email "xxx@gmail.com"
url=https://huggingface.co/k2-fsa/sherpa-onnx-streaming-zipformer-multi-zh-hans-2023-12-12
GIT_LFS_SKIP_SMUDGE=1 git clone $url
@ -117,7 +125,7 @@ cp -v $repo/data/lang_bpe_2000/bpe.model $dst
mkdir -p $dst/test_wavs
cp -v $repo/test_wavs/*.wav $dst/test_wavs
cd $dst
git lfs track "*.onnx"
git lfs track "*.onnx" bpe.model
git add .
git commit -m "upload model" && git push https://k2-fsa:${HF_TOKEN}@huggingface.co/k2-fsa/$dst main || true

View File

@ -0,0 +1,450 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
# Copyright 2023 Danqing Fu (danqing.fu@gmail.com)
"""
This script loads ONNX models exported by ./export-onnx-streaming-ctc.py
and uses them to decode waves.
We use the pre-trained model from
https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-ctc-streaming-2023-11-05
as an example to show how to use this file.
1. Download the pre-trained model
cd egs/librispeech/ASR
repo_url=https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-ctc-streaming-2023-11-05
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "exp/pretrained.pt"
cd exp
ln -s pretrained.pt epoch-99.pt
popd
2. Export the model to ONNX
./zipformer/export-onnx-streaming-ctc.py \
--tokens $repo/data/lang_bpe_2000/tokens.txt \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
--exp-dir $repo/exp \
--causal True \
--chunk-size 16 \
--left-context-frames 128 \
--use-ctc 1
It will generate the following 2 files inside $repo/exp:
- ctc-epoch-99-avg-1-chunk-16-left-128.int8.onnx
- ctc-epoch-99-avg-1-chunk-16-left-128.onnx
You can use either the ``int8.onnx`` model or just the ``.onnx`` model.
3. Run this file with the exported ONNX models
./zipformer/onnx_pretrained-streaming-ctc.py \
--model-filename $repo/exp/ctc-epoch-20-avg-1-chunk-16-left-128.onnx \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/DEV_T0000000001.wav
Note: Even though this script only supports decoding a single file,
the exported ONNX models do support batch processing.
"""
import argparse
import logging
from typing import Dict, List, Optional, Tuple
import k2
import numpy as np
import onnxruntime as ort
import torch
import torchaudio
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--model-filename",
type=str,
required=True,
help="Path to the decoder onnx model. ",
)
parser.add_argument(
"--tokens",
type=str,
help="""Path to tokens.txt.""",
)
parser.add_argument(
"sound_file",
type=str,
help="The input sound file to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
return parser
class OnnxModel:
def __init__(
self,
model_filename: str,
):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.init_model(model_filename)
def init_model(self, encoder_model_filename: str):
self.model = ort.InferenceSession(
model_filename,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
self.init_states()
def init_states(self, batch_size: int = 1):
meta = self.model.get_modelmeta().custom_metadata_map
logging.info(f"meta={meta}")
model_type = meta["model_type"]
assert model_type == "zipformer2", model_type
decode_chunk_len = int(meta["decode_chunk_len"])
T = int(meta["T"])
num_encoder_layers = meta["num_encoder_layers"]
encoder_dims = meta["encoder_dims"]
cnn_module_kernels = meta["cnn_module_kernels"]
left_context_len = meta["left_context_len"]
query_head_dims = meta["query_head_dims"]
value_head_dims = meta["value_head_dims"]
num_heads = meta["num_heads"]
def to_int_list(s):
return list(map(int, s.split(",")))
num_encoder_layers = to_int_list(num_encoder_layers)
encoder_dims = to_int_list(encoder_dims)
cnn_module_kernels = to_int_list(cnn_module_kernels)
left_context_len = to_int_list(left_context_len)
query_head_dims = to_int_list(query_head_dims)
value_head_dims = to_int_list(value_head_dims)
num_heads = to_int_list(num_heads)
