deploy: 8582b6e41acbd1258633492212c06589d1370960

This commit is contained in:
csukuangfj 2023-01-11 07:35:10 +00:00
parent d1976a19d7
commit 28468e226c
7 changed files with 1043 additions and 19 deletions

View File

@ -1,12 +1,492 @@
Export to ncnn
==============
We support exporting LSTM transducer models to `ncnn <https://github.com/tencent/ncnn>`_.
Please refer to :ref:`export-model-for-ncnn` for details.
We support exporting both
`LSTM transducer models <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/lstm_transducer_stateless2>`_
and
`ConvEmformer transducer models <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/conv_emformer_transducer_stateless2>`_
to `ncnn <https://github.com/tencent/ncnn>`_.
We also provide `<https://github.com/k2-fsa/sherpa-ncnn>`_
performing speech recognition using ``ncnn`` with exported models.
It has been tested on Linux, macOS, Windows, and Raspberry Pi. The project is
self-contained and can be statically linked to produce a binary containing
everything needed.
It has been tested on Linux, macOS, Windows, ``Android``, and ``Raspberry Pi``.
`sherpa-ncnn`_ is self-contained and can be statically linked to produce
a binary containing everything needed. Please refer
to its documentation for details:
- `<https://k2-fsa.github.io/sherpa/ncnn/index.html>`_
Export LSTM transducer models
-----------------------------
Please refer to :ref:`export-lstm-transducer-model-for-ncnn` for details.
Export ConvEmformer transducer models
-------------------------------------
We use the pre-trained model from the following repository as an example:
- `<https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05>`_
We will show you step by step how to export it to `ncnn`_ and run it with `sherpa-ncnn`_.
.. hint::
We use ``Ubuntu 18.04``, ``torch 1.10``, and ``Python 3.8`` for testing.
.. caution::
Please use a more recent version of PyTorch. For instance, ``torch 1.8``
may ``not`` work.
1. Download the pre-trained model
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. hint::
You can also refer to `<https://k2-fsa.github.io/sherpa/cpp/pretrained_models/online_transducer.html#icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05>`_ to download the pre-trained model.
You have to install `git-lfs`_ before you continue.
.. code-block:: bash
cd egs/librispeech/ASR
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05
git lfs pull --include "exp/pretrained-epoch-30-avg-10-averaged.pt"
git lfs pull --include "data/lang_bpe_500/bpe.model"
cd ..
.. note::
We download ``exp/pretrained-xxx.pt``, not ``exp/cpu-jit_xxx.pt``.
In the above code, we download the pre-trained model into the directory
``egs/librispeech/ASR/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05``.
2. Install ncnn and pnnx
^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: bash
# We put ncnn into $HOME/open-source/ncnn
# You can change it to anywhere you like
cd $HOME
mkdir -p open-source
cd open-source
git clone https://github.com/csukuangfj/ncnn
cd ncnn
git submodule update --recursive --init
# Note: We don't use "python setup.py install" or "pip install ." here
mkdir -p build-wheel
cd build-wheel
cmake \
-DCMAKE_BUILD_TYPE=Release \
-DNCNN_PYTHON=ON \
-DNCNN_BUILD_BENCHMARK=OFF \
-DNCNN_BUILD_EXAMPLES=OFF \
-DNCNN_BUILD_TOOLS=ON \
..
make -j4
cd ..
# Note: $PWD here is $HOME/open-source/ncnn
export PYTHONPATH=$PWD/python:$PYTHONPATH
export PATH=$PWD/tools/pnnx/build/src:$PATH
export PATH=$PWD/build-wheel/tools/quantize:$PATH
# Now build pnnx
cd tools/pnnx
mkdir build
cd build
cmake ..
make -j4
./src/pnnx
Congratulations! You have successfully installed the following components:
- ``pnxx``, which is an executable located in
``$HOME/open-source/ncnn/tools/pnnx/build/src``. We will use
it to convert models exported by ``torch.jit.trace()``.
- ``ncnn2int8``, which is an executable located in
``$HOME/open-source/ncnn/build-wheel/tools/quantize``. We will use
it to quantize our models to ``int8``.
- ``ncnn.cpython-38-x86_64-linux-gnu.so``, which is a Python module located
in ``$HOME/open-source/ncnn/python/ncnn``.
.. note::
I am using ``Python 3.8``, so it
is ``ncnn.cpython-38-x86_64-linux-gnu.so``. If you use a different
version, say, ``Python 3.9``, the name would be
``ncnn.cpython-39-x86_64-linux-gnu.so``.
Also, if you are not using Linux, the file name would also be different.
But that does not matter. As long as you can compile it, it should work.
We have set up ``PYTHONPATH`` so that you can use ``import ncnn`` in your
Python code. We have also set up ``PATH`` so that you can use
``pnnx`` and ``ncnn2int8`` later in your terminal.
.. caution::
Please don't use `<https://github.com/tencent/ncnn>`_.
We have made some modifications to the offical `ncnn`_.
We will synchronize `<https://github.com/csukuangfj/ncnn>`_ periodically
with the official one.
3. Export the model via torch.jit.trace()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
First, let us rename our pre-trained model:
.. code-block::
cd egs/librispeech/ASR
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp
ln -s pretrained-epoch-30-avg-10-averaged.pt epoch-30.pt
cd ../..
Next, we use the following code to export our model:
.. code-block:: bash
dir=./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/
./conv_emformer_transducer_stateless2/export-for-ncnn.py \
--exp-dir $dir/exp \
--bpe-model $dir/data/lang_bpe_500/bpe.model \
--epoch 30 \
--avg 1 \
--use-averaged-model 0 \
\
--num-encoder-layers 12 \
--chunk-length 32 \
--cnn-module-kernel 31 \
--left-context-length 32 \
--right-context-length 8 \
--memory-size 32 \
--encoder-dim 512
.. hint::
We have renamed our model to ``epoch-30.pt`` so that we can use ``--epoch 30``.
There is only one pre-trained model, so we use ``--avg 1 --use-averaged-model 0``.
If you have trained a model by yourself and if you have all checkpoints
available, please first use ``decode.py`` to tune ``--epoch --avg``
and select the best combination with with ``--use-averaged-model 1``.
.. note::
You will see the following log output:
.. literalinclude:: ./code/export-conv-emformer-transducer-for-ncnn-output.txt
The log shows the model has ``75490012`` number of parameters, i.e., ``~75 M``.
.. code-block::
ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/pretrained-epoch-30-avg-10-averaged.pt
-rw-r--r-- 1 kuangfangjun root 289M Jan 11 12:05 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/pretrained-epoch-30-avg-10-averaged.pt
You can see that the file size of the pre-trained model is ``289 MB``, which
is roughly ``4 x 75 M``.
After running ``conv_emformer_transducer_stateless2/export-for-ncnn.py``,
we will get the following files:
.. code-block:: bash
ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*pnnx*
-rw-r--r-- 1 kuangfangjun root 1010K Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.pt
-rw-r--r-- 1 kuangfangjun root 283M Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.pt
-rw-r--r-- 1 kuangfangjun root 3.0M Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.pt
.. _conv-emformer-step-3-export-torchscript-model-via-pnnx:
3. Export torchscript model via pnnx
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. hint::
Make sure you have set up the ``PATH`` environment variable. Otherwise,
it will throw an error saying that ``pnnx`` could not be found.
Now, it's time to export our models to `ncnn`_ via ``pnnx``.
.. code-block::
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
pnnx ./encoder_jit_trace-pnnx.pt
pnnx ./decoder_jit_trace-pnnx.pt
pnnx ./joiner_jit_trace-pnnx.pt
It will generate the following files:
.. code-block:: bash
ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*ncnn*{bin,param}
-rw-r--r-- 1 kuangfangjun root 503K Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 437 Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param
-rw-r--r-- 1 kuangfangjun root 142M Jan 11 12:36 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 79K Jan 11 12:36 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param
-rw-r--r-- 1 kuangfangjun root 1.5M Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin
-rw-r--r-- 1 kuangfangjun root 488 Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param
There are two types of files:
- ``param``: It is a text file containing the model architectures. You can
use a text editor to view its content.
- ``bin``: It is a binary file containing the model parameters.
We compare the file sizes of the models below before and after converting via ``pnnx``:
.. see https://tableconvert.com/restructuredtext-generator
+----------------------------------+------------+
| File name | File size |
+==================================+============+
| encoder_jit_trace-pnnx.pt | 283 MB |
+----------------------------------+------------+
| decoder_jit_trace-pnnx.pt | 1010 KB |
+----------------------------------+------------+
| joiner_jit_trace-pnnx.pt | 3.0 MB |
+----------------------------------+------------+
| encoder_jit_trace-pnnx.ncnn.bin | 142 MB |
+----------------------------------+------------+
| decoder_jit_trace-pnnx.ncnn.bin | 503 KB |
+----------------------------------+------------+
| joiner_jit_trace-pnnx.ncnn.bin | 1.5 MB |
+----------------------------------+------------+
You can see that the file size of the models after converting is about one half
of the models before converting:
- encoder: 283 MB vs 142 MB
- decoder: 1010 KB vs 503 KB
- joiner: 3.0 MB vs 1.5 MB
The reason is that by default ``pnnx`` converts ``float32`` parameters
to ``float16``. A ``float32`` parameter occupies 4 bytes, while it is 2 bytes
for ``float16``. Thus, it is ``twice smaller`` after conversion.
.. hint::
If you use ``pnnx ./encoder_jit_trace-pnnx.pt fp16=0``, then ``pnnx``
won't convert ``float32`` to ``float16``.
4. Test the exported models in icefall
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. note::
We assume you have set up the environment variable ``PYTHONPATH`` when
building `ncnn`_.
Now we have successfully converted our pre-trained model to `ncnn`_ format.
The generated 6 files are what we need. You can use the following code to
test the converted models:
.. code-block:: bash
./conv_emformer_transducer_stateless2/streaming-ncnn-decode.py \
--tokens ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/lang_bpe_500/tokens.txt \
--encoder-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param \
--encoder-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin \
--decoder-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param \
--decoder-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin \
--joiner-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param \
--joiner-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin \
./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav
.. hint::
`ncnn`_ supports only ``batch size == 1``, so ``streaming-ncnn-decode.py`` accepts
only 1 wave file as input.
The output is given below:
.. literalinclude:: ./code/test-stremaing-ncnn-decode-conv-emformer-transducer-libri.txt
Congratulations! You have successfully exported a model from PyTorch to `ncnn`_!
