mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 18:42:19 +00:00
Merge branch 'k2-fsa:master' into dev/k2ssl
This commit is contained in:
commit
279d34b7f4
17
egs/multi_ja_en/ASR/README.md
Normal file
17
egs/multi_ja_en/ASR/README.md
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
# Introduction
|
||||||
|
|
||||||
|
A bilingual Japanese-English ASR model that utilizes ReazonSpeech, developed by the developers of ReazonSpeech.
|
||||||
|
|
||||||
|
**ReazonSpeech** is an open-source dataset that contains a diverse set of natural Japanese speech, collected from terrestrial television streams. It contains more than 35,000 hours of audio.
|
||||||
|
|
||||||
|
|
||||||
|
# Included Training Sets
|
||||||
|
|
||||||
|
1. LibriSpeech (English)
|
||||||
|
2. ReazonSpeech (Japanese)
|
||||||
|
|
||||||
|
|Datset| Number of hours| URL|
|
||||||
|
|---|---:|---|
|
||||||
|
|**TOTAL**|35,960|---|
|
||||||
|
|LibriSpeech|960|https://www.openslr.org/12/|
|
||||||
|
|ReazonSpeech (all) |35,000|https://huggingface.co/datasets/reazon-research/reazonspeech|
|
52
egs/multi_ja_en/ASR/RESULTS.md
Normal file
52
egs/multi_ja_en/ASR/RESULTS.md
Normal file
@ -0,0 +1,52 @@
|
|||||||
|
## Results
|
||||||
|
|
||||||
|
### Zipformer
|
||||||
|
|
||||||
|
#### Non-streaming
|
||||||
|
|
||||||
|
The training command is:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
./zipformer/train.py \
|
||||||
|
--bilingual 1 \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--exp-dir zipformer/exp \
|
||||||
|
--max-duration 600
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding command is:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
```
|
||||||
|
|
||||||
|
To export the model with onnx:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
./zipformer/export-onnx.py --tokens data/lang_bbpe_2000/tokens.txt --use-averaged-model 0 --epoch 35 --avg 1 --exp-dir zipformer/exp --num-encoder-layers "2,2,3,4,3,2" --downsampling-factor "1,2,4,8,4,2" --feedforward-dim "512,768,1024,1536,1024,768" --num-heads "4,4,4,8,4,4" --encoder-dim "192,256,384,512,384,256" --query-head-dim 32 --value-head-dim 12 --pos-head-dim 4 --pos-dim 48 --encoder-unmasked-dim "192,192,256,256,256,192" --cnn-module-kernel "31,31,15,15,15,31" --decoder-dim 512 --joiner-dim 512 --causal False --chunk-size "16,32,64,-1" --left-context-frames "64,128,256,-1" --fp16 True
|
||||||
|
```
|
||||||
|
Word Error Rates (WERs) listed below:
|
||||||
|
|
||||||
|
| Datasets | ReazonSpeech | ReazonSpeech | LibriSpeech | LibriSpeech |
|
||||||
|
|----------------------|--------------|---------------|--------------------|-------------------|
|
||||||
|
| Zipformer WER (%) | dev | test | test-clean | test-other |
|
||||||
|
| greedy_search | 5.9 | 4.07 | 3.46 | 8.35 |
|
||||||
|
| modified_beam_search | 4.87 | 3.61 | 3.28 | 8.07 |
|
||||||
|
|
||||||
|
|
||||||
|
Character Error Rates (CERs) for Japanese listed below:
|
||||||
|
| Decoding Method | In-Distribution CER | JSUT | CommonVoice | TEDx |
|
||||||
|
| :------------------: | :-----------------: | :--: | :---------: | :---: |
|
||||||
|
| greedy search | 12.56 | 6.93 | 9.75 | 9.67 |
|
||||||
|
| modified beam search | 11.59 | 6.97 | 9.55 | 9.51 |
|
||||||
|
|
||||||
|
Pre-trained model can be found here: https://huggingface.co/reazon-research/reazonspeech-k2-v2-ja-en/tree/main
|
||||||
|
|
146
egs/multi_ja_en/ASR/local/compute_fbank_reazonspeech.py
Normal file
146
egs/multi_ja_en/ASR/local/compute_fbank_reazonspeech.py
Normal file
@ -0,0 +1,146 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2023 The University of Electro-Communications (Author: Teo Wen Shen) # noqa
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
# fmt: off
|
||||||
|
from lhotse import ( # See the following for why LilcomChunkyWriter is preferred; https://github.com/k2-fsa/icefall/pull/404; https://github.com/lhotse-speech/lhotse/pull/527
|
||||||
|
CutSet,
|
||||||
|
Fbank,
|
||||||
|
FbankConfig,
|
||||||
|
LilcomChunkyWriter,
|
||||||
|
RecordingSet,
|
||||||
|
SupervisionSet,
|
||||||
|
)
|
||||||
|
|
||||||
|
# fmt: on
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
RNG_SEED = 42
|
||||||
|
concat_params = {"gap": 1.0, "maxlen": 10.0}
|
||||||
|
|
||||||
|
|
||||||
|
def make_cutset_blueprints(
|
||||||
|
manifest_dir: Path,
|
||||||
|
) -> List[Tuple[str, CutSet]]:
|
||||||
|
cut_sets = []
|
||||||
|
|
||||||
|
# Create test dataset
|
||||||
|
logging.info("Creating test cuts.")
|
||||||
|
cut_sets.append(
|
||||||
|
(
|
||||||
|
"test",
|
||||||
|
CutSet.from_manifests(
|
||||||
|
recordings=RecordingSet.from_file(
|
||||||
|
manifest_dir / "reazonspeech_recordings_test.jsonl.gz"
|
||||||
|
),
|
||||||
|
supervisions=SupervisionSet.from_file(
|
||||||
|
manifest_dir / "reazonspeech_supervisions_test.jsonl.gz"
|
||||||
|
),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create dev dataset
|
||||||
|
logging.info("Creating dev cuts.")
|
||||||
|
cut_sets.append(
|
||||||
|
(
|
||||||
|
"dev",
|
||||||
|
CutSet.from_manifests(
|
||||||
|
recordings=RecordingSet.from_file(
|
||||||
|
manifest_dir / "reazonspeech_recordings_dev.jsonl.gz"
|
||||||
|
),
|
||||||
|
supervisions=SupervisionSet.from_file(
|
||||||
|
manifest_dir / "reazonspeech_supervisions_dev.jsonl.gz"
|
||||||
|
),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create train dataset
|
||||||
|
logging.info("Creating train cuts.")
|
||||||
|
cut_sets.append(
|
||||||
|
(
|
||||||
|
"train",
|
||||||
|
CutSet.from_manifests(
|
||||||
|
recordings=RecordingSet.from_file(
|
||||||
|
manifest_dir / "reazonspeech_recordings_train.jsonl.gz"
|
||||||
|
),
|
||||||
|
supervisions=SupervisionSet.from_file(
|
||||||
|
manifest_dir / "reazonspeech_supervisions_train.jsonl.gz"
|
||||||
|
),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return cut_sets
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||||
|
)
|
||||||
|
parser.add_argument("-m", "--manifest-dir", type=Path)
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
|
||||||
|
extractor = Fbank(FbankConfig(num_mel_bins=80))
|
||||||
|
num_jobs = min(16, os.cpu_count())
|
||||||
|
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
if (args.manifest_dir / ".reazonspeech-fbank.done").exists():
|
||||||
|
logging.info(
|
||||||
|
"Previous fbank computed for ReazonSpeech found. "
|
||||||
|
f"Delete {args.manifest_dir / '.reazonspeech-fbank.done'} to allow recomputing fbank."
|
||||||
|
)
|
||||||
|
return
|
||||||
|
else:
|
||||||
|
cut_sets = make_cutset_blueprints(args.manifest_dir)
|
||||||
|
for part, cut_set in cut_sets:
|
||||||
|
logging.info(f"Processing {part}")
|
||||||
|
cut_set = cut_set.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
num_jobs=num_jobs,
|
||||||
|
storage_path=(args.manifest_dir / f"feats_{part}").as_posix(),
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
)
|
||||||
|
cut_set.to_file(args.manifest_dir / f"reazonspeech_cuts_{part}.jsonl.gz")
|
||||||
|
|
||||||
|
logging.info("All fbank computed for ReazonSpeech.")
