diff --git a/egs/multi_ja_en/ASR/RESULTS.md b/egs/multi_ja_en/ASR/RESULTS.md index 524726441..412eff00f 100644 --- a/egs/multi_ja_en/ASR/RESULTS.md +++ b/egs/multi_ja_en/ASR/RESULTS.md @@ -52,20 +52,18 @@ We also include WER% for common English ASR datasets: | Corpus | WER (%) | |-----------------------------|---------| -| LibriSpeech (test-clean) | 3.49 | -| LibriSpeech (test-other) | 7.64 | -| CommonVoice | 39.87 | -| TED | 23.92 | -| MLS English (test-clean) | 10.16 | +| CommonVoice | 29.03 | +| TED | 16.78 | +| MLS English (test-clean) | 8.64 | And CER% for common Japanese datasets: | Corpus | CER (%) | |---------------|---------| -| JSUT | 10.04 | -| CommonVoice | 10.39 | -| TEDx | 12.22 | +| JSUT | 8.13 | +| CommonVoice | 9.82 | +| TEDx | 11.64 | Pre-trained model can be found here: https://huggingface.co/reazon-research/reazonspeech-k2-v2-ja-en/tree/main