5. Modify the exported encoder for sherpa-ncnn
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In order to use the exported models in `sherpa-ncnn`_, we have to modify
``encoder_jit_trace-pnnx.ncnn.param``.
Let us have a look at the first few lines of ``encoder_jit_trace-pnnx.ncnn.param``:
.. code-block::
7767517
1060 1342
Input in0 0 1 in0
**Explanation** of the above three lines:
1. ``7767517``, it is a magic number and should not be changed.
2. ``1060 1342``, the first number ``1060`` specifies the number of layers
in this file, while ``1342`` specifies the number intermediate outputs of
this file
3. ``Input in0 0 1 in0``, ``Input`` is the layer type of this layer; ``in0``
is the layer name of this layer; ``0`` means this layer has no input;
``1`` means this layer has one output. ``in0`` is the output name of
this layer.
We need to add 1 extra line and the result looks like below:
.. code-block:: bash
7767517
1061 1342
SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512
Input in0 0 1 in0
**Explanation**
1. ``7767517``, it is still the same
2. ``1061 1342``, we have added an extra layer, so we need to update ``1060`` to ``1061``.
We don't need to change ``1342`` since the newly added layer has no inputs and outputs.
3. ``SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512``
This line is newly added. Its explanation is given below:
- ``SherpaMetaData`` is the type of this layer. Must be ``SherpaMetaData``.
- ``sherpa_meta_data1`` is the name of this layer. Must be ``sherpa_meta_data1``.
- ``0 0`` means this layer has no inputs and output. Must be ``0 0``
- ``0=1``, 0 is the key and 1 is the value. MUST be ``0=1``
- ``1=12``, 1 is the key and 12 is the value of the
parameter ``--num-encoder-layers`` that you provided when running
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
- ``2=32``, 2 is the key and 32 is the value of the
parameter ``--memory-size`` that you provided when running
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
- ``3=31``, 3 is the key and 31 is the value of the
parameter ``--cnn-module-kernel`` that you provided when running
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
- ``4=8``, 4 is the key and 8 is the value of the
parameter ``--left-context-length`` that you provided when running
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
- ``5=32``, 5 is the key and 32 is the value of the
parameter ``--chunk-length`` that you provided when running
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
- ``6=8``, 6 is the key and 8 is the value of the
parameter ``--right-context-length`` that you provided when running
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
- ``7=512``, 7 is the key and 512 is the value of the
parameter ``--encoder-dim`` that you provided when running
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
For ease of reference, we list the key-value pairs that you need to add
in the following table. If your model has a different setting, please
change the values for ``SherpaMetaData`` accordingly. Otherwise, you
will be ``SAD``.
+------+-----------------------------+
| key | value |
+======+=============================+
| 0 | 1 (fixed) |
+------+-----------------------------+
| 1 | ``--num-encoder-layers`` |
+------+-----------------------------+
| 2 | ``--memory-size`` |
+------+-----------------------------+
| 3 | ``--cnn-module-kernel`` |
+------+-----------------------------+
| 4 | ``--left-context-length`` |
+------+-----------------------------+
| 5 | ``--chunk-length`` |
+------+-----------------------------+
| 6 | ``--right-context-length`` |
+------+-----------------------------+
| 7 | ``--encoder-dim`` |
+------+-----------------------------+
4. ``Input in0 0 1 in0``. No need to change it.
.. caution::
When you add a new layer ``SherpaMetaData``, please remember to update the
number of layers. In our case, update ``1060`` to ``1061``. Otherwise,
you will be SAD later.
.. hint::
After adding the new layer ``SherpaMetaData``, you cannot use this model
with ``streaming-ncnn-decode.py`` anymore since ``SherpaMetaData`` is
supported only in `sherpa-ncnn`_.
.. hint::
`ncnn`_ is very flexible. You can add new layers to it just by text-editing
the ``param`` file! You don't need to change the ``bin`` file.
Now you can use this model in `sherpa-ncnn`_.
Please refer to the following documentation:
- Linux/macOS/Windows/arm/aarch64: `<https://k2-fsa.github.io/sherpa/ncnn/install/index.html>`_
- Android: `<https://k2-fsa.github.io/sherpa/ncnn/android/index.html>`_
- Python: `<https://k2-fsa.github.io/sherpa/ncnn/python/index.html>`_
We have a list of pre-trained models that have been exported for `sherpa-ncnn`_:
- `<https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html>`_
You can find more usages there.
6. (Optional) int8 quantization with sherpa-ncnn
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This step is optional.
In this step, we describe how to quantize our model with ``int8``.
Change :ref:`conv-emformer-step-3-export-torchscript-model-via-pnnx` to
disable ``fp16`` when using ``pnnx``:
.. code-block::
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
pnnx ./encoder_jit_trace-pnnx.pt fp16=0
pnnx ./decoder_jit_trace-pnnx.pt
pnnx ./joiner_jit_trace-pnnx.pt fp16=0
.. note::
We add ``fp16=0`` when exporting the encoder and joiner. ``ncnn`` does not
support quantizing the decoder model yet. We will update this documentation
once ``ncnn`` supports it. (Maybe in this year, 2023).
TODO(fangjun): Finish it.
Have fun with `sherpa-ncnn`_!

View File

@ -515,10 +515,10 @@ To use the generated files with ``./lstm_transducer_stateless2/jit_pretrained``:
Please see `<https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/english/server.html>`_
for how to use the exported models in ``sherpa``.
.. _export-model-for-ncnn:
.. _export-lstm-transducer-model-for-ncnn:
Export model for ncnn
~~~~~~~~~~~~~~~~~~~~~
Export LSTM transducer models for ncnn
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We support exporting pretrained LSTM transducer models to
`ncnn <https://github.com/tencent/ncnn>`_ using
@ -657,3 +657,6 @@ by visiting the following links:
You can find more usages of the pretrained models in
`<https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/index.html>`_
Export ConvEmformer transducer models for ncnn
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

View File

@ -48,7 +48,20 @@
<li class="toctree-l2"><a class="reference internal" href="export-with-torch-jit-trace.html">Export model with torch.jit.trace()</a></li>
<li class="toctree-l2"><a class="reference internal" href="export-with-torch-jit-script.html">Export model with torch.jit.script()</a></li>
<li class="toctree-l2"><a class="reference internal" href="export-onnx.html">Export to ONNX</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Export to ncnn</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Export to ncnn</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#export-lstm-transducer-models">Export LSTM transducer models</a></li>
<li class="toctree-l3"><a class="reference internal" href="#export-convemformer-transducer-models">Export ConvEmformer transducer models</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#download-the-pre-trained-model">1. Download the pre-trained model</a></li>
<li class="toctree-l4"><a class="reference internal" href="#install-ncnn-and-pnnx">2. Install ncnn and pnnx</a></li>
<li class="toctree-l4"><a class="reference internal" href="#export-the-model-via-torch-jit-trace">3. Export the model via torch.jit.trace()</a></li>
<li class="toctree-l4"><a class="reference internal" href="#export-torchscript-model-via-pnnx">3. Export torchscript model via pnnx</a></li>
<li class="toctree-l4"><a class="reference internal" href="#test-the-exported-models-in-icefall">4. Test the exported models in icefall</a></li>
<li class="toctree-l4"><a class="reference internal" href="#modify-the-exported-encoder-for-sherpa-ncnn">5. Modify the exported encoder for sherpa-ncnn</a></li>
<li class="toctree-l4"><a class="reference internal" href="#optional-int8-quantization-with-sherpa-ncnn">6. (Optional) int8 quantization with sherpa-ncnn</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
</ul>
@ -87,13 +100,525 @@
<section id="export-to-ncnn">
<h1>Export to ncnn<a class="headerlink" href="#export-to-ncnn" title="Permalink to this heading"></a></h1>
<p>We support exporting LSTM transducer models to <a class="reference external" href="https://github.com/tencent/ncnn">ncnn</a>.</p>
<p>Please refer to <a class="reference internal" href="../recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.html#export-model-for-ncnn"><span class="std std-ref">Export model for ncnn</span></a> for details.</p>
<p>We support exporting both
<a class="reference external" href="https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/lstm_transducer_stateless2">LSTM transducer models</a>
and
<a class="reference external" href="https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/conv_emformer_transducer_stateless2">ConvEmformer transducer models</a>
to <a class="reference external" href="https://github.com/tencent/ncnn">ncnn</a>.</p>
<p>We also provide <a class="reference external" href="https://github.com/k2-fsa/sherpa-ncnn">https://github.com/k2-fsa/sherpa-ncnn</a>
performing speech recognition using <code class="docutils literal notranslate"><span class="pre">ncnn</span></code> with exported models.