|
||||||
|
(args.manifest_dir / ".reazonspeech-fbank.done").touch()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
58
egs/multi_ja_en/ASR/local/display_manifest_statistics.py
Normal file
58
egs/multi_ja_en/ASR/local/display_manifest_statistics.py
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
# 2022 The University of Electro-Communications (author: Teo Wen Shen) # noqa
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from lhotse import CutSet, load_manifest
|
||||||
|
|
||||||
|
ARGPARSE_DESCRIPTION = """
|
||||||
|
This file displays duration statistics of utterances in a manifest.
|
||||||
|
You can use the displayed value to choose minimum/maximum duration
|
||||||
|
to remove short and long utterances during the training.
|
||||||
|
|
||||||
|
See the function `remove_short_and_long_utt()` in
|
||||||
|
pruned_transducer_stateless5/train.py for usage.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description=ARGPARSE_DESCRIPTION,
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument("--manifest-dir", type=Path, help="Path to cutset manifests")
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_parser()
|
||||||
|
|
||||||
|
for part in ["train", "dev"]:
|
||||||
|
path = args.manifest_dir / f"reazonspeech_cuts_{part}.jsonl.gz"
|
||||||
|
cuts: CutSet = load_manifest(path)
|
||||||
|
|
||||||
|
print("\n---------------------------------\n")
|
||||||
|
print(path.name + ":")
|
||||||
|
cuts.describe()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/multi_ja_en/ASR/local/prepare_char.py
Symbolic link
1
egs/multi_ja_en/ASR/local/prepare_char.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../aishell/ASR/local/prepare_char.py
|
66
egs/multi_ja_en/ASR/local/prepare_for_bpe_model.py
Executable file
66
egs/multi_ja_en/ASR/local/prepare_for_bpe_model.py
Executable file
@ -0,0 +1,66 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script tokenizes the training transcript by CJK characters
|
||||||
|
# and saves the result to transcript_chars.txt, which is used
|
||||||
|
# to train the BPE model later.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import re
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
|
||||||
|
from icefall.utils import tokenize_by_ja_char
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Output directory.
|
||||||
|
The generated transcript_chars.txt is saved to this directory.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--text",
|
||||||
|
type=str,
|
||||||
|
help="Training transcript.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
text = Path(args.text)
|
||||||
|
|
||||||
|
assert lang_dir.exists() and text.exists(), f"{lang_dir} or {text} does not exist!"
|
||||||
|
|
||||||
|
transcript_path = lang_dir / "transcript_chars.txt"
|
||||||
|
|
||||||
|
with open(text, "r", encoding="utf-8") as fin:
|
||||||
|
with open(transcript_path, "w+", encoding="utf-8") as fout:
|
||||||
|
for line in tqdm(fin):
|
||||||
|
fout.write(tokenize_by_ja_char(line) + "\n")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/multi_ja_en/ASR/local/prepare_lang.py
Symbolic link
1
egs/multi_ja_en/ASR/local/prepare_lang.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/prepare_lang.py
|
268
egs/multi_ja_en/ASR/local/prepare_lang_bbpe.py
Executable file
268
egs/multi_ja_en/ASR/local/prepare_lang_bbpe.py
Executable file
@ -0,0 +1,268 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
||||||
|
# Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
This script takes as input `lang_dir`, which should contain::
|
||||||
|
|
||||||
|
- lang_dir/bbpe.model,
|
||||||
|
- lang_dir/words.txt
|
||||||
|
|
||||||
|
and generates the following files in the directory `lang_dir`:
|
||||||
|
|
||||||
|
- lexicon.txt
|
||||||
|
- lexicon_disambig.txt
|
||||||
|
- L.pt
|
||||||
|
- L_disambig.pt
|
||||||
|
- tokens.txt
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import re
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from prepare_lang import (
|
||||||
|
Lexicon,
|
||||||
|
add_disambig_symbols,
|
||||||
|
add_self_loops,
|
||||||
|
write_lexicon,
|
||||||
|
write_mapping,
|
||||||
|
)
|
||||||
|
|
||||||
|
from icefall.byte_utils import byte_encode
|
||||||
|
from icefall.utils import str2bool, tokenize_by_ja_char
|
||||||
|
|
||||||
|
|
||||||
|
def lexicon_to_fst_no_sil(
|
||||||
|
lexicon: Lexicon,
|
||||||
|
token2id: Dict[str, int],
|
||||||
|
word2id: Dict[str, int],
|
||||||
|
need_self_loops: bool = False,
|
||||||
|
) -> k2.Fsa:
|
||||||
|
"""Convert a lexicon to an FST (in k2 format).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
The input lexicon. See also :func:`read_lexicon`
|
||||||
|
token2id:
|
||||||
|
A dict mapping tokens to IDs.
|
||||||
|
word2id:
|
||||||
|
A dict mapping words to IDs.
|
||||||
|
need_self_loops:
|
||||||
|
If True, add self-loop to states with non-epsilon output symbols
|
||||||
|
on at least one arc out of the state. The input label for this
|
||||||
|
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||||
|
Returns:
|
||||||
|
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||||
|
"""
|
||||||
|
loop_state = 0 # words enter and leave from here
|
||||||
|
next_state = 1 # the next un-allocated state, will be incremented as we go
|
||||||
|
|
||||||
|
arcs = []
|
||||||
|
|
||||||
|
# The blank symbol <blk> is defined in local/train_bpe_model.py
|
||||||
|
assert token2id["<blk>"] == 0
|
||||||
|
assert word2id["<eps>"] == 0
|
||||||
|
|
||||||
|
eps = 0
|
||||||
|
|
||||||
|
for word, pieces in lexicon:
|
||||||
|
assert len(pieces) > 0, f"{word} has no pronunciations"
|
||||||
|
cur_state = loop_state
|
||||||
|
|
||||||
|
word = word2id[word]
|
||||||
|
pieces = [token2id[i] for i in pieces]
|
||||||
|
|
||||||
|
for i in range(len(pieces) - 1):
|
||||||
|
w = word if i == 0 else eps
|
||||||
|
arcs.append([cur_state, next_state, pieces[i], w, 0])
|
||||||
|
|
||||||
|
cur_state = next_state
|
||||||
|
next_state += 1
|
||||||
|
|
||||||
|
# now for the last piece of this word
|
||||||
|
i = len(pieces) - 1
|
||||||
|
w = word if i == 0 else eps
|
||||||
|
arcs.append([cur_state, loop_state, pieces[i], w, 0])
|
||||||
|
|
||||||
|
if need_self_loops:
|
||||||
|
disambig_token = token2id["#0"]
|
||||||
|
disambig_word = word2id["#0"]
|
||||||
|
arcs = add_self_loops(
|
||||||
|
arcs,
|
||||||
|
disambig_token=disambig_token,
|
||||||
|
disambig_word=disambig_word,
|
||||||
|
)
|
||||||
|
|
||||||
|
final_state = next_state
|
||||||
|
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||||
|
arcs.append([final_state])
|
||||||
|
|
||||||
|
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||||
|
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||||
|
arcs = [" ".join(arc) for arc in arcs]
|
||||||
|
arcs = "\n".join(arcs)
|
||||||
|
|
||||||
|
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||||
|
return fsa
|
||||||
|
|
||||||
|
|
||||||
|
def generate_lexicon(
|
||||||
|
model_file: str, words: List[str], oov: str
|
||||||
|
) -> Tuple[Lexicon, Dict[str, int]]:
|
||||||
|
"""Generate a lexicon from a BPE model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_file:
|
||||||
|
Path to a sentencepiece model.
|
||||||
|
words:
|
||||||
|
A list of strings representing words.
|
||||||
|
oov:
|
||||||
|
The out of vocabulary word in lexicon.
|
||||||
|
Returns:
|
||||||
|
Return a tuple with two elements:
|
||||||
|
- A dict whose keys are words and values are the corresponding
|
||||||
|
word pieces.
|
||||||
|
- A dict representing the token symbol, mapping from tokens to IDs.