logging.info(f"decode_chunk_len: {decode_chunk_len}")
logging.info(f"T: {T}")
logging.info(f"num_encoder_layers: {num_encoder_layers}")
logging.info(f"encoder_dims: {encoder_dims}")
logging.info(f"cnn_module_kernels: {cnn_module_kernels}")
logging.info(f"left_context_len: {left_context_len}")
logging.info(f"query_head_dims: {query_head_dims}")
logging.info(f"value_head_dims: {value_head_dims}")
logging.info(f"num_heads: {num_heads}")
num_encoders = len(num_encoder_layers)
self.states = []
for i in range(num_encoders):
num_layers = num_encoder_layers[i]
key_dim = query_head_dims[i] * num_heads[i]
embed_dim = encoder_dims[i]
nonlin_attn_head_dim = 3 * embed_dim // 4
value_dim = value_head_dims[i] * num_heads[i]
conv_left_pad = cnn_module_kernels[i] // 2
for layer in range(num_layers):
cached_key = torch.zeros(
left_context_len[i], batch_size, key_dim
).numpy()
cached_nonlin_attn = torch.zeros(
1, batch_size, left_context_len[i], nonlin_attn_head_dim
).numpy()
cached_val1 = torch.zeros(
left_context_len[i], batch_size, value_dim
).numpy()
cached_val2 = torch.zeros(
left_context_len[i], batch_size, value_dim
).numpy()
cached_conv1 = torch.zeros(batch_size, embed_dim, conv_left_pad).numpy()
cached_conv2 = torch.zeros(batch_size, embed_dim, conv_left_pad).numpy()
self.states += [
cached_key,
cached_nonlin_attn,
cached_val1,
cached_val2,
cached_conv1,
cached_conv2,
]
embed_states = torch.zeros(batch_size, 128, 3, 19).numpy()
self.states.append(embed_states)
processed_lens = torch.zeros(batch_size, dtype=torch.int64).numpy()
self.states.append(processed_lens)
self.num_encoders = num_encoders
self.segment = T
self.offset = decode_chunk_len
def _build_model_input_output(
self,
x: torch.Tensor,
) -> Tuple[Dict[str, np.ndarray], List[str]]:
model_input = {"x": x.numpy()}
model_output = ["model_out"]
def build_inputs_outputs(tensors, i):
assert len(tensors) == 6, len(tensors)
# (downsample_left, batch_size, key_dim)
name = f"cached_key_{i}"
model_input[name] = tensors[0]
model_output.append(f"new_{name}")
# (1, batch_size, downsample_left, nonlin_attn_head_dim)
name = f"cached_nonlin_attn_{i}"
model_input[name] = tensors[1]
model_output.append(f"new_{name}")
# (downsample_left, batch_size, value_dim)
name = f"cached_val1_{i}"
model_input[name] = tensors[2]
model_output.append(f"new_{name}")
# (downsample_left, batch_size, value_dim)
name = f"cached_val2_{i}"
model_input[name] = tensors[3]
model_output.append(f"new_{name}")
# (batch_size, embed_dim, conv_left_pad)
name = f"cached_conv1_{i}"
model_input[name] = tensors[4]
model_output.append(f"new_{name}")
# (batch_size, embed_dim, conv_left_pad)
name = f"cached_conv2_{i}"
model_input[name] = tensors[5]
model_output.append(f"new_{name}")
for i in range(len(self.states[:-2]) // 6):
build_inputs_outputs(self.states[i * 6 : (i + 1) * 6], i)
# (batch_size, channels, left_pad, freq)
name = "embed_states"
embed_states = self.states[-2]
model_input[name] = embed_states
model_output.append(f"new_{name}")
# (batch_size,)
name = "processed_lens"
processed_lens = self.states[-1]
model_input[name] = processed_lens
model_output.append(f"new_{name}")
return model_input, model_output
def _update_states(self, states: List[np.ndarray]):
self.states = states
def run_encoder(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x:
A 3-D tensor of shape (N, T, C)
Returns:
Return a 3-D tensor of shape (N, T', joiner_dim) where
T' is usually equal to ((T-7)//2+1)//2
"""
model_input, model_output_names = self._build_model_input_output(x)
out = self.encoder.run(model_output_names, model_input)
self._update_states(out[1:])
return torch.from_numpy(out[0])
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0].contiguous())
return ans
def create_streaming_feature_extractor() -> OnlineFeature:
"""Create a CPU streaming feature extractor.