It has been tested on Linux, macOS, Windows, and Raspberry Pi. The project is
self-contained and can be statically linked to produce a binary containing
everything needed.</p>
It has been tested on Linux, macOS, Windows, <code class="docutils literal notranslate"><span class="pre">Android</span></code>, and <code class="docutils literal notranslate"><span class="pre">Raspberry</span> <span class="pre">Pi</span></code>.</p>
<p><a class="reference external" href="https://github.com/k2-fsa/sherpa-ncnn">sherpa-ncnn</a> is self-contained and can be statically linked to produce
a binary containing everything needed. Please refer
to its documentation for details:</p>
<blockquote>
<div><ul class="simple">
<li><p><a class="reference external" href="https://k2-fsa.github.io/sherpa/ncnn/index.html">https://k2-fsa.github.io/sherpa/ncnn/index.html</a></p></li>
</ul>
</div></blockquote>
<section id="export-lstm-transducer-models">
<h2>Export LSTM transducer models<a class="headerlink" href="#export-lstm-transducer-models" title="Permalink to this heading"></a></h2>
<p>Please refer to <a class="reference internal" href="../recipes/Streaming-ASR/librispeech/lstm_pruned_stateless_transducer.html#export-lstm-transducer-model-for-ncnn"><span class="std std-ref">Export LSTM transducer models for ncnn</span></a> for details.</p>
</section>
<section id="export-convemformer-transducer-models">
<h2>Export ConvEmformer transducer models<a class="headerlink" href="#export-convemformer-transducer-models" title="Permalink to this heading"></a></h2>
<p>We use the pre-trained model from the following repository as an example:</p>
<blockquote>
<div><ul class="simple">
<li><p><a class="reference external" href="https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05">https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05</a></p></li>
</ul>
</div></blockquote>
<p>We will show you step by step how to export it to <a class="reference external" href="https://github.com/tencent/ncnn">ncnn</a> and run it with <a class="reference external" href="https://github.com/k2-fsa/sherpa-ncnn">sherpa-ncnn</a>.</p>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p>We use <code class="docutils literal notranslate"><span class="pre">Ubuntu</span> <span class="pre">18.04</span></code>, <code class="docutils literal notranslate"><span class="pre">torch</span> <span class="pre">1.10</span></code>, and <code class="docutils literal notranslate"><span class="pre">Python</span> <span class="pre">3.8</span></code> for testing.</p>
</div>
<div class="admonition caution">
<p class="admonition-title">Caution</p>
<p>Please use a more recent version of PyTorch. For instance, <code class="docutils literal notranslate"><span class="pre">torch</span> <span class="pre">1.8</span></code>
may <code class="docutils literal notranslate"><span class="pre">not</span></code> work.</p>
</div>
<section id="download-the-pre-trained-model">
<h3>1. Download the pre-trained model<a class="headerlink" href="#download-the-pre-trained-model" title="Permalink to this heading"></a></h3>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p>You can also refer to <a class="reference external" href="https://k2-fsa.github.io/sherpa/cpp/pretrained_models/online_transducer.html#icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05">https://k2-fsa.github.io/sherpa/cpp/pretrained_models/online_transducer.html#icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05</a> to download the pre-trained model.</p>
<p>You have to install <a class="reference external" href="https://git-lfs.com/">git-lfs</a> before you continue.</p>
</div>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="nb">cd</span><span class="w"> </span>egs/librispeech/ASR
<span class="nv">GIT_LFS_SKIP_SMUDGE</span><span class="o">=</span><span class="m">1</span><span class="w"> </span>git<span class="w"> </span>clone<span class="w"> </span>https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05
<span class="nb">cd</span><span class="w"> </span>icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05
git<span class="w"> </span>lfs<span class="w"> </span>pull<span class="w"> </span>--include<span class="w"> </span><span class="s2">&quot;exp/pretrained-epoch-30-avg-10-averaged.pt&quot;</span>
git<span class="w"> </span>lfs<span class="w"> </span>pull<span class="w"> </span>--include<span class="w"> </span><span class="s2">&quot;data/lang_bpe_500/bpe.model&quot;</span>
<span class="nb">cd</span><span class="w"> </span>..
</pre></div>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>We download <code class="docutils literal notranslate"><span class="pre">exp/pretrained-xxx.pt</span></code>, not <code class="docutils literal notranslate"><span class="pre">exp/cpu-jit_xxx.pt</span></code>.</p>
</div>
<p>In the above code, we download the pre-trained model into the directory
<code class="docutils literal notranslate"><span class="pre">egs/librispeech/ASR/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05</span></code>.</p>
</section>
<section id="install-ncnn-and-pnnx">
<h3>2. Install ncnn and pnnx<a class="headerlink" href="#install-ncnn-and-pnnx" title="Permalink to this heading"></a></h3>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="c1"># We put ncnn into $HOME/open-source/ncnn</span>
<span class="c1"># You can change it to anywhere you like</span>
<span class="nb">cd</span><span class="w"> </span><span class="nv">$HOME</span>
mkdir<span class="w"> </span>-p<span class="w"> </span>open-source
<span class="nb">cd</span><span class="w"> </span>open-source
git<span class="w"> </span>clone<span class="w"> </span>https://github.com/csukuangfj/ncnn
<span class="nb">cd</span><span class="w"> </span>ncnn
git<span class="w"> </span>submodule<span class="w"> </span>update<span class="w"> </span>--recursive<span class="w"> </span>--init
<span class="c1"># Note: We don&#39;t use &quot;python setup.py install&quot; or &quot;pip install .&quot; here</span>
mkdir<span class="w"> </span>-p<span class="w"> </span>build-wheel
<span class="nb">cd</span><span class="w"> </span>build-wheel
cmake<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>-DCMAKE_BUILD_TYPE<span class="o">=</span>Release<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>-DNCNN_PYTHON<span class="o">=</span>ON<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>-DNCNN_BUILD_BENCHMARK<span class="o">=</span>OFF<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>-DNCNN_BUILD_EXAMPLES<span class="o">=</span>OFF<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>-DNCNN_BUILD_TOOLS<span class="o">=</span>ON<span class="w"> </span><span class="se">\</span>
..
make<span class="w"> </span>-j4
<span class="nb">cd</span><span class="w"> </span>..
<span class="c1"># Note: $PWD here is $HOME/open-source/ncnn</span>
<span class="nb">export</span><span class="w"> </span><span class="nv">PYTHONPATH</span><span class="o">=</span><span class="nv">$PWD</span>/python:<span class="nv">$PYTHONPATH</span>
<span class="nb">export</span><span class="w"> </span><span class="nv">PATH</span><span class="o">=</span><span class="nv">$PWD</span>/tools/pnnx/build/src:<span class="nv">$PATH</span>
<span class="nb">export</span><span class="w"> </span><span class="nv">PATH</span><span class="o">=</span><span class="nv">$PWD</span>/build-wheel/tools/quantize:<span class="nv">$PATH</span>
<span class="c1"># Now build pnnx</span>
<span class="nb">cd</span><span class="w"> </span>tools/pnnx
mkdir<span class="w"> </span>build
<span class="nb">cd</span><span class="w"> </span>build
cmake<span class="w"> </span>..
make<span class="w"> </span>-j4
./src/pnnx
</pre></div>
</div>
<p>Congratulations! You have successfully installed the following components:</p>
<blockquote>
<div><ul>
<li><p><code class="docutils literal notranslate"><span class="pre">pnxx</span></code>, which is an executable located in
<code class="docutils literal notranslate"><span class="pre">$HOME/open-source/ncnn/tools/pnnx/build/src</span></code>. We will use
it to convert models exported by <code class="docutils literal notranslate"><span class="pre">torch.jit.trace()</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">ncnn2int8</span></code>, which is an executable located in
<code class="docutils literal notranslate"><span class="pre">$HOME/open-source/ncnn/build-wheel/tools/quantize</span></code>. We will use
it to quantize our models to <code class="docutils literal notranslate"><span class="pre">int8</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">ncnn.cpython-38-x86_64-linux-gnu.so</span></code>, which is a Python module located
in <code class="docutils literal notranslate"><span class="pre">$HOME/open-source/ncnn/python/ncnn</span></code>.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>I am using <code class="docutils literal notranslate"><span class="pre">Python</span> <span class="pre">3.8</span></code>, so it
is <code class="docutils literal notranslate"><span class="pre">ncnn.cpython-38-x86_64-linux-gnu.so</span></code>. If you use a different
version, say, <code class="docutils literal notranslate"><span class="pre">Python</span> <span class="pre">3.9</span></code>, the name would be
<code class="docutils literal notranslate"><span class="pre">ncnn.cpython-39-x86_64-linux-gnu.so</span></code>.</p>
<p>Also, if you are not using Linux, the file name would also be different.
But that does not matter. As long as you can compile it, it should work.</p>
</div>
</li>
</ul>
</div></blockquote>
<p>We have set up <code class="docutils literal notranslate"><span class="pre">PYTHONPATH</span></code> so that you can use <code class="docutils literal notranslate"><span class="pre">import</span> <span class="pre">ncnn</span></code> in your
Python code. We have also set up <code class="docutils literal notranslate"><span class="pre">PATH</span></code> so that you can use
<code class="docutils literal notranslate"><span class="pre">pnnx</span></code> and <code class="docutils literal notranslate"><span class="pre">ncnn2int8</span></code> later in your terminal.</p>
<div class="admonition caution">
<p class="admonition-title">Caution</p>
<p>Please dont use <a class="reference external" href="https://github.com/tencent/ncnn">https://github.com/tencent/ncnn</a>.
We have made some modifications to the offical <a class="reference external" href="https://github.com/tencent/ncnn">ncnn</a>.</p>
<p>We will synchronize <a class="reference external" href="https://github.com/csukuangfj/ncnn">https://github.com/csukuangfj/ncnn</a> periodically
with the official one.</p>
</div>
</section>
<section id="export-the-model-via-torch-jit-trace">
<h3>3. Export the model via torch.jit.trace()<a class="headerlink" href="#export-the-model-via-torch-jit-trace" title="Permalink to this heading"></a></h3>
<p>First, let us rename our pre-trained model:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">cd</span> <span class="n">egs</span><span class="o">/</span><span class="n">librispeech</span><span class="o">/</span><span class="n">ASR</span>
<span class="n">cd</span> <span class="n">icefall</span><span class="o">-</span><span class="n">asr</span><span class="o">-</span><span class="n">librispeech</span><span class="o">-</span><span class="n">conv</span><span class="o">-</span><span class="n">emformer</span><span class="o">-</span><span class="n">transducer</span><span class="o">-</span><span class="n">stateless2</span><span class="o">-</span><span class="mi">2022</span><span class="o">-</span><span class="mi">07</span><span class="o">-</span><span class="mi">05</span><span class="o">/</span><span class="n">exp</span>
<span class="n">ln</span> <span class="o">-</span><span class="n">s</span> <span class="n">pretrained</span><span class="o">-</span><span class="n">epoch</span><span class="o">-</span><span class="mi">30</span><span class="o">-</span><span class="n">avg</span><span class="o">-</span><span class="mi">10</span><span class="o">-</span><span class="n">averaged</span><span class="o">.</span><span class="n">pt</span> <span class="n">epoch</span><span class="o">-</span><span class="mf">30.</span><span class="n">pt</span>
<span class="n">cd</span> <span class="o">../..</span>
</pre></div>
</div>
<p>Next, we use the following code to export our model:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="nv">dir</span><span class="o">=</span>./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/
./conv_emformer_transducer_stateless2/export-for-ncnn.py<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--exp-dir<span class="w"> </span><span class="nv">$dir</span>/exp<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--bpe-model<span class="w"> </span><span class="nv">$dir</span>/data/lang_bpe_500/bpe.model<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--epoch<span class="w"> </span><span class="m">30</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--avg<span class="w"> </span><span class="m">1</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--use-averaged-model<span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--num-encoder-layers<span class="w"> </span><span class="m">12</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--chunk-length<span class="w"> </span><span class="m">32</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--cnn-module-kernel<span class="w"> </span><span class="m">31</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--left-context-length<span class="w"> </span><span class="m">32</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--right-context-length<span class="w"> </span><span class="m">8</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--memory-size<span class="w"> </span><span class="m">32</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--encoder-dim<span class="w"> </span><span class="m">512</span>
</pre></div>
</div>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p>We have renamed our model to <code class="docutils literal notranslate"><span class="pre">epoch-30.pt</span></code> so that we can use <code class="docutils literal notranslate"><span class="pre">--epoch</span> <span class="pre">30</span></code>.