|
||||||
|
"""
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(str(model_file))
|
||||||
|
|
||||||
|
# Convert word to word piece IDs instead of word piece strings
|
||||||
|
# to avoid OOV tokens.
|
||||||
|
encode_words = [byte_encode(tokenize_by_ja_char(w)) for w in words]
|
||||||
|
words_pieces_ids: List[List[int]] = sp.encode(encode_words, out_type=int)
|
||||||
|
|
||||||
|
# Now convert word piece IDs back to word piece strings.
|
||||||
|
words_pieces: List[List[str]] = [sp.id_to_piece(ids) for ids in words_pieces_ids]
|
||||||
|
|
||||||
|
lexicon = []
|
||||||
|
for word, pieces in zip(words, words_pieces):
|
||||||
|
lexicon.append((word, pieces))
|
||||||
|
|
||||||
|
lexicon.append((oov, ["▁", sp.id_to_piece(sp.unk_id())]))
|
||||||
|
|
||||||
|
token2id: Dict[str, int] = {sp.id_to_piece(i): i for i in range(sp.vocab_size())}
|
||||||
|
|
||||||
|
return lexicon, token2id
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Input and output directory.
|
||||||
|
It should contain the bpe.model and words.txt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--oov",
|
||||||
|
type=str,
|
||||||
|
default="<UNK>",
|
||||||
|
help="The out of vocabulary word in lexicon.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--debug",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True for debugging, which will generate
|
||||||
|
a visualization of the lexicon FST.
|
||||||
|
|
||||||
|
Caution: If your lexicon contains hundreds of thousands
|
||||||
|
of lines, please set it to False!
|
||||||
|
|
||||||
|
See "test/test_bpe_lexicon.py" for usage.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
model_file = lang_dir / "bbpe.model"
|
||||||
|
|
||||||
|
word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||||
|
|
||||||
|
words = word_sym_table.symbols
|
||||||
|
|
||||||
|
excluded = ["<eps>", "!SIL", "<SPOKEN_NOISE>", args.oov, "#0", "<s>", "</s>"]
|
||||||
|
|
||||||
|
for w in excluded:
|
||||||
|
if w in words:
|
||||||
|
words.remove(w)
|
||||||
|
|
||||||
|
lexicon, token_sym_table = generate_lexicon(model_file, words, args.oov)
|
||||||
|
|
||||||
|
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||||
|
|
||||||
|
next_token_id = max(token_sym_table.values()) + 1
|
||||||
|
for i in range(max_disambig + 1):
|
||||||
|
disambig = f"#{i}"
|
||||||
|
assert disambig not in token_sym_table
|
||||||
|
token_sym_table[disambig] = next_token_id
|
||||||
|
next_token_id += 1
|
||||||
|
|
||||||
|
word_sym_table.add("#0")
|
||||||
|
word_sym_table.add("<s>")
|
||||||
|
word_sym_table.add("</s>")
|
||||||
|
|
||||||
|
write_mapping(lang_dir / "tokens.txt", token_sym_table)
|
||||||
|
|
||||||
|
write_lexicon(lang_dir / "lexicon.txt", lexicon)
|
||||||
|
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||||
|
|
||||||
|
L = lexicon_to_fst_no_sil(
|
||||||
|
lexicon,
|
||||||
|
token2id=token_sym_table,
|
||||||
|
word2id=word_sym_table,
|
||||||
|
)
|
||||||
|
|
||||||
|
L_disambig = lexicon_to_fst_no_sil(
|
||||||
|
lexicon_disambig,
|
||||||
|
token2id=token_sym_table,
|
||||||
|
word2id=word_sym_table,
|
||||||
|
need_self_loops=True,
|
||||||
|
)
|
||||||
|
torch.save(L.as_dict(), lang_dir / "L.pt")
|
||||||
|
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
||||||
|
|
||||||
|
if args.debug:
|
||||||
|
labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||||
|
aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||||
|
|
||||||
|
L.labels_sym = labels_sym
|
||||||
|
L.aux_labels_sym = aux_labels_sym
|
||||||
|
L.draw(f"{lang_dir / 'L.svg'}", title="L.pt")
|
||||||
|
|
||||||
|
L_disambig.labels_sym = labels_sym
|
||||||
|
L_disambig.aux_labels_sym = aux_labels_sym
|
||||||
|
L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
75
egs/multi_ja_en/ASR/local/prepare_lang_char.py
Normal file
75
egs/multi_ja_en/ASR/local/prepare_lang_char.py
Normal file
@ -0,0 +1,75 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 The University of Electro-Communications (Author: Teo Wen Shen) # noqa
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from lhotse import CutSet
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"train_cut", metavar="train-cut", type=Path, help="Path to the train cut"
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/lang_char"),
|
||||||
|
help=(
|
||||||
|
"Name of lang dir. "
|
||||||
|
"If not set, this will default to lang_char_{trans-mode}"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
logging.basicConfig(
|
||||||
|
format=("%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"),
|
||||||
|
level=logging.INFO,
|
||||||
|
)
|
||||||
|
|
||||||
|
sysdef_string = set(["<blk>", "<unk>", "<sos/eos>", " "])
|
||||||
|
|
||||||
|
token_set = set()
|
||||||
|
logging.info(f"Creating vocabulary from {args.train_cut}.")
|
||||||
|
train_cut: CutSet = CutSet.from_file(args.train_cut)
|
||||||
|
for cut in train_cut:
|
||||||
|
for sup in cut.supervisions:
|
||||||
|
token_set.update(sup.text)
|
||||||
|
|
||||||
|
token_set = ["<blk>"] + sorted(token_set - sysdef_string) + ["<unk>", "<sos/eos>"]
|
||||||
|
args.lang_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
(args.lang_dir / "tokens.txt").write_text(
|
||||||
|
"\n".join(f"{t}\t{i}" for i, t in enumerate(token_set))
|
||||||
|
)
|
||||||
|
|
||||||
|
(args.lang_dir / "lang_type").write_text("char")
|
||||||
|
logging.info("Done.")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/multi_ja_en/ASR/local/prepare_words.py
Symbolic link
1
egs/multi_ja_en/ASR/local/prepare_words.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../aishell2/ASR/local/prepare_words.py
|
95
egs/multi_ja_en/ASR/local/text2segments.py
Normal file
95
egs/multi_ja_en/ASR/local/text2segments.py
Normal file
@ -0,0 +1,95 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo)
|
||||||
|
# 2022 Xiaomi Corp. (authors: Weiji Zhuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script takes as input "text", which refers to the transcript file:
|
||||||
|
- text
|
||||||
|
and generates the output file with word segmentation implemented using MeCab:
|
||||||
|
- text_words_segmentation
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
from multiprocessing import Pool
|
||||||
|
|
||||||
|
import MeCab
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Japanese Word Segmentation for text",
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-process",
|
||||||
|
"-n",
|
||||||
|
default=20,
|
||||||
|
type=int,
|
||||||
|
help="the number of processes",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--input-file",
|
||||||
|
"-i",
|
||||||
|
default="data/lang_char/text",
|
||||||
|
type=str,
|
||||||
|
help="the input text file",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--output-file",
|
||||||
|
"-o",
|
||||||
|
default="data/lang_char/text_words_segmentation",
|
||||||
|
type=str,
|
||||||
|
help="the text implemented with word segmentation using MeCab",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def cut(lines):
|
||||||
|
if lines is not None:
|
||||||
|
mecab = MeCab.Tagger("-Owakati") # Use '-Owakati' option for word segmentation
|
||||||
|
segmented_line = mecab.parse(lines).strip()
|
||||||
|
return segmented_line.split() # Return as a list of words
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
num_process = args.num_process
|
||||||
|
input_file = args.input_file
|
||||||
|
output_file = args.output_file
|
||||||
|
|
||||||
|
with open(input_file, "r", encoding="utf-8") as fr:
|
||||||
|
lines = fr.readlines()
|
||||||
|
|
||||||
|
with Pool(processes=num_process) as p:
|
||||||
|
new_lines = list(tqdm(p.imap(cut, lines), total=len(lines)))
|
||||||
|
|
||||||
|
with open(output_file, "w", encoding="utf-8") as fw:
|
||||||
|
for line in new_lines:
|
||||||
|
fw.write(" ".join(line) + "\n")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
177
egs/multi_ja_en/ASR/local/text2token.py
Executable file
177
egs/multi_ja_en/ASR/local/text2token.py
Executable file
@ -0,0 +1,177 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2017 Johns Hopkins University (authors: Shinji Watanabe)
|
||||||
|
# 2022 Xiaomi Corp. (authors: Mingshuang Luo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import codecs
|
||||||
|
import re
|
||||||
|
import sys
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
from romkan import to_roma # Replace with python-romkan v0.2.1
|
||||||
|
|
||||||
|
is_python2 = sys.version_info[0] == 2
|
||||||
|
|
||||||
|
|
||||||
|
def exist_or_not(i, match_pos):
|
||||||
|
start_pos = None
|
||||||
|
end_pos = None
|
||||||
|
for pos in match_pos:
|
||||||
|
if pos[0] <= i < pos[1]:
|
||||||
|
start_pos = pos[0]
|
||||||
|
end_pos = pos[1]
|
||||||
|
break
|
||||||
|
|
||||||
|
return start_pos, end_pos
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="convert raw text to tokenized text",
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--nchar",
|
||||||
|
"-n",
|
||||||
|
default=1,
|
||||||
|
type=int,
|
||||||
|
help="number of characters to split, i.e., \
|
||||||
|
aabb -> a a b b with -n 1 and aa bb with -n 2",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
|
||||||
|
)
|
||||||
|
parser.add_argument("--space", default="<space>", type=str, help="space symbol")
|
||||||
|
parser.add_argument(
|
||||||
|
"--non-lang-syms",
|
||||||
|
"-l",
|
||||||
|
default=None,
|
||||||
|
type=str,
|
||||||
|
help="list of non-linguistic symbols, e.g., <NOISE> etc.",
|
||||||
|
)
|
||||||
|
parser.add_argument("text", type=str, default=False, nargs="?", help="input text")
|
||||||
|
parser.add_argument(
|
||||||
|
"--trans_type",
|
||||||
|
"-t",
|
||||||
|
type=str,
|
||||||
|
default="char",
|
||||||
|
choices=["char", "romaji"],
|
||||||
|
help="Transcript type. char/romaji",
|
||||||
|
)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def token2id(
|
||||||
|
texts, token_table, token_type: str = "romaji", oov: str = "<unk>"
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""Convert token to id.