At present, we assume it returns a fbank feature extractor with
fixed options. In the future, we will support passing in the options
from outside.
Returns:
Return a CPU streaming feature extractor.
"""
opts = FbankOptions()
opts.device = "cpu"
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
return OnlineFbank(opts)
def greedy_search(
model: OnnxModel,
model_out: torch.Tensor,
context_size: int,
decoder_out: Optional[torch.Tensor] = None,
hyp: Optional[List[int]] = None,
) -> List[int]:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
Args:
model:
The transducer model.
model_out:
A 3-D tensor of shape (1, T, joiner_dim)
context_size:
The context size of the decoder model.
decoder_out:
Optional. Decoder output of the previous chunk.
hyp:
Decoding results for previous chunks.
Returns:
Return the decoded results so far.
"""
blank_id = 0
if decoder_out is None:
assert hyp is None, hyp
hyp = [blank_id] * context_size
decoder_input = torch.tensor([hyp], dtype=torch.int64)
decoder_out = model.run_decoder(decoder_input)
else:
assert hyp is not None, hyp
model_out = model_out.squeeze(0)
T = model_out.size(0)
for t in range(T):
cur_encoder_out = model_out[t : t + 1]
joiner_out = model.run_joiner(cur_encoder_out, decoder_out).squeeze(0)
y = joiner_out.argmax(dim=0).item()
if y != blank_id:
hyp.append(y)
decoder_input = hyp[-context_size:]
decoder_input = torch.tensor([decoder_input], dtype=torch.int64)
decoder_out = model.run_decoder(decoder_input)
return hyp, decoder_out
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
model = OnnxModel(
encoder_model_filename=args.encoder_model_filename,
decoder_model_filename=args.decoder_model_filename,
joiner_model_filename=args.joiner_model_filename,
)
sample_rate = 16000
logging.info("Constructing Fbank computer")
online_fbank = create_streaming_feature_extractor()
logging.info(f"Reading sound files: {args.sound_file}")
waves = read_sound_files(
filenames=[args.sound_file],
expected_sample_rate=sample_rate,
)[0]
tail_padding = torch.zeros(int(0.3 * sample_rate), dtype=torch.float32)
wave_samples = torch.cat([waves, tail_padding])
num_processed_frames = 0
segment = model.segment
offset = model.offset
context_size = model.context_size
hyp = None
decoder_out = None
chunk = int(1 * sample_rate) # 1 second
start = 0
while start < wave_samples.numel():
end = min(start + chunk, wave_samples.numel())
samples = wave_samples[start:end]
start += chunk
online_fbank.accept_waveform(
sampling_rate=sample_rate,
waveform=samples,
)
while online_fbank.num_frames_ready - num_processed_frames >= segment:
frames = []
for i in range(segment):
frames.append(online_fbank.get_frame(num_processed_frames + i))
num_processed_frames += offset
frames = torch.cat(frames, dim=0)
frames = frames.unsqueeze(0)
model_out = model.run_encoder(frames)
hyp = greedy_search(
model,
model_out,
hyp,
)
token_table = k2.SymbolTable.from_file(args.tokens)
text = ""
for i in hyp[context_size:]:
text += token_table[i]
text = text.replace("", " ").strip()
logging.info(args.sound_file)
logging.info(text)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/export-onnx-streaming-ctc.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/onnx_pretrained-streaming-ctc.py