There is only one pre-trained model, so we use <code class="docutils literal notranslate"><span class="pre">--avg</span> <span class="pre">1</span> <span class="pre">--use-averaged-model</span> <span class="pre">0</span></code>.</p>
<p>If you have trained a model by yourself and if you have all checkpoints
available, please first use <code class="docutils literal notranslate"><span class="pre">decode.py</span></code> to tune <code class="docutils literal notranslate"><span class="pre">--epoch</span> <span class="pre">--avg</span></code>
and select the best combination with with <code class="docutils literal notranslate"><span class="pre">--use-averaged-model</span> <span class="pre">1</span></code>.</p>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>You will see the following log output:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mi">2023</span><span class="o">-</span><span class="mi">01</span><span class="o">-</span><span class="mi">11</span> <span class="mi">12</span><span class="p">:</span><span class="mi">15</span><span class="p">:</span><span class="mi">38</span><span class="p">,</span><span class="mi">677</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">export</span><span class="o">-</span><span class="k">for</span><span class="o">-</span><span class="n">ncnn</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">220</span><span class="p">]</span> <span class="n">device</span><span class="p">:</span> <span class="n">cpu</span>
<span class="mi">2023</span><span class="o">-</span><span class="mi">01</span><span class="o">-</span><span class="mi">11</span> <span class="mi">12</span><span class="p">:</span><span class="mi">15</span><span class="p">:</span><span class="mi">38</span><span class="p">,</span><span class="mi">681</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">export</span><span class="o">-</span><span class="k">for</span><span class="o">-</span><span class="n">ncnn</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">229</span><span class="p">]</span> <span class="p">{</span><span class="s1">&#39;best_train_loss&#39;</span><span class="p">:</span> <span class="n">inf</span><span class="p">,</span> <span class="s1">&#39;best_valid_loss&#39;</span><span class="p">:</span> <span class="n">inf</span><span class="p">,</span> <span class="s1">&#39;best_train_epoch&#39;</span><span class="p">:</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="s1">&#39;best_v</span>
<span class="n">alid_epoch</span><span class="s1">&#39;: -1, &#39;</span><span class="n">batch_idx_train</span><span class="s1">&#39;: 0, &#39;</span><span class="n">log_interval</span><span class="s1">&#39;: 50, &#39;</span><span class="n">reset_interval</span><span class="s1">&#39;: 200, &#39;</span><span class="n">valid_interval</span><span class="s1">&#39;: 3000, &#39;</span><span class="n">feature_dim</span><span class="s1">&#39;: 80, &#39;</span><span class="n">subsampl</span>
<span class="n">ing_factor</span><span class="s1">&#39;: 4, &#39;</span><span class="n">decoder_dim</span><span class="s1">&#39;: 512, &#39;</span><span class="n">joiner_dim</span><span class="s1">&#39;: 512, &#39;</span><span class="n">model_warm_step</span><span class="s1">&#39;: 3000, &#39;</span><span class="n">env_info</span><span class="s1">&#39;: {&#39;</span><span class="n">k2</span><span class="o">-</span><span class="n">version</span><span class="s1">&#39;: &#39;</span><span class="mf">1.23.2</span><span class="s1">&#39;, &#39;</span><span class="n">k2</span><span class="o">-</span><span class="n">build</span><span class="o">-</span><span class="nb">type</span><span class="s1">&#39;:</span>
<span class="s1">&#39;Release&#39;</span><span class="p">,</span> <span class="s1">&#39;k2-with-cuda&#39;</span><span class="p">:</span> <span class="kc">True</span><span class="p">,</span> <span class="s1">&#39;k2-git-sha1&#39;</span><span class="p">:</span> <span class="s1">&#39;a34171ed85605b0926eebbd0463d059431f4f74a&#39;</span><span class="p">,</span> <span class="s1">&#39;k2-git-date&#39;</span><span class="p">:</span> <span class="s1">&#39;Wed Dec 14 00:06:38 2022&#39;</span><span class="p">,</span>
<span class="s1">&#39;lhotse-version&#39;</span><span class="p">:</span> <span class="s1">&#39;1.12.0.dev+missing.version.file&#39;</span><span class="p">,</span> <span class="s1">&#39;torch-version&#39;</span><span class="p">:</span> <span class="s1">&#39;1.10.0+cu102&#39;</span><span class="p">,</span> <span class="s1">&#39;torch-cuda-available&#39;</span><span class="p">:</span> <span class="kc">False</span><span class="p">,</span> <span class="s1">&#39;torch-cuda-vers</span>
<span class="n">ion</span><span class="s1">&#39;: &#39;</span><span class="mf">10.2</span><span class="s1">&#39;, &#39;</span><span class="n">python</span><span class="o">-</span><span class="n">version</span><span class="s1">&#39;: &#39;</span><span class="mf">3.8</span><span class="s1">&#39;, &#39;</span><span class="n">icefall</span><span class="o">-</span><span class="n">git</span><span class="o">-</span><span class="n">branch</span><span class="s1">&#39;: &#39;</span><span class="n">fix</span><span class="o">-</span><span class="n">stateless3</span><span class="o">-</span><span class="n">train</span><span class="o">-</span><span class="mi">2022</span><span class="o">-</span><span class="mi">12</span><span class="o">-</span><span class="mi">27</span><span class="s1">&#39;, &#39;</span><span class="n">icefall</span><span class="o">-</span><span class="n">git</span><span class="o">-</span><span class="n">sha1</span><span class="s1">&#39;: &#39;</span><span class="mf">530e8</span><span class="n">a1</span><span class="o">-</span><span class="n">dirty</span><span class="s1">&#39;, &#39;</span>
<span class="n">icefall</span><span class="o">-</span><span class="n">git</span><span class="o">-</span><span class="n">date</span><span class="s1">&#39;: &#39;</span><span class="n">Tue</span> <span class="n">Dec</span> <span class="mi">27</span> <span class="mi">13</span><span class="p">:</span><span class="mi">59</span><span class="p">:</span><span class="mi">18</span> <span class="mi">2022</span><span class="s1">&#39;, &#39;</span><span class="n">icefall</span><span class="o">-</span><span class="n">path</span><span class="s1">&#39;: &#39;</span><span class="o">/</span><span class="n">star</span><span class="o">-</span><span class="n">fj</span><span class="o">/</span><span class="n">fangjun</span><span class="o">/</span><span class="nb">open</span><span class="o">-</span><span class="n">source</span><span class="o">/</span><span class="n">icefall</span><span class="s1">&#39;, &#39;</span><span class="n">k2</span><span class="o">-</span><span class="n">path</span><span class="s1">&#39;: &#39;</span><span class="o">/</span><span class="n">star</span><span class="o">-</span><span class="n">fj</span><span class="o">/</span><span class="n">fangjun</span><span class="o">/</span><span class="n">op</span>
<span class="n">en</span><span class="o">-</span><span class="n">source</span><span class="o">/</span><span class="n">k2</span><span class="o">/</span><span class="n">k2</span><span class="o">/</span><span class="n">python</span><span class="o">/</span><span class="n">k2</span><span class="o">/</span><span class="fm">__init__</span><span class="o">.</span><span class="n">py</span><span class="s1">&#39;, &#39;</span><span class="n">lhotse</span><span class="o">-</span><span class="n">path</span><span class="s1">&#39;: &#39;</span><span class="o">/</span><span class="n">star</span><span class="o">-</span><span class="n">fj</span><span class="o">/</span><span class="n">fangjun</span><span class="o">/</span><span class="nb">open</span><span class="o">-</span><span class="n">source</span><span class="o">/</span><span class="n">lhotse</span><span class="o">/</span><span class="n">lhotse</span><span class="o">/</span><span class="fm">__init__</span><span class="o">.</span><span class="n">py</span><span class="s1">&#39;, &#39;</span><span class="n">hostname</span><span class="s1">&#39;: &#39;</span><span class="n">de</span><span class="o">-</span><span class="mi">74279</span>
<span class="o">-</span><span class="n">k2</span><span class="o">-</span><span class="n">train</span><span class="o">-</span><span class="mi">3</span><span class="o">-</span><span class="mi">1220120619</span><span class="o">-</span><span class="mi">7695</span><span class="n">ff496b</span><span class="o">-</span><span class="n">s9n4w</span><span class="s1">&#39;, &#39;</span><span class="n">IP</span> <span class="n">address</span><span class="s1">&#39;: &#39;</span><span class="mf">127.0.0.1</span><span class="s1">&#39;}, &#39;</span><span class="n">epoch</span><span class="s1">&#39;: 30, &#39;</span><span class="nb">iter</span><span class="s1">&#39;: 0, &#39;</span><span class="n">avg</span><span class="s1">&#39;: 1, &#39;</span><span class="n">exp_dir</span><span class="s1">&#39;: PosixPath(&#39;</span><span class="n">icefa</span>
<span class="n">ll</span><span class="o">-</span><span class="n">asr</span><span class="o">-</span><span class="n">librispeech</span><span class="o">-</span><span class="n">conv</span><span class="o">-</span><span class="n">emformer</span><span class="o">-</span><span class="n">transducer</span><span class="o">-</span><span class="n">stateless2</span><span class="o">-</span><span class="mi">2022</span><span class="o">-</span><span class="mi">07</span><span class="o">-</span><span class="mi">05</span><span class="o">/</span><span class="n">exp</span><span class="s1">&#39;), &#39;</span><span class="n">bpe_model</span><span class="s1">&#39;: &#39;</span><span class="o">./</span><span class="n">icefall</span><span class="o">-</span><span class="n">asr</span><span class="o">-</span><span class="n">librispeech</span><span class="o">-</span><span class="n">conv</span><span class="o">-</span><span class="n">emformer</span><span class="o">-</span><span class="n">transdu</span>
<span class="n">cer</span><span class="o">-</span><span class="n">stateless2</span><span class="o">-</span><span class="mi">2022</span><span class="o">-</span><span class="mi">07</span><span class="o">-</span><span class="mi">05</span><span class="o">//</span><span class="n">data</span><span class="o">/</span><span class="n">lang_bpe_500</span><span class="o">/</span><span class="n">bpe</span><span class="o">.</span><span class="n">model</span><span class="s1">&#39;, &#39;</span><span class="n">jit</span><span class="s1">&#39;: False, &#39;</span><span class="n">context_size</span><span class="s1">&#39;: 2, &#39;</span><span class="n">use_averaged_model</span><span class="s1">&#39;: False, &#39;</span><span class="n">encoder_dim</span><span class="s1">&#39;:</span>