|
||||||
|
Args:
|
||||||
|
texts:
|
||||||
|
The input texts, it refers to the Japanese text here.
|
||||||
|
token_table:
|
||||||
|
The token table is built based on "data/lang_xxx/token.txt"
|
||||||
|
token_type:
|
||||||
|
The type of token, such as "romaji".
|
||||||
|
oov:
|
||||||
|
Out of vocabulary token. When a word(token) in the transcript
|
||||||
|
does not exist in the token list, it is replaced with `oov`.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The list of ids for the input texts.
|
||||||
|
"""
|
||||||
|
if texts is None:
|
||||||
|
raise ValueError("texts can't be None!")
|
||||||
|
else:
|
||||||
|
oov_id = token_table[oov]
|
||||||
|
ids: List[List[int]] = []
|
||||||
|
for text in texts:
|
||||||
|
chars_list = list(str(text))
|
||||||
|
if token_type == "romaji":
|
||||||
|
text = [to_roma(c) for c in chars_list]
|
||||||
|
sub_ids = [
|
||||||
|
token_table[txt] if txt in token_table else oov_id for txt in text
|
||||||
|
]
|
||||||
|
ids.append(sub_ids)
|
||||||
|
return ids
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
rs = []
|
||||||
|
if args.non_lang_syms is not None:
|
||||||
|
with codecs.open(args.non_lang_syms, "r", encoding="utf-8") as f:
|
||||||
|
nls = [x.rstrip() for x in f.readlines()]
|
||||||
|
rs = [re.compile(re.escape(x)) for x in nls]
|
||||||
|
|
||||||
|
if args.text:
|
||||||
|
f = codecs.open(args.text, encoding="utf-8")
|
||||||
|
else:
|
||||||
|
f = codecs.getreader("utf-8")(sys.stdin if is_python2 else sys.stdin.buffer)
|
||||||
|
|
||||||
|
sys.stdout = codecs.getwriter("utf-8")(
|
||||||
|
sys.stdout if is_python2 else sys.stdout.buffer
|
||||||
|
)
|
||||||
|
line = f.readline()
|
||||||
|
n = args.nchar
|
||||||
|
while line:
|
||||||
|
x = line.split()
|
||||||
|
print(" ".join(x[: args.skip_ncols]), end=" ")
|
||||||
|
a = " ".join(x[args.skip_ncols :]) # noqa E203
|
||||||
|
|
||||||
|
# get all matched positions
|
||||||
|
match_pos = []
|
||||||
|
for r in rs:
|
||||||
|
i = 0
|
||||||
|
while i >= 0:
|
||||||
|
m = r.search(a, i)
|
||||||
|
if m:
|
||||||
|
match_pos.append([m.start(), m.end()])
|
||||||
|
i = m.end()
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
if len(match_pos) > 0:
|
||||||
|
chars = []
|
||||||
|
i = 0
|
||||||
|
while i < len(a):
|
||||||
|
start_pos, end_pos = exist_or_not(i, match_pos)
|
||||||
|
if start_pos is not None:
|
||||||
|
chars.append(a[start_pos:end_pos])
|
||||||
|
i = end_pos
|
||||||
|
else:
|
||||||
|
chars.append(a[i])
|
||||||
|
i += 1
|
||||||
|
a = chars
|
||||||
|
|
||||||
|
if args.trans_type == "romaji":
|
||||||
|
a = [to_roma(c) for c in list(str(a))]
|
||||||
|
|
||||||
|
a = [a[j : j + n] for j in range(0, len(a), n)] # noqa E203
|
||||||
|
|
||||||
|
a_flat = []
|
||||||
|
for z in a:
|
||||||
|
a_flat.append("".join(z))
|
||||||
|
|
||||||
|
a_chars = "".join(a_flat)
|
||||||
|
print(a_chars)
|
||||||
|
line = f.readline()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
114
egs/multi_ja_en/ASR/local/train_bbpe_model.py
Executable file
114
egs/multi_ja_en/ASR/local/train_bbpe_model.py
Executable file
@ -0,0 +1,114 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# You can install sentencepiece via:
|
||||||
|
#
|
||||||
|
# pip install sentencepiece
|
||||||
|
#
|
||||||
|
# Due to an issue reported in
|
||||||
|
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
||||||
|
#
|
||||||
|
# Please install a version >=0.1.96
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import re
|
||||||
|
import shutil
|
||||||
|
import tempfile
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
|
||||||
|
from icefall import byte_encode
|
||||||
|
from icefall.utils import tokenize_by_ja_char
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Input and output directory.
|
||||||
|
The generated bpe.model is saved to this directory.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--transcript",
|
||||||
|
type=str,
|
||||||
|
help="Training transcript.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocab-size",
|
||||||
|
type=int,
|
||||||
|
help="Vocabulary size for BPE training",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def _convert_to_bchar(in_path: str, out_path: str):
|
||||||
|
with open(out_path, "w") as f:
|
||||||
|
for line in open(in_path, "r").readlines():
|
||||||
|
f.write(byte_encode(tokenize_by_ja_char(line)) + "\n")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
vocab_size = args.vocab_size
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
|
||||||
|
model_type = "unigram"
|
||||||
|
|
||||||
|
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
||||||
|
model_file = Path(model_prefix + ".model")
|
||||||
|
if model_file.is_file():
|
||||||
|
print(f"{model_file} exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
|
character_coverage = 1.0
|
||||||
|
input_sentence_size = 100000000
|
||||||
|
|
||||||
|
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
||||||
|
unk_id = len(user_defined_symbols)
|
||||||
|
# Note: unk_id is fixed to 2.
|
||||||
|
# If you change it, you should also change other
|
||||||
|
# places that are using it.
|
||||||
|
|
||||||
|
temp = tempfile.NamedTemporaryFile()
|
||||||
|
train_text = temp.name
|
||||||
|
|
||||||
|
_convert_to_bchar(args.transcript, train_text)
|
||||||
|
|
||||||
|
spm.SentencePieceTrainer.train(
|
||||||
|
input=train_text,
|
||||||
|
vocab_size=vocab_size,
|
||||||
|
model_type=model_type,
|
||||||
|
model_prefix=model_prefix,
|
||||||
|
input_sentence_size=input_sentence_size,
|
||||||
|
character_coverage=character_coverage,
|
||||||
|
user_defined_symbols=user_defined_symbols,
|
||||||
|
unk_id=unk_id,
|
||||||
|
bos_id=-1,
|
||||||
|
eos_id=-1,
|
||||||
|
)
|
||||||
|
|
||||||
|
shutil.copyfile(model_file, f"{lang_dir}/bbpe.model")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
355
egs/multi_ja_en/ASR/local/utils/asr_datamodule.py
Normal file
355
egs/multi_ja_en/ASR/local/utils/asr_datamodule.py
Normal file
@ -0,0 +1,355 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import inspect
|
||||||
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, List, Optional
|
||||||
|
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||||
|
from lhotse.dataset import (
|
||||||
|
CutConcatenate,
|
||||||
|
CutMix,
|
||||||
|
DynamicBucketingSampler,
|
||||||
|
K2SpeechRecognitionDataset,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
SimpleCutSampler,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class ReazonSpeechAsrDataModule:
|
||||||
|
"""
|
||||||
|
DataModule for k2 ASR experiments.
|
||||||
|
It assumes there is always one train and valid dataloader,
|
||||||
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||||
|
and test-other).
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- augmentation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
This class should be derived for specific corpora used in ASR tasks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--manifest-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/dev/test cuts.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=200.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--concatenate-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--duration-factor",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--gap",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="The amount of padding (in seconds) inserted between "
|
||||||
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
|
"noise augmentation is used.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--drop-last",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to drop last batch. Used by sampler.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-spec-aug",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--spec-aug-time-warp-factor",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="Used only when --enable-spec-aug is True. "
|
||||||
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
|
"Larger values mean more warping. "
|
||||||
|
"A value less than 1 means to disable time warp.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-musan",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(
|
||||||
|
self, cuts_train: CutSet, sampler_state_dict: Optional[Dict[str, Any]] = None
|
||||||
|
) -> DataLoader:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cuts_train:
|
||||||
|
CutSet for training.
|
||||||
|
sampler_state_dict:
|
||||||
|
The state dict for the training sampler.
|
||||||
|
"""
|
||||||
|
|
||||||
|
transforms = []
|
||||||
|
input_transforms = []
|
||||||
|
|
||||||
|
if self.args.enable_spec_aug:
|
||||||
|
logging.info("Enable SpecAugment")
|
||||||
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
|
# different.
|
||||||
|
num_frame_masks = 10
|
||||||
|
num_frame_masks_parameter = inspect.signature(
|
||||||
|
SpecAugment.__init__
|
||||||
|
).parameters["num_frame_masks"]
|
||||||
|
if num_frame_masks_parameter.default == 1:
|
||||||
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
|
input_transforms.append(
|
||||||
|
SpecAugment(
|
||||||
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
|
num_frame_masks=num_frame_masks,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable SpecAugment")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.bucketing_sampler:
|
||||||
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
drop_last=self.args.drop_last,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using SimpleCutSampler.")
|
||||||
|
train_sampler = SimpleCutSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
if sampler_state_dict is not None:
|
||||||
|
logging.info("Loading sampler state dict")
|
||||||
|
train_sampler.load_state_dict(sampler_state_dict)
|
||||||
|
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
|
transforms = []
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
valid_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
|
logging.info("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else PrecomputedFeatures(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = DynamicBucketingSampler(
|
||||||
|
cuts,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test,
|
||||||
|
batch_size=None,
|
||||||
|
sampler=sampler,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
)
|
||||||
|
return test_dl
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "reazonspeech_cuts_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def valid_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get dev cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "reazonspeech_cuts_dev.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_cuts(self) -> List[CutSet]:
|
||||||
|
logging.info("About to get test cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "reazonspeech_cuts_test.jsonl.gz"
|
||||||
|
)
|
252
egs/multi_ja_en/ASR/local/utils/tokenizer.py
Normal file
252
egs/multi_ja_en/ASR/local/utils/tokenizer.py
Normal file
@ -0,0 +1,252 @@
|
|||||||
|
import argparse
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Callable, List, Union
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
from k2 import SymbolTable
|
||||||
|
|
||||||
|
|
||||||
|
class Tokenizer:
|
||||||
|
text2word: Callable[[str], List[str]]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def add_arguments(parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(title="Lang related options")
|
||||||
|
group.add_argument("--lang", type=Path, help="Path to lang directory.")
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--lang-type",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help=(
|
||||||
|
"Either 'bpe' or 'char'. If not provided, it expects lang_dir/lang_type to exists. "
|
||||||
|
"Note: 'bpe' directly loads sentencepiece.SentencePieceProcessor"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def Load(lang_dir: Path, lang_type="", oov="<unk>"):
|
||||||
|
|
||||||
|
if not lang_type:
|
||||||
|
assert (lang_dir / "lang_type").exists(), "lang_type not specified."
|
||||||
|
lang_type = (lang_dir / "lang_type").read_text().strip()
|
||||||
|
|
||||||
|
tokenizer = None
|
||||||
|
|
||||||
|
if lang_type == "bpe":
|
||||||
|
assert (
|
||||||
|
lang_dir / "bpe.model"
|
||||||
|
).exists(), f"No BPE .model could be found in {lang_dir}."
|
||||||
|
tokenizer = spm.SentencePieceProcessor()
|
||||||
|
tokenizer.Load(str(lang_dir / "bpe.model"))
|
||||||
|
elif lang_type == "char":
|
||||||
|
tokenizer = CharTokenizer(lang_dir, oov=oov)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f"{lang_type} not supported at the moment.")
|
||||||
|
|
||||||
|
return tokenizer
|
||||||
|
|
||||||
|
load = Load
|
||||||
|
|
||||||
|
def PieceToId(self, piece: str) -> int:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"You need to implement this function in the child class."
|
||||||
|
)
|
||||||
|
|
||||||
|
piece_to_id = PieceToId
|
||||||
|
|
||||||
|
def IdToPiece(self, id: int) -> str:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"You need to implement this function in the child class."
|
||||||
|
)
|
||||||
|
|
||||||
|
id_to_piece = IdToPiece
|
||||||
|
|
||||||
|
def GetPieceSize(self) -> int:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"You need to implement this function in the child class."
|
||||||
|
)
|
||||||
|
|
||||||
|
get_piece_size = GetPieceSize
|
||||||
|
|
||||||
|
def __len__(self) -> int:
|
||||||
|
return self.get_piece_size()
|
||||||
|
|
||||||
|
def EncodeAsIdsBatch(self, input: List[str]) -> List[List[int]]:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"You need to implement this function in the child class."
|
||||||
|
)
|
||||||
|
|
||||||
|
def EncodeAsPiecesBatch(self, input: List[str]) -> List[List[str]]:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"You need to implement this function in the child class."
|
||||||
|
)
|
||||||
|
|
||||||
|
def EncodeAsIds(self, input: str) -> List[int]:
|
||||||
|
return self.EncodeAsIdsBatch([input])[0]
|
||||||
|
|
||||||
|
def EncodeAsPieces(self, input: str) -> List[str]:
|
||||||
|
return self.EncodeAsPiecesBatch([input])[0]
|
||||||
|
|
||||||
|
def Encode(
|
||||||
|
self, input: Union[str, List[str]], out_type=int
|
||||||
|
) -> Union[List, List[List]]:
|
||||||
|
if not input:
|
||||||
|
return []
|
||||||
|
|
||||||
|
if isinstance(input, list):
|
||||||
|
if out_type is int:
|
||||||
|
return self.EncodeAsIdsBatch(input)
|
||||||
|
if out_type is str:
|
||||||
|
return self.EncodeAsPiecesBatch(input)
|
||||||
|
|
||||||
|
if out_type is int:
|
||||||
|
return self.EncodeAsIds(input)
|
||||||
|
if out_type is str:
|
||||||
|
return self.EncodeAsPieces(input)
|
||||||
|
|
||||||
|
encode = Encode
|
||||||
|
|
||||||
|
def DecodeIdsBatch(self, input: List[List[int]]) -> List[str]:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"You need to implement this function in the child class."