<span class="mi">512</span><span class="p">,</span> <span class="s1">&#39;nhead&#39;</span><span class="p">:</span> <span class="mi">8</span><span class="p">,</span> <span class="s1">&#39;dim_feedforward&#39;</span><span class="p">:</span> <span class="mi">2048</span><span class="p">,</span> <span class="s1">&#39;num_encoder_layers&#39;</span><span class="p">:</span> <span class="mi">12</span><span class="p">,</span> <span class="s1">&#39;cnn_module_kernel&#39;</span><span class="p">:</span> <span class="mi">31</span><span class="p">,</span> <span class="s1">&#39;left_context_length&#39;</span><span class="p">:</span> <span class="mi">32</span><span class="p">,</span> <span class="s1">&#39;chunk_length&#39;</span>
<span class="p">:</span> <span class="mi">32</span><span class="p">,</span> <span class="s1">&#39;right_context_length&#39;</span><span class="p">:</span> <span class="mi">8</span><span class="p">,</span> <span class="s1">&#39;memory_size&#39;</span><span class="p">:</span> <span class="mi">32</span><span class="p">,</span> <span class="s1">&#39;blank_id&#39;</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="s1">&#39;vocab_size&#39;</span><span class="p">:</span> <span class="mi">500</span><span class="p">}</span>
<span class="mi">2023</span><span class="o">-</span><span class="mi">01</span><span class="o">-</span><span class="mi">11</span> <span class="mi">12</span><span class="p">:</span><span class="mi">15</span><span class="p">:</span><span class="mi">38</span><span class="p">,</span><span class="mi">681</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">export</span><span class="o">-</span><span class="k">for</span><span class="o">-</span><span class="n">ncnn</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">231</span><span class="p">]</span> <span class="n">About</span> <span class="n">to</span> <span class="n">create</span> <span class="n">model</span>
<span class="mi">2023</span><span class="o">-</span><span class="mi">01</span><span class="o">-</span><span class="mi">11</span> <span class="mi">12</span><span class="p">:</span><span class="mi">15</span><span class="p">:</span><span class="mi">40</span><span class="p">,</span><span class="mi">053</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">checkpoint</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">112</span><span class="p">]</span> <span class="n">Loading</span> <span class="n">checkpoint</span> <span class="kn">from</span> <span class="nn">icefall</span><span class="o">-</span><span class="n">asr</span><span class="o">-</span><span class="n">librispeech</span><span class="o">-</span><span class="n">conv</span><span class="o">-</span><span class="n">emformer</span><span class="o">-</span><span class="n">transducer</span><span class="o">-</span><span class="n">stateless2</span><span class="o">-</span><span class="mi">2</span>
<span class="mi">022</span><span class="o">-</span><span class="mi">07</span><span class="o">-</span><span class="mi">05</span><span class="o">/</span><span class="n">exp</span><span class="o">/</span><span class="n">epoch</span><span class="o">-</span><span class="mf">30.</span><span class="n">pt</span>
<span class="mi">2023</span><span class="o">-</span><span class="mi">01</span><span class="o">-</span><span class="mi">11</span> <span class="mi">12</span><span class="p">:</span><span class="mi">15</span><span class="p">:</span><span class="mi">40</span><span class="p">,</span><span class="mi">708</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">export</span><span class="o">-</span><span class="k">for</span><span class="o">-</span><span class="n">ncnn</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">315</span><span class="p">]</span> <span class="n">Number</span> <span class="n">of</span> <span class="n">model</span> <span class="n">parameters</span><span class="p">:</span> <span class="mi">75490012</span>
<span class="mi">2023</span><span class="o">-</span><span class="mi">01</span><span class="o">-</span><span class="mi">11</span> <span class="mi">12</span><span class="p">:</span><span class="mi">15</span><span class="p">:</span><span class="mi">41</span><span class="p">,</span><span class="mi">681</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">export</span><span class="o">-</span><span class="k">for</span><span class="o">-</span><span class="n">ncnn</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">318</span><span class="p">]</span> <span class="n">Using</span> <span class="n">torch</span><span class="o">.</span><span class="n">jit</span><span class="o">.</span><span class="n">trace</span><span class="p">()</span>
<span class="mi">2023</span><span class="o">-</span><span class="mi">01</span><span class="o">-</span><span class="mi">11</span> <span class="mi">12</span><span class="p">:</span><span class="mi">15</span><span class="p">:</span><span class="mi">41</span><span class="p">,</span><span class="mi">681</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">export</span><span class="o">-</span><span class="k">for</span><span class="o">-</span><span class="n">ncnn</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">320</span><span class="p">]</span> <span class="n">Exporting</span> <span class="n">encoder</span>
<span class="mi">2023</span><span class="o">-</span><span class="mi">01</span><span class="o">-</span><span class="mi">11</span> <span class="mi">12</span><span class="p">:</span><span class="mi">15</span><span class="p">:</span><span class="mi">41</span><span class="p">,</span><span class="mi">682</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">export</span><span class="o">-</span><span class="k">for</span><span class="o">-</span><span class="n">ncnn</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">149</span><span class="p">]</span> <span class="n">chunk_length</span><span class="p">:</span> <span class="mi">32</span><span class="p">,</span> <span class="n">right_context_length</span><span class="p">:</span> <span class="mi">8</span>
</pre></div>
</div>
<p>The log shows the model has <code class="docutils literal notranslate"><span class="pre">75490012</span></code> number of parameters, i.e., <code class="docutils literal notranslate"><span class="pre">~75</span> <span class="pre">M</span></code>.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">ls</span> <span class="o">-</span><span class="n">lh</span> <span class="n">icefall</span><span class="o">-</span><span class="n">asr</span><span class="o">-</span><span class="n">librispeech</span><span class="o">-</span><span class="n">conv</span><span class="o">-</span><span class="n">emformer</span><span class="o">-</span><span class="n">transducer</span><span class="o">-</span><span class="n">stateless2</span><span class="o">-</span><span class="mi">2022</span><span class="o">-</span><span class="mi">07</span><span class="o">-</span><span class="mi">05</span><span class="o">/</span><span class="n">exp</span><span class="o">/</span><span class="n">pretrained</span><span class="o">-</span><span class="n">epoch</span><span class="o">-</span><span class="mi">30</span><span class="o">-</span><span class="n">avg</span><span class="o">-</span><span class="mi">10</span><span class="o">-</span><span class="n">averaged</span><span class="o">.</span><span class="n">pt</span>
<span class="o">-</span><span class="n">rw</span><span class="o">-</span><span class="n">r</span><span class="o">--</span><span class="n">r</span><span class="o">--</span> <span class="mi">1</span> <span class="n">kuangfangjun</span> <span class="n">root</span> <span class="mi">289</span><span class="n">M</span> <span class="n">Jan</span> <span class="mi">11</span> <span class="mi">12</span><span class="p">:</span><span class="mi">05</span> <span class="n">icefall</span><span class="o">-</span><span class="n">asr</span><span class="o">-</span><span class="n">librispeech</span><span class="o">-</span><span class="n">conv</span><span class="o">-</span><span class="n">emformer</span><span class="o">-</span><span class="n">transducer</span><span class="o">-</span><span class="n">stateless2</span><span class="o">-</span><span class="mi">2022</span><span class="o">-</span><span class="mi">07</span><span class="o">-</span><span class="mi">05</span><span class="o">/</span><span class="n">exp</span><span class="o">/</span><span class="n">pretrained</span><span class="o">-</span><span class="n">epoch</span><span class="o">-</span><span class="mi">30</span><span class="o">-</span><span class="n">avg</span><span class="o">-</span><span class="mi">10</span><span class="o">-</span><span class="n">averaged</span><span class="o">.</span><span class="n">pt</span>
</pre></div>
</div>
<p>You can see that the file size of the pre-trained model is <code class="docutils literal notranslate"><span class="pre">289</span> <span class="pre">MB</span></code>, which
is roughly <code class="docutils literal notranslate"><span class="pre">4</span> <span class="pre">x</span> <span class="pre">75</span> <span class="pre">M</span></code>.</p>
</div>
<p>After running <code class="docutils literal notranslate"><span class="pre">conv_emformer_transducer_stateless2/export-for-ncnn.py</span></code>,
we will get the following files:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>ls<span class="w"> </span>-lh<span class="w"> </span>icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*pnnx*
-rw-r--r--<span class="w"> </span><span class="m">1</span><span class="w"> </span>kuangfangjun<span class="w"> </span>root<span class="w"> </span>1010K<span class="w"> </span>Jan<span class="w"> </span><span class="m">11</span><span class="w"> </span><span class="m">12</span>:15<span class="w"> </span>icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.pt
-rw-r--r--<span class="w"> </span><span class="m">1</span><span class="w"> </span>kuangfangjun<span class="w"> </span>root<span class="w"> </span>283M<span class="w"> </span>Jan<span class="w"> </span><span class="m">11</span><span class="w"> </span><span class="m">12</span>:15<span class="w"> </span>icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.pt
-rw-r--r--<span class="w"> </span><span class="m">1</span><span class="w"> </span>kuangfangjun<span class="w"> </span>root<span class="w"> </span><span class="m">3</span>.0M<span class="w"> </span>Jan<span class="w"> </span><span class="m">11</span><span class="w"> </span><span class="m">12</span>:15<span class="w"> </span>icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.pt
</pre></div>
</div>
</section>
<section id="export-torchscript-model-via-pnnx">
<span id="conv-emformer-step-3-export-torchscript-model-via-pnnx"></span><h3>3. Export torchscript model via pnnx<a class="headerlink" href="#export-torchscript-model-via-pnnx" title="Permalink to this heading"></a></h3>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p>Make sure you have set up the <code class="docutils literal notranslate"><span class="pre">PATH</span></code> environment variable. Otherwise,
it will throw an error saying that <code class="docutils literal notranslate"><span class="pre">pnnx</span></code> could not be found.</p>
</div>
<p>Now, its time to export our models to <a class="reference external" href="https://github.com/tencent/ncnn">ncnn</a> via <code class="docutils literal notranslate"><span class="pre">pnnx</span></code>.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">cd</span> <span class="n">icefall</span><span class="o">-</span><span class="n">asr</span><span class="o">-</span><span class="n">librispeech</span><span class="o">-</span><span class="n">conv</span><span class="o">-</span><span class="n">emformer</span><span class="o">-</span><span class="n">transducer</span><span class="o">-</span><span class="n">stateless2</span><span class="o">-</span><span class="mi">2022</span><span class="o">-</span><span class="mi">07</span><span class="o">-</span><span class="mi">05</span><span class="o">/</span><span class="n">exp</span><span class="o">/</span>
<span class="n">pnnx</span> <span class="o">./</span><span class="n">encoder_jit_trace</span><span class="o">-</span><span class="n">pnnx</span><span class="o">.</span><span class="n">pt</span>
<span class="n">pnnx</span> <span class="o">./</span><span class="n">decoder_jit_trace</span><span class="o">-</span><span class="n">pnnx</span><span class="o">.</span><span class="n">pt</span>
<span class="n">pnnx</span> <span class="o">./</span><span class="n">joiner_jit_trace</span><span class="o">-</span><span class="n">pnnx</span><span class="o">.</span><span class="n">pt</span>
</pre></div>
</div>
<p>It will generate the following files:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>ls<span class="w"> </span>-lh<span class="w"> </span>icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*ncnn*<span class="o">{</span>bin,param<span class="o">}</span>
-rw-r--r--<span class="w"> </span><span class="m">1</span><span class="w"> </span>kuangfangjun<span class="w"> </span>root<span class="w"> </span>503K<span class="w"> </span>Jan<span class="w"> </span><span class="m">11</span><span class="w"> </span><span class="m">12</span>:38<span class="w"> </span>icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin
-rw-r--r--<span class="w"> </span><span class="m">1</span><span class="w"> </span>kuangfangjun<span class="w"> </span>root<span class="w"> </span><span class="m">437</span><span class="w"> </span>Jan<span class="w"> </span><span class="m">11</span><span class="w"> </span><span class="m">12</span>:38<span class="w"> </span>icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param
-rw-r--r--<span class="w"> </span><span class="m">1</span><span class="w"> </span>kuangfangjun<span class="w"> </span>root<span class="w"> </span>142M<span class="w"> </span>Jan<span class="w"> </span><span class="m">11</span><span class="w"> </span><span class="m">12</span>:36<span class="w"> </span>icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin
-rw-r--r--<span class="w"> </span><span class="m">1</span><span class="w"> </span>kuangfangjun<span class="w"> </span>root<span class="w"> </span>79K<span class="w"> </span>Jan<span class="w"> </span><span class="m">11</span><span class="w"> </span><span class="m">12</span>:36<span class="w"> </span>icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param
-rw-r--r--<span class="w"> </span><span class="m">1</span><span class="w"> </span>kuangfangjun<span class="w"> </span>root<span class="w"> </span><span class="m">1</span>.5M<span class="w"> </span>Jan<span class="w"> </span><span class="m">11</span><span class="w"> </span><span class="m">12</span>:38<span class="w"> </span>icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin
-rw-r--r--<span class="w"> </span><span class="m">1</span><span class="w"> </span>kuangfangjun<span class="w"> </span>root<span class="w"> </span><span class="m">488</span><span class="w"> </span>Jan<span class="w"> </span><span class="m">11</span><span class="w"> </span><span class="m">12</span>:38<span class="w"> </span>icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param
</pre></div>
</div>
<p>There are two types of files:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">param</span></code>: It is a text file containing the model architectures. You can
use a text editor to view its content.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">bin</span></code>: It is a binary file containing the model parameters.</p></li>
</ul>
<p>We compare the file sizes of the models below before and after converting via <code class="docutils literal notranslate"><span class="pre">pnnx</span></code>:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 74%" />
<col style="width: 26%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>File name</p></th>
<th class="head"><p>File size</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>encoder_jit_trace-pnnx.pt</p></td>
<td><p>283 MB</p></td>
</tr>
<tr class="row-odd"><td><p>decoder_jit_trace-pnnx.pt</p></td>
<td><p>1010 KB</p></td>
</tr>
<tr class="row-even"><td><p>joiner_jit_trace-pnnx.pt</p></td>
<td><p>3.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p>encoder_jit_trace-pnnx.ncnn.bin</p></td>
<td><p>142 MB</p></td>
</tr>
<tr class="row-even"><td><p>decoder_jit_trace-pnnx.ncnn.bin</p></td>
<td><p>503 KB</p></td>
</tr>
<tr class="row-odd"><td><p>joiner_jit_trace-pnnx.ncnn.bin</p></td>
<td><p>1.5 MB</p></td>
</tr>
</tbody>
</table>
<p>You can see that the file size of the models after converting is about one half
of the models before converting:</p>
<blockquote>
<div><ul class="simple">
<li><p>encoder: 283 MB vs 142 MB</p></li>
<li><p>decoder: 1010 KB vs 503 KB</p></li>
<li><p>joiner: 3.0 MB vs 1.5 MB</p></li>
</ul>
</div></blockquote>
<p>The reason is that by default <code class="docutils literal notranslate"><span class="pre">pnnx</span></code> converts <code class="docutils literal notranslate"><span class="pre">float32</span></code> parameters
to <code class="docutils literal notranslate"><span class="pre">float16</span></code>. A <code class="docutils literal notranslate"><span class="pre">float32</span></code> parameter occupies 4 bytes, while it is 2 bytes
for <code class="docutils literal notranslate"><span class="pre">float16</span></code>. Thus, it is <code class="docutils literal notranslate"><span class="pre">twice</span> <span class="pre">smaller</span></code> after conversion.</p>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p>If you use <code class="docutils literal notranslate"><span class="pre">pnnx</span> <span class="pre">./encoder_jit_trace-pnnx.pt</span> <span class="pre">fp16=0</span></code>, then <code class="docutils literal notranslate"><span class="pre">pnnx</span></code>
wont convert <code class="docutils literal notranslate"><span class="pre">float32</span></code> to <code class="docutils literal notranslate"><span class="pre">float16</span></code>.</p>
</div>
</section>
<section id="test-the-exported-models-in-icefall">
<h3>4. Test the exported models in icefall<a class="headerlink" href="#test-the-exported-models-in-icefall" title="Permalink to this heading"></a></h3>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>We assume you have set up the environment variable <code class="docutils literal notranslate"><span class="pre">PYTHONPATH</span></code> when
building <a class="reference external" href="https://github.com/tencent/ncnn">ncnn</a>.</p>
</div>
<p>Now we have successfully converted our pre-trained model to <a class="reference external" href="https://github.com/tencent/ncnn">ncnn</a> format.
The generated 6 files are what we need. You can use the following code to
test the converted models:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>./conv_emformer_transducer_stateless2/streaming-ncnn-decode.py<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--tokens<span class="w"> </span>./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/lang_bpe_500/tokens.txt<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--encoder-param-filename<span class="w"> </span>./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--encoder-bin-filename<span class="w"> </span>./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--decoder-param-filename<span class="w"> </span>./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--decoder-bin-filename<span class="w"> </span>./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--joiner-param-filename<span class="w"> </span>./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--joiner-bin-filename<span class="w"> </span>./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav
</pre></div>
</div>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p><a class="reference external" href="https://github.com/tencent/ncnn">ncnn</a> supports only <code class="docutils literal notranslate"><span class="pre">batch</span> <span class="pre">size</span> <span class="pre">==</span> <span class="pre">1</span></code>, so <code class="docutils literal notranslate"><span class="pre">streaming-ncnn-decode.py</span></code> accepts
only 1 wave file as input.</p>
</div>
<p>The output is given below:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mi">2023</span><span class="o">-</span><span class="mi">01</span><span class="o">-</span><span class="mi">11</span> <span class="mi">14</span><span class="p">:</span><span class="mi">02</span><span class="p">:</span><span class="mi">12</span><span class="p">,</span><span class="mi">216</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">streaming</span><span class="o">-</span><span class="n">ncnn</span><span class="o">-</span><span class="n">decode</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">320</span><span class="p">]</span> <span class="p">{</span><span class="s1">&#39;tokens&#39;</span><span class="p">:</span> <span class="s1">&#39;./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/lang_bpe_500/tokens.txt&#39;</span><span class="p">,</span> <span class="s1">&#39;encoder_param_filename&#39;</span><span class="p">:</span> <span class="s1">&#39;./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param&#39;</span><span class="p">,</span> <span class="s1">&#39;encoder_bin_filename&#39;</span><span class="p">:</span> <span class="s1">&#39;./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin&#39;</span><span class="p">,</span> <span class="s1">&#39;decoder_param_filename&#39;</span><span class="p">:</span> <span class="s1">&#39;./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param&#39;</span><span class="p">,</span> <span class="s1">&#39;decoder_bin_filename&#39;</span><span class="p">:</span> <span class="s1">&#39;./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin&#39;</span><span class="p">,</span> <span class="s1">&#39;joiner_param_filename&#39;</span><span class="p">:</span> <span class="s1">&#39;./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param&#39;</span><span class="p">,</span> <span class="s1">&#39;joiner_bin_filename&#39;</span><span class="p">:</span> <span class="s1">&#39;./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin&#39;</span><span class="p">,</span> <span class="s1">&#39;sound_filename&#39;</span><span class="p">:</span> <span class="s1">&#39;./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav&#39;</span><span class="p">}</span>