|
||||||
|
)
|
||||||
|
|
||||||
|
def DecodePiecesBatch(self, input: List[List[str]]) -> List[str]:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"You need to implement this function in the child class."
|
||||||
|
)
|
||||||
|
|
||||||
|
def DecodeIds(self, input: List[int]) -> str:
|
||||||
|
return self.DecodeIdsBatch([input])[0]
|
||||||
|
|
||||||
|
def DecodePieces(self, input: List[str]) -> str:
|
||||||
|
return self.DecodePiecesBatch([input])[0]
|
||||||
|
|
||||||
|
def Decode(
|
||||||
|
self,
|
||||||
|
input: Union[int, List[int], List[str], List[List[int]], List[List[str]]],
|
||||||
|
) -> Union[List[str], str]:
|
||||||
|
|
||||||
|
if not input:
|
||||||
|
return ""
|
||||||
|
|
||||||
|
if isinstance(input, int):
|
||||||
|
return self.id_to_piece(input)
|
||||||
|
elif isinstance(input, str):
|
||||||
|
raise TypeError(
|
||||||
|
"Unlike spm.SentencePieceProcessor, cannot decode from type str."
|
||||||
|
)
|
||||||
|
|
||||||
|
if isinstance(input[0], list):
|
||||||
|
if not input[0] or isinstance(input[0][0], int):
|
||||||
|
return self.DecodeIdsBatch(input)
|
||||||
|
|
||||||
|
if isinstance(input[0][0], str):
|
||||||
|
return self.DecodePiecesBatch(input)
|
||||||
|
|
||||||
|
if isinstance(input[0], int):
|
||||||
|
return self.DecodeIds(input)
|
||||||
|
if isinstance(input[0], str):
|
||||||
|
return self.DecodePieces(input)
|
||||||
|
|
||||||
|
raise RuntimeError("Unknown input type")
|
||||||
|
|
||||||
|
decode = Decode
|
||||||
|
|
||||||
|
def SplitBatch(self, input: List[str]) -> List[List[str]]:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"You need to implement this function in the child class."
|
||||||
|
)
|
||||||
|
|
||||||
|
def Split(self, input: Union[List[str], str]) -> Union[List[List[str]], List[str]]:
|
||||||
|
if isinstance(input, list):
|
||||||
|
return self.SplitBatch(input)
|
||||||
|
elif isinstance(input, str):
|
||||||
|
return self.SplitBatch([input])[0]
|
||||||
|
raise RuntimeError("Unknown input type")
|
||||||
|
|
||||||
|
split = Split
|
||||||
|
|
||||||
|
|
||||||
|
class CharTokenizer(Tokenizer):
|
||||||
|
def __init__(self, lang_dir: Path, oov="<unk>", sep=""):
|
||||||
|
assert (
|
||||||
|
lang_dir / "tokens.txt"
|
||||||
|
).exists(), f"tokens.txt could not be found in {lang_dir}."
|
||||||
|
token_table = SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||||
|
assert (
|
||||||
|
"#0" not in token_table
|
||||||
|
), "This tokenizer does not support disambig symbols."
|
||||||
|
self._id2sym = token_table._id2sym
|
||||||
|
self._sym2id = token_table._sym2id
|
||||||
|
self.oov = oov
|
||||||
|
self.oov_id = self._sym2id[oov]
|
||||||
|
self.sep = sep
|
||||||
|
if self.sep:
|
||||||
|
self.text2word = lambda x: x.split(self.sep)
|
||||||
|
else:
|
||||||
|
self.text2word = lambda x: list(x.replace(" ", ""))
|
||||||
|
|
||||||
|
def piece_to_id(self, piece: str) -> int:
|
||||||
|
try:
|
||||||
|
return self._sym2id[piece]
|
||||||
|
except KeyError:
|
||||||
|
return self.oov_id
|
||||||
|
|
||||||
|
def id_to_piece(self, id: int) -> str:
|
||||||
|
return self._id2sym[id]
|
||||||
|
|
||||||
|
def get_piece_size(self) -> int:
|
||||||
|
return len(self._sym2id)
|
||||||
|
|
||||||
|
def EncodeAsIdsBatch(self, input: List[str]) -> List[List[int]]:
|
||||||
|
return [[self.piece_to_id(i) for i in self.text2word(text)] for text in input]
|
||||||
|
|
||||||
|
def EncodeAsPiecesBatch(self, input: List[str]) -> List[List[str]]:
|
||||||
|
return [
|
||||||
|
[i if i in self._sym2id else self.oov for i in self.text2word(text)]
|
||||||
|
for text in input
|
||||||
|
]
|
||||||
|
|
||||||
|
def DecodeIdsBatch(self, input: List[List[int]]) -> List[str]:
|
||||||
|
return [self.sep.join(self.id_to_piece(i) for i in text) for text in input]
|
||||||
|
|
||||||
|
def DecodePiecesBatch(self, input: List[List[str]]) -> List[str]:
|
||||||
|
return [self.sep.join(text) for text in input]
|
||||||
|
|
||||||
|
def SplitBatch(self, input: List[str]) -> List[List[str]]:
|
||||||
|
return [self.text2word(text) for text in input]
|
||||||
|
|
||||||
|
|
||||||
|
def test_CharTokenizer():
|
||||||
|
test_single_string = "こんにちは"
|
||||||
|
test_multiple_string = [
|
||||||
|
"今日はいい天気ですよね",
|
||||||
|
"諏訪湖は綺麗でしょう",
|
||||||
|
"这在词表外",
|
||||||
|
"分かち 書き に し た 文章 です",
|
||||||
|
"",
|
||||||
|
]
|
||||||
|
test_empty_string = ""
|
||||||
|
sp = Tokenizer.load(Path("lang_char"), "char", oov="<unk>")
|
||||||
|
splitter = sp.split
|
||||||
|
print(sp.encode(test_single_string, out_type=str))
|
||||||
|
print(sp.encode(test_single_string, out_type=int))
|
||||||
|
print(sp.encode(test_multiple_string, out_type=str))
|
||||||
|
print(sp.encode(test_multiple_string, out_type=int))
|
||||||
|
print(sp.encode(test_empty_string, out_type=str))
|
||||||
|
print(sp.encode(test_empty_string, out_type=int))
|
||||||
|
print(sp.decode(sp.encode(test_single_string, out_type=str)))
|
||||||
|
print(sp.decode(sp.encode(test_single_string, out_type=int)))
|
||||||
|
print(sp.decode(sp.encode(test_multiple_string, out_type=str)))
|
||||||
|
print(sp.decode(sp.encode(test_multiple_string, out_type=int)))
|
||||||
|
print(sp.decode(sp.encode(test_empty_string, out_type=str)))
|
||||||
|
print(sp.decode(sp.encode(test_empty_string, out_type=int)))
|
||||||
|
print(splitter(test_single_string))
|
||||||
|
print(splitter(test_multiple_string))
|
||||||
|
print(splitter(test_empty_string))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_CharTokenizer()
|
1
egs/multi_ja_en/ASR/local/validate_bpe_lexicon.py
Symbolic link
1
egs/multi_ja_en/ASR/local/validate_bpe_lexicon.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/validate_bpe_lexicon.py
|
96
egs/multi_ja_en/ASR/local/validate_manifest.py
Normal file
96
egs/multi_ja_en/ASR/local/validate_manifest.py
Normal file
@ -0,0 +1,96 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
This script checks the following assumptions of the generated manifest:
|
||||||
|
|
||||||
|
- Single supervision per cut
|
||||||
|
- Supervision time bounds are within cut time bounds
|
||||||
|
|
||||||
|
We will add more checks later if needed.