<span class="n">T</span> <span class="mi">51</span> <span class="mi">32</span>
<span class="mi">2023</span><span class="o">-</span><span class="mi">01</span><span class="o">-</span><span class="mi">11</span> <span class="mi">14</span><span class="p">:</span><span class="mi">02</span><span class="p">:</span><span class="mi">13</span><span class="p">,</span><span class="mi">141</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">streaming</span><span class="o">-</span><span class="n">ncnn</span><span class="o">-</span><span class="n">decode</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">328</span><span class="p">]</span> <span class="n">Constructing</span> <span class="n">Fbank</span> <span class="n">computer</span>
<span class="mi">2023</span><span class="o">-</span><span class="mi">01</span><span class="o">-</span><span class="mi">11</span> <span class="mi">14</span><span class="p">:</span><span class="mi">02</span><span class="p">:</span><span class="mi">13</span><span class="p">,</span><span class="mi">151</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">streaming</span><span class="o">-</span><span class="n">ncnn</span><span class="o">-</span><span class="n">decode</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">331</span><span class="p">]</span> <span class="n">Reading</span> <span class="n">sound</span> <span class="n">files</span><span class="p">:</span> <span class="o">./</span><span class="n">icefall</span><span class="o">-</span><span class="n">asr</span><span class="o">-</span><span class="n">librispeech</span><span class="o">-</span><span class="n">conv</span><span class="o">-</span><span class="n">emformer</span><span class="o">-</span><span class="n">transducer</span><span class="o">-</span><span class="n">stateless2</span><span class="o">-</span><span class="mi">2022</span><span class="o">-</span><span class="mi">07</span><span class="o">-</span><span class="mi">05</span><span class="o">/</span><span class="n">test_wavs</span><span class="o">/</span><span class="mi">1089</span><span class="o">-</span><span class="mi">134686</span><span class="o">-</span><span class="mf">0001.</span><span class="n">wav</span>
<span class="mi">2023</span><span class="o">-</span><span class="mi">01</span><span class="o">-</span><span class="mi">11</span> <span class="mi">14</span><span class="p">:</span><span class="mi">02</span><span class="p">:</span><span class="mi">13</span><span class="p">,</span><span class="mi">176</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">streaming</span><span class="o">-</span><span class="n">ncnn</span><span class="o">-</span><span class="n">decode</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">336</span><span class="p">]</span> <span class="n">torch</span><span class="o">.</span><span class="n">Size</span><span class="p">([</span><span class="mi">106000</span><span class="p">])</span>
<span class="mi">2023</span><span class="o">-</span><span class="mi">01</span><span class="o">-</span><span class="mi">11</span> <span class="mi">14</span><span class="p">:</span><span class="mi">02</span><span class="p">:</span><span class="mi">17</span><span class="p">,</span><span class="mi">581</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">streaming</span><span class="o">-</span><span class="n">ncnn</span><span class="o">-</span><span class="n">decode</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">380</span><span class="p">]</span> <span class="o">./</span><span class="n">icefall</span><span class="o">-</span><span class="n">asr</span><span class="o">-</span><span class="n">librispeech</span><span class="o">-</span><span class="n">conv</span><span class="o">-</span><span class="n">emformer</span><span class="o">-</span><span class="n">transducer</span><span class="o">-</span><span class="n">stateless2</span><span class="o">-</span><span class="mi">2022</span><span class="o">-</span><span class="mi">07</span><span class="o">-</span><span class="mi">05</span><span class="o">/</span><span class="n">test_wavs</span><span class="o">/</span><span class="mi">1089</span><span class="o">-</span><span class="mi">134686</span><span class="o">-</span><span class="mf">0001.</span><span class="n">wav</span>
<span class="mi">2023</span><span class="o">-</span><span class="mi">01</span><span class="o">-</span><span class="mi">11</span> <span class="mi">14</span><span class="p">:</span><span class="mi">02</span><span class="p">:</span><span class="mi">17</span><span class="p">,</span><span class="mi">581</span> <span class="n">INFO</span> <span class="p">[</span><span class="n">streaming</span><span class="o">-</span><span class="n">ncnn</span><span class="o">-</span><span class="n">decode</span><span class="o">.</span><span class="n">py</span><span class="p">:</span><span class="mi">381</span><span class="p">]</span> <span class="n">AFTER</span> <span class="n">EARLY</span> <span class="n">NIGHTFALL</span> <span class="n">THE</span> <span class="n">YELLOW</span> <span class="n">LAMPS</span> <span class="n">WOULD</span> <span class="n">LIGHT</span> <span class="n">UP</span> <span class="n">HERE</span> <span class="n">AND</span> <span class="n">THERE</span> <span class="n">THE</span> <span class="n">SQUALID</span> <span class="n">QUARTER</span> <span class="n">OF</span> <span class="n">THE</span> <span class="n">BROTHELS</span>
</pre></div>
</div>
<p>Congratulations! You have successfully exported a model from PyTorch to <a class="reference external" href="https://github.com/tencent/ncnn">ncnn</a>!</p>
</section>
<section id="modify-the-exported-encoder-for-sherpa-ncnn">
<h3>5. Modify the exported encoder for sherpa-ncnn<a class="headerlink" href="#modify-the-exported-encoder-for-sherpa-ncnn" title="Permalink to this heading"></a></h3>
<p>In order to use the exported models in <a class="reference external" href="https://github.com/k2-fsa/sherpa-ncnn">sherpa-ncnn</a>, we have to modify
<code class="docutils literal notranslate"><span class="pre">encoder_jit_trace-pnnx.ncnn.param</span></code>.</p>
<p>Let us have a look at the first few lines of <code class="docutils literal notranslate"><span class="pre">encoder_jit_trace-pnnx.ncnn.param</span></code>:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mi">7767517</span>
<span class="mi">1060</span> <span class="mi">1342</span>
<span class="n">Input</span> <span class="n">in0</span> <span class="mi">0</span> <span class="mi">1</span> <span class="n">in0</span>
</pre></div>
</div>
<p><strong>Explanation</strong> of the above three lines:</p>
<blockquote>
<div><ol class="arabic simple">
<li><p><code class="docutils literal notranslate"><span class="pre">7767517</span></code>, it is a magic number and should not be changed.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">1060</span> <span class="pre">1342</span></code>, the first number <code class="docutils literal notranslate"><span class="pre">1060</span></code> specifies the number of layers
in this file, while <code class="docutils literal notranslate"><span class="pre">1342</span></code> specifies the number intermediate outputs of
this file</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">Input</span> <span class="pre">in0</span> <span class="pre">0</span> <span class="pre">1</span> <span class="pre">in0</span></code>, <code class="docutils literal notranslate"><span class="pre">Input</span></code> is the layer type of this layer; <code class="docutils literal notranslate"><span class="pre">in0</span></code>
is the layer name of this layer; <code class="docutils literal notranslate"><span class="pre">0</span></code> means this layer has no input;
<code class="docutils literal notranslate"><span class="pre">1</span></code> means this layer has one output. <code class="docutils literal notranslate"><span class="pre">in0</span></code> is the output name of
this layer.</p></li>
</ol>
</div></blockquote>
<p>We need to add 1 extra line and the result looks like below:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="m">7767517</span>
<span class="m">1061</span><span class="w"> </span><span class="m">1342</span>
SherpaMetaData<span class="w"> </span>sherpa_meta_data1<span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="nv">0</span><span class="o">=</span><span class="m">1</span><span class="w"> </span><span class="nv">1</span><span class="o">=</span><span class="m">12</span><span class="w"> </span><span class="nv">2</span><span class="o">=</span><span class="m">32</span><span class="w"> </span><span class="nv">3</span><span class="o">=</span><span class="m">31</span><span class="w"> </span><span class="nv">4</span><span class="o">=</span><span class="m">8</span><span class="w"> </span><span class="nv">5</span><span class="o">=</span><span class="m">32</span><span class="w"> </span><span class="nv">6</span><span class="o">=</span><span class="m">8</span><span class="w"> </span><span class="nv">7</span><span class="o">=</span><span class="m">512</span>
Input<span class="w"> </span>in0<span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="m">1</span><span class="w"> </span>in0
</pre></div>
</div>
<p><strong>Explanation</strong></p>
<blockquote>
<div><ol class="arabic">
<li><p><code class="docutils literal notranslate"><span class="pre">7767517</span></code>, it is still the same</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">1061</span> <span class="pre">1342</span></code>, we have added an extra layer, so we need to update <code class="docutils literal notranslate"><span class="pre">1060</span></code> to <code class="docutils literal notranslate"><span class="pre">1061</span></code>.
We dont need to change <code class="docutils literal notranslate"><span class="pre">1342</span></code> since the newly added layer has no inputs and outputs.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">SherpaMetaData</span>&#160; <span class="pre">sherpa_meta_data1</span>&#160; <span class="pre">0</span> <span class="pre">0</span> <span class="pre">0=1</span> <span class="pre">1=12</span> <span class="pre">2=32</span> <span class="pre">3=31</span> <span class="pre">4=8</span> <span class="pre">5=32</span> <span class="pre">6=8</span> <span class="pre">7=512</span></code>
This line is newly added. Its explanation is given below:</p>
<blockquote>
<div><ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">SherpaMetaData</span></code> is the type of this layer. Must be <code class="docutils literal notranslate"><span class="pre">SherpaMetaData</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">sherpa_meta_data1</span></code> is the name of this layer. Must be <code class="docutils literal notranslate"><span class="pre">sherpa_meta_data1</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">0</span> <span class="pre">0</span></code> means this layer has no inputs and output. Must be <code class="docutils literal notranslate"><span class="pre">0</span> <span class="pre">0</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">0=1</span></code>, 0 is the key and 1 is the value. MUST be <code class="docutils literal notranslate"><span class="pre">0=1</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">1=12</span></code>, 1 is the key and 12 is the value of the
parameter <code class="docutils literal notranslate"><span class="pre">--num-encoder-layers</span></code> that you provided when running
<code class="docutils literal notranslate"><span class="pre">conv_emformer_transducer_stateless2/export-for-ncnn.py</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">2=32</span></code>, 2 is the key and 32 is the value of the
parameter <code class="docutils literal notranslate"><span class="pre">--memory-size</span></code> that you provided when running
<code class="docutils literal notranslate"><span class="pre">conv_emformer_transducer_stateless2/export-for-ncnn.py</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">3=31</span></code>, 3 is the key and 31 is the value of the
parameter <code class="docutils literal notranslate"><span class="pre">--cnn-module-kernel</span></code> that you provided when running
<code class="docutils literal notranslate"><span class="pre">conv_emformer_transducer_stateless2/export-for-ncnn.py</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">4=8</span></code>, 4 is the key and 8 is the value of the
parameter <code class="docutils literal notranslate"><span class="pre">--left-context-length</span></code> that you provided when running
<code class="docutils literal notranslate"><span class="pre">conv_emformer_transducer_stateless2/export-for-ncnn.py</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">5=32</span></code>, 5 is the key and 32 is the value of the
parameter <code class="docutils literal notranslate"><span class="pre">--chunk-length</span></code> that you provided when running
<code class="docutils literal notranslate"><span class="pre">conv_emformer_transducer_stateless2/export-for-ncnn.py</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">6=8</span></code>, 6 is the key and 8 is the value of the
parameter <code class="docutils literal notranslate"><span class="pre">--right-context-length</span></code> that you provided when running
<code class="docutils literal notranslate"><span class="pre">conv_emformer_transducer_stateless2/export-for-ncnn.py</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">7=512</span></code>, 7 is the key and 512 is the value of the
parameter <code class="docutils literal notranslate"><span class="pre">--encoder-dim</span></code> that you provided when running
<code class="docutils literal notranslate"><span class="pre">conv_emformer_transducer_stateless2/export-for-ncnn.py</span></code>.</p></li>
</ul>
<p>For ease of reference, we list the key-value pairs that you need to add
in the following table. If your model has a different setting, please
change the values for <code class="docutils literal notranslate"><span class="pre">SherpaMetaData</span></code> accordingly. Otherwise, you
will be <code class="docutils literal notranslate"><span class="pre">SAD</span></code>.</p>
<blockquote>
<div><table class="docutils align-default">
<colgroup>
<col style="width: 17%" />
<col style="width: 83%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>key</p></th>
<th class="head"><p>value</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>0</p></td>
<td><p>1 (fixed)</p></td>
</tr>
<tr class="row-odd"><td><p>1</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">--num-encoder-layers</span></code></p></td>
</tr>
<tr class="row-even"><td><p>2</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">--memory-size</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>3</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">--cnn-module-kernel</span></code></p></td>
</tr>
<tr class="row-even"><td><p>4</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">--left-context-length</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>5</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">--chunk-length</span></code></p></td>
</tr>
<tr class="row-even"><td><p>6</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">--right-context-length</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>7</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">--encoder-dim</span></code></p></td>
</tr>
</tbody>
</table>
</div></blockquote>
</div></blockquote>
</li>
<li><p><code class="docutils literal notranslate"><span class="pre">Input</span> <span class="pre">in0</span> <span class="pre">0</span> <span class="pre">1</span> <span class="pre">in0</span></code>. No need to change it.</p></li>
</ol>
</div></blockquote>
<div class="admonition caution">
<p class="admonition-title">Caution</p>
<p>When you add a new layer <code class="docutils literal notranslate"><span class="pre">SherpaMetaData</span></code>, please remember to update the
number of layers. In our case, update <code class="docutils literal notranslate"><span class="pre">1060</span></code> to <code class="docutils literal notranslate"><span class="pre">1061</span></code>. Otherwise,
you will be SAD later.</p>
</div>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p>After adding the new layer <code class="docutils literal notranslate"><span class="pre">SherpaMetaData</span></code>, you cannot use this model
with <code class="docutils literal notranslate"><span class="pre">streaming-ncnn-decode.py</span></code> anymore since <code class="docutils literal notranslate"><span class="pre">SherpaMetaData</span></code> is
supported only in <a class="reference external" href="https://github.com/k2-fsa/sherpa-ncnn">sherpa-ncnn</a>.</p>
</div>
<div class="admonition hint">
<p class="admonition-title">Hint</p>
<p><a class="reference external" href="https://github.com/tencent/ncnn">ncnn</a> is very flexible. You can add new layers to it just by text-editing
the <code class="docutils literal notranslate"><span class="pre">param</span></code> file! You dont need to change the <code class="docutils literal notranslate"><span class="pre">bin</span></code> file.</p>
</div>
<p>Now you can use this model in <a class="reference external" href="https://github.com/k2-fsa/sherpa-ncnn">sherpa-ncnn</a>.
Please refer to the following documentation:</p>
<blockquote>
<div><ul class="simple">
<li><p>Linux/macOS/Windows/arm/aarch64: <a class="reference external" href="https://k2-fsa.github.io/sherpa/ncnn/install/index.html">https://k2-fsa.github.io/sherpa/ncnn/install/index.html</a></p></li>
<li><p>Android: <a class="reference external" href="https://k2-fsa.github.io/sherpa/ncnn/android/index.html">https://k2-fsa.github.io/sherpa/ncnn/android/index.html</a></p></li>
<li><p>Python: <a class="reference external" href="https://k2-fsa.github.io/sherpa/ncnn/python/index.html">https://k2-fsa.github.io/sherpa/ncnn/python/index.html</a></p></li>
</ul>
</div></blockquote>
<p>We have a list of pre-trained models that have been exported for <a class="reference external" href="https://github.com/k2-fsa/sherpa-ncnn">sherpa-ncnn</a>:</p>
<blockquote>
<div><ul>
<li><p><a class="reference external" href="https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html">https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html</a></p>
<p>You can find more usages there.</p>
</li>
</ul>
</div></blockquote>
</section>
<section id="optional-int8-quantization-with-sherpa-ncnn">
<h3>6. (Optional) int8 quantization with sherpa-ncnn<a class="headerlink" href="#optional-int8-quantization-with-sherpa-ncnn" title="Permalink to this heading"></a></h3>
<p>This step is optional.</p>
<p>In this step, we describe how to quantize our model with <code class="docutils literal notranslate"><span class="pre">int8</span></code>.</p>
<p>Change <a class="reference internal" href="#conv-emformer-step-3-export-torchscript-model-via-pnnx"><span class="std std-ref">3. Export torchscript model via pnnx</span></a> to
disable <code class="docutils literal notranslate"><span class="pre">fp16</span></code> when using <code class="docutils literal notranslate"><span class="pre">pnnx</span></code>:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">cd</span> <span class="n">icefall</span><span class="o">-</span><span class="n">asr</span><span class="o">-</span><span class="n">librispeech</span><span class="o">-</span><span class="n">conv</span><span class="o">-</span><span class="n">emformer</span><span class="o">-</span><span class="n">transducer</span><span class="o">-</span><span class="n">stateless2</span><span class="o">-</span><span class="mi">2022</span><span class="o">-</span><span class="mi">07</span><span class="o">-</span><span class="mi">05</span><span class="o">/</span><span class="n">exp</span><span class="o">/</span>
<span class="n">pnnx</span> <span class="o">./</span><span class="n">encoder_jit_trace</span><span class="o">-</span><span class="n">pnnx</span><span class="o">.</span><span class="n">pt</span> <span class="n">fp16</span><span class="o">=</span><span class="mi">0</span>
<span class="n">pnnx</span> <span class="o">./</span><span class="n">decoder_jit_trace</span><span class="o">-</span><span class="n">pnnx</span><span class="o">.</span><span class="n">pt</span>
<span class="n">pnnx</span> <span class="o">./</span><span class="n">joiner_jit_trace</span><span class="o">-</span><span class="n">pnnx</span><span class="o">.</span><span class="n">pt</span> <span class="n">fp16</span><span class="o">=</span><span class="mi">0</span>
</pre></div>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>We add <code class="docutils literal notranslate"><span class="pre">fp16=0</span></code> when exporting the encoder and joiner. <code class="docutils literal notranslate"><span class="pre">ncnn</span></code> does not
support quantizing the decoder model yet. We will update this documentation
once <code class="docutils literal notranslate"><span class="pre">ncnn</span></code> supports it. (Maybe in this year, 2023).</p>
</div>
<p>TODO(fangjun): Finish it.</p>
<p>Have fun with <a class="reference external" href="https://github.com/k2-fsa/sherpa-ncnn">sherpa-ncnn</a>!</p>
</section>
</section>
</section>

View File

@ -114,7 +114,20 @@
<li class="toctree-l2"><a class="reference internal" href="export-onnx.html#how-to-use-the-exported-model">How to use the exported model</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="export-ncnn.html">Export to ncnn</a></li>
<li class="toctree-l1"><a class="reference internal" href="export-ncnn.html">Export to ncnn</a><ul>
<li class="toctree-l2"><a class="reference internal" href="export-ncnn.html#export-lstm-transducer-models">Export LSTM transducer models</a></li>
<li class="toctree-l2"><a class="reference internal" href="export-ncnn.html#export-convemformer-transducer-models">Export ConvEmformer transducer models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="export-ncnn.html#download-the-pre-trained-model">1. Download the pre-trained model</a></li>
<li class="toctree-l3"><a class="reference internal" href="export-ncnn.html#install-ncnn-and-pnnx">2. Install ncnn and pnnx</a></li>
<li class="toctree-l3"><a class="reference internal" href="export-ncnn.html#export-the-model-via-torch-jit-trace">3. Export the model via torch.jit.trace()</a></li>
<li class="toctree-l3"><a class="reference internal" href="export-ncnn.html#export-torchscript-model-via-pnnx">3. Export torchscript model via pnnx</a></li>
<li class="toctree-l3"><a class="reference internal" href="export-ncnn.html#test-the-exported-models-in-icefall">4. Test the exported models in icefall</a></li>
<li class="toctree-l3"><a class="reference internal" href="export-ncnn.html#modify-the-exported-encoder-for-sherpa-ncnn">5. Modify the exported encoder for sherpa-ncnn</a></li>
<li class="toctree-l3"><a class="reference internal" href="export-ncnn.html#optional-int8-quantization-with-sherpa-ncnn">6. (Optional) int8 quantization with sherpa-ncnn</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</section>

Binary file not shown.

View File

@ -584,8 +584,8 @@ can run:</p>
for how to use the exported models in <code class="docutils literal notranslate"><span class="pre">sherpa</span></code>.</p>
</div>
</section>
<section id="export-model-for-ncnn">
<span id="id2"></span><h3>Export model for ncnn<a class="headerlink" href="#export-model-for-ncnn" title="Permalink to this heading"></a></h3>
<section id="export-lstm-transducer-models-for-ncnn">
<span id="export-lstm-transducer-model-for-ncnn"></span><h3>Export LSTM transducer models for ncnn<a class="headerlink" href="#export-lstm-transducer-models-for-ncnn" title="Permalink to this heading"></a></h3>
<p>We support exporting pretrained LSTM transducer models to
<a class="reference external" href="https://github.com/tencent/ncnn">ncnn</a> using
<a class="reference external" href="https://github.com/Tencent/ncnn/tree/master/tools/pnnx">pnnx</a>.</p>
@ -715,6 +715,9 @@ for the details of the above pretrained models</p>
</div></blockquote>
<p>You can find more usages of the pretrained models in
<a class="reference external" href="https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/index.html">https://k2-fsa.github.io/sherpa/python/streaming_asr/lstm/index.html</a></p>
<section id="export-convemformer-transducer-models-for-ncnn">
<h3>Export ConvEmformer transducer models for ncnn<a class="headerlink" href="#export-convemformer-transducer-models-for-ncnn" title="Permalink to this heading"></a></h3>
</section>
</section>
</section>

File diff suppressed because one or more lines are too long