|
||||||
|
|
||||||
|
Usage example:
|
||||||
|
|
||||||
|
python3 ./local/validate_manifest.py \
|
||||||
|
./data/fbank/librispeech_cuts_train-clean-100.jsonl.gz
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from lhotse import CutSet, load_manifest
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--manifest",
|
||||||
|
type=Path,
|
||||||
|
help="Path to the manifest file",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def validate_one_supervision_per_cut(c: Cut):
|
||||||
|
if len(c.supervisions) != 1:
|
||||||
|
raise ValueError(f"{c.id} has {len(c.supervisions)} supervisions")
|
||||||
|
|
||||||
|
|
||||||
|
def validate_supervision_and_cut_time_bounds(c: Cut):
|
||||||
|
s = c.supervisions[0]
|
||||||
|
|
||||||
|
# Removed because when the cuts were trimmed from supervisions,
|
||||||
|
# the start time of the supervision can be lesser than cut start time.
|
||||||
|
# https://github.com/lhotse-speech/lhotse/issues/813
|
||||||
|
# if s.start < c.start:
|
||||||
|
# raise ValueError(
|
||||||
|
# f"{c.id}: Supervision start time {s.start} is less "
|
||||||
|
# f"than cut start time {c.start}"
|
||||||
|
# )
|
||||||
|
|
||||||
|
if s.end > c.end:
|
||||||
|
raise ValueError(
|
||||||
|
f"{c.id}: Supervision end time {s.end} is larger "
|
||||||
|
f"than cut end time {c.end}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
|
||||||
|
manifest = Path(args.manifest)
|
||||||
|
logging.info(f"Validating {manifest}")
|
||||||
|
|
||||||
|
assert manifest.is_file(), f"{manifest} does not exist"
|
||||||
|
cut_set = load_manifest(manifest)
|
||||||
|
assert isinstance(cut_set, CutSet)
|
||||||
|
|
||||||
|
for c in cut_set:
|
||||||
|
validate_one_supervision_per_cut(c)
|
||||||
|
validate_supervision_and_cut_time_bounds(c)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
main()
|
185
egs/multi_ja_en/ASR/prepare.sh
Executable file
185
egs/multi_ja_en/ASR/prepare.sh
Executable file
@ -0,0 +1,185 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
|
set -eou pipefail
|
||||||
|
|
||||||
|
stage=-1
|
||||||
|
stop_stage=100
|
||||||
|
|
||||||
|
dl_dir=$PWD/download
|
||||||
|
|
||||||
|
. shared/parse_options.sh || exit 1
|
||||||
|
|
||||||
|
vocab_sizes=(
|
||||||
|
2000
|
||||||
|
)
|
||||||
|
|
||||||
|
# All files generated by this script are saved in "data".
|
||||||
|
# You can safely remove "data" and rerun this script to regenerate it.
|
||||||
|
mkdir -p data
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
log "dl_dir: $dl_dir"
|
||||||
|
|
||||||
|
log "Dataset: musan"
|
||||||
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
|
log "Stage 1: Soft link fbank of musan"
|
||||||
|
mkdir -p data/fbank
|
||||||
|
if [ -e ../../librispeech/ASR/data/fbank/.musan.done ]; then
|
||||||
|
cd data/fbank
|
||||||
|
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/musan_feats) .
|
||||||
|
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/musan_cuts.jsonl.gz) .
|
||||||
|
cd ../..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../librispeech/ASR/prepare.sh --stage 4 --stop-stage 4"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Dataset: LibriSpeech"
|
||||||
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
|
log "Stage 1: Soft link fbank of LibriSpeech"
|
||||||
|
mkdir -p data/fbank
|
||||||
|
if [ -e ../../librispeech/ASR/data/fbank/.librispeech.done ]; then
|
||||||
|
cd data/fbank
|
||||||
|
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/librispeech_cuts*) .
|
||||||
|
ln -svf $(realpath ../../../../librispeech/ASR/data/fbank/librispeech_feats*) .
|
||||||
|
cd ../..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../librispeech/ASR/prepare.sh --stage 1 --stop-stage 1 and ../../librispeech/ASR/prepare.sh --stage 3 --stop-stage 3"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "Dataset: ReazonSpeech"
|
||||||
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
|
log "Stage 2: Soft link fbank of ReazonSpeech"
|
||||||
|
mkdir -p data/fbank
|
||||||
|
if [ -e ../../reazonspeech/ASR/data/manifests/.reazonspeech.done ]; then
|
||||||
|
cd data/fbank
|
||||||
|
ln -svf $(realpath ../../../../reazonspeech/ASR/data/manifests/reazonspeech_cuts*) .
|
||||||
|
cd ..
|
||||||
|
mkdir -p manifests
|
||||||
|
cd manifests
|
||||||
|
ln -svf $(realpath ../../../../reazonspeech/ASR/data/manifests/feats_*) .
|
||||||
|
cd ../..
|
||||||
|
else
|
||||||
|
log "Abort! Please run ../../reazonspeech/ASR/prepare.sh --stage 0 --stop-stage 2"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
# New Stage 3: Prepare char based lang for ReazonSpeech
|
||||||
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
|
lang_char_dir=data/lang_char
|
||||||
|
log "Stage 3: Prepare char based lang for ReazonSpeech"
|
||||||
|
mkdir -p $lang_char_dir
|
||||||
|
|
||||||
|
# Prepare text
|
||||||
|
if [ ! -f $lang_char_dir/text ]; then
|
||||||
|
gunzip -c ../../reazonspeech/ASR/data/manifests/reazonspeech_supervisions_train.jsonl.gz \
|
||||||
|
| jq '.text' | sed 's/"//g' \
|
||||||
|
| ./local/text2token.py -t "char" > $lang_char_dir/text
|
||||||
|
fi
|
||||||
|
|
||||||
|
# jp word segmentation for text
|
||||||
|
if [ ! -f $lang_char_dir/text_words_segmentation ]; then
|
||||||
|
python3 ./local/text2segments.py \
|
||||||
|
--input-file $lang_char_dir/text \
|
||||||
|
--output-file $lang_char_dir/text_words_segmentation
|
||||||
|
fi
|
||||||
|
|
||||||
|
cat $lang_char_dir/text_words_segmentation | sed 's/ /\n/g' \
|
||||||
|
| sort -u | sed '/^$/d' | uniq > $lang_char_dir/words_no_ids.txt
|
||||||
|
|
||||||
|
if [ ! -f $lang_char_dir/words.txt ]; then
|
||||||
|
python3 ./local/prepare_words.py \
|
||||||
|
--input-file $lang_char_dir/words_no_ids.txt \
|
||||||
|
--output-file $lang_char_dir/words.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
|
||||||
|
python3 ./local/prepare_char.py --lang-dir data/lang_char
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||||
|
log "Stage 4: Prepare Byte BPE based lang"
|
||||||
|
mkdir -p data/fbank
|
||||||
|
if [ ! -d ../../reazonspeech/ASR/data/lang_char ] && [ ! -d ./data/lang_char ]; then
|
||||||
|
log "Abort! Please run ../../reazonspeech/ASR/prepare.sh --stage 3 --stop-stage 3"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d ../../librispeech/ASR/data/lang_bpe_500 ] && [ ! -d ./data/lang_bpe_500 ]; then
|
||||||
|
log "Abort! Please run ../../librispeech/ASR/prepare.sh --stage 5 --stop-stage 5"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
cd data/
|
||||||
|
# if [ ! -d ./lang_char ]; then
|
||||||
|
# ln -svf $(realpath ../../../reazonspeech/ASR/data/lang_char) .
|
||||||
|
# fi
|
||||||
|
if [ ! -d ./lang_bpe_500 ]; then
|
||||||
|
ln -svf $(realpath ../../../librispeech/ASR/data/lang_bpe_500) .
|
||||||
|
fi
|
||||||
|
cd ../
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
lang_dir=data/lang_bbpe_${vocab_size}
|
||||||
|
mkdir -p $lang_dir
|
||||||
|
|
||||||
|
cat data/lang_char/text data/lang_bpe_500/transcript_words.txt \
|
||||||
|
> $lang_dir/text
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/transcript_chars.txt ]; then
|
||||||
|
./local/prepare_for_bpe_model.py \
|
||||||
|
--lang-dir ./$lang_dir \
|
||||||
|
--text $lang_dir/text
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/text_words_segmentation ]; then
|
||||||
|
python3 ./local/text2segments.py \
|
||||||
|
--input-file ./data/lang_char/text \
|
||||||
|
--output-file $lang_dir/text_words_segmentation
|
||||||
|
|
||||||
|
cat ./data/lang_bpe_500/transcript_words.txt \
|
||||||
|
>> $lang_dir/text_words_segmentation
|
||||||
|
fi
|
||||||
|
|
||||||
|
cat $lang_dir/text_words_segmentation | sed 's/ /\n/g' \
|
||||||
|
| sort -u | sed '/^$/d' | uniq > $lang_dir/words_no_ids.txt
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/words.txt ]; then
|
||||||
|
python3 ./local/prepare_words.py \
|
||||||
|
--input-file $lang_dir/words_no_ids.txt \
|
||||||
|
--output-file $lang_dir/words.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/bbpe.model ]; then
|
||||||
|
./local/train_bbpe_model.py \
|
||||||
|
--lang-dir $lang_dir \
|
||||||
|
--vocab-size $vocab_size \
|
||||||
|
--transcript $lang_dir/text
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||||
|
./local/prepare_lang_bbpe.py --lang-dir $lang_dir
|
||||||
|
|
||||||
|
log "Validating $lang_dir/lexicon.txt"
|
||||||
|
ln -svf $(realpath ../../multi_zh_en/ASR/local/validate_bpe_lexicon.py) local/
|
||||||
|
./local/validate_bpe_lexicon.py \
|
||||||
|
--lexicon $lang_dir/lexicon.txt \
|
||||||
|
--bpe-model $lang_dir/bbpe.model
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
log "prepare.sh: PREPARATION DONE"
|
1
egs/multi_ja_en/ASR/shared
Symbolic link
1
egs/multi_ja_en/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../icefall/shared/
|
1
egs/multi_ja_en/ASR/zipformer/asr_datamodule.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../local/utils/asr_datamodule.py
|
1
egs/multi_ja_en/ASR/zipformer/beam_search.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/beam_search.py
|
1
egs/multi_ja_en/ASR/zipformer/ctc_decode.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/ctc_decode.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/ctc_decode.py
|
792
egs/multi_ja_en/ASR/zipformer/decode.py
Executable file
792
egs/multi_ja_en/ASR/zipformer/decode.py
Executable file
@ -0,0 +1,792 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||||
|
# Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
(2) beam search (not recommended)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(4) fast beam search (one best)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import re
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import ReazonSpeechAsrDataModule
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG,
|
||||||
|
fast_beam_search_nbest_oracle,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from multi_dataset import MultiDataset
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall import byte_encode, smart_byte_decode
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
tokenize_by_ja_char,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bbpe_2000/bbpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=Path,
|
||||||
|
default="data/lang_bbpe_2000",
|
||||||
|
help="The lang dir containing word table and LG graph",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
- fast_beam_search_nbest
|
||||||
|
- fast_beam_search_nbest_oracle
|
||||||
|
- fast_beam_search_nbest_LG
|
||||||
|
If you use fast_beam_search_nbest_LG, you have to specify
|
||||||
|
`--lang-dir`, which should contain `LG.pt`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=20.0,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search,
|
||||||
|
fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ngram-lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.01,
|
||||||
|
help="""
|
||||||
|
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
||||||
|
It specifies the scale for n-gram LM scores.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=200,
|
||||||
|
help="""Number of paths for nbest decoding.
|
||||||
|
Used only when the decoding method is fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nbest-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""Scale applied to lattice scores when computing nbest paths.
|
||||||
|
Used only when the decoding method is fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
batch: dict,
|
||||||
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
if params.causal:
|
||||||
|
# this seems to cause insertions at the end of the utterance if used with zipformer.
|
||||||
|
pad_len = 30
|
||||||
|
feature_lens += pad_len
|
||||||
|
feature = torch.nn.functional.pad(
|
||||||
|
feature,
|
||||||
|
pad=(0, 0, 0, pad_len),
|
||||||
|
value=LOG_EPS,
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens)
|
||||||
|
|
||||||
|
hyps = []
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_LG":
|
||||||
|
hyp_tokens = fast_beam_search_nbest_LG(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in hyp_tokens:
|
||||||
|
hyps.append([word_table[i] for i in hyp])
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest":
|
||||||
|
hyp_tokens = fast_beam_search_nbest(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||||
|
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
ref_texts=sp.encode(byte_encode(tokenize_by_ja_char(supervisions["text"]))),
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(smart_byte_decode(hyp).split())
|
||||||
|
else:
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyps.append(smart_byte_decode(sp.decode(hyp)).split())
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search": hyps}
|
||||||
|
elif "fast_beam_search" in params.decoding_method:
|
||||||
|
key = f"beam_{params.beam}_"
|
||||||
|
key += f"max_contexts_{params.max_contexts}_"
|
||||||
|
key += f"max_states_{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
key += f"_num_paths_{params.num_paths}_"
|
||||||
|
key += f"nbest_scale_{params.nbest_scale}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||||
|
|
||||||
|
return {key: hyps}
|
||||||
|
else:
|
||||||
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
log_interval = 50
|
||||||
|
else:
|
||||||
|
log_interval = 20
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
texts = [tokenize_by_ja_char(str(text)).split() for text in texts]
|
||||||
|
# print(texts)
|
||||||
|
# exit()
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
word_table=word_table,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||||
|
this_batch.append((cut_id, ref_text, hyp_words))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
ReazonSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
"fast_beam_search_nbest",
|
||||||
|
"fast_beam_search_nbest_LG",
|
||||||
|
"fast_beam_search_nbest_oracle",
|
||||||
|
"modified_beam_search",
|
||||||
|
)
|
||||||
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if params.causal:
|
||||||
|
assert (
|
||||||
|
"," not in params.chunk_size
|
||||||
|
), "chunk_size should be one value in decoding."
|
||||||
|
assert (
|
||||||
|
"," not in params.left_context_frames
|
||||||
|
), "left_context_frames should be one value in decoding."
|
||||||
|
params.suffix += f"-chunk-{params.chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||||
|
params.suffix += f"-num-paths-{params.num_paths}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
|
||||||
|
if params.use_averaged_model:
|
||||||
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
word_table = lexicon.word_table
|
||||||
|
lg_filename = params.lang_dir / "LG.pt"
|
||||||
|
logging.info(f"Loading {lg_filename}")
|
||||||
|
decoding_graph = k2.Fsa.from_dict(
|
||||||
|
torch.load(lg_filename, map_location=device)
|
||||||
|
)
|
||||||
|
decoding_graph.scores *= params.ngram_lm_scale
|
||||||
|
else:
|
||||||
|
word_table = None
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
word_table = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
|
args.return_cuts = True
|
||||||
|
data_module = ReazonSpeechAsrDataModule(args)
|
||||||
|
multi_dataset = MultiDataset(args)
|
||||||
|
|
||||||
|
def remove_short_utt(c: Cut):
|
||||||
|
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||||
|
if T <= 0:
|
||||||
|
logging.warning(
|
||||||
|
f"Excluding cut with ID: {c.id} from decoding, num_frames: {c.num_frames}"
|
||||||
|
)
|
||||||
|
return T > 0
|
||||||
|
|
||||||
|
test_sets_cuts = multi_dataset.test_cuts()
|
||||||
|
|
||||||
|
test_sets = test_sets_cuts.keys()
|
||||||
|
test_dl = [
|
||||||
|
data_module.test_dataloaders(test_sets_cuts[cuts_name].filter(remove_short_utt))
|
||||||
|
for cuts_name in test_sets
|
||||||
|
]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dl):
|
||||||
|
logging.info(f"Start decoding test set: {test_set}")
|
||||||
|
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
word_table=word_table,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/multi_ja_en/ASR/zipformer/decode_stream.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/decode_stream.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/decode_stream.py
|
1
egs/multi_ja_en/ASR/zipformer/decoder.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/decoder.py
|
1261
egs/multi_ja_en/ASR/zipformer/do_not_use_it_directly.py
Executable file
1261
egs/multi_ja_en/ASR/zipformer/do_not_use_it_directly.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/multi_ja_en/ASR/zipformer/encoder_interface.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/encoder_interface.py
|
1
egs/multi_ja_en/ASR/zipformer/export-onnx.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/export-onnx.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/export-onnx.py
|
1
egs/multi_ja_en/ASR/zipformer/export.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/export.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/export.py
|
1
egs/multi_ja_en/ASR/zipformer/generate_averaged_model.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/generate_averaged_model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/generate_averaged_model.py
|
1
egs/multi_ja_en/ASR/zipformer/joiner.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/joiner.py
|
1
egs/multi_ja_en/ASR/zipformer/model.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/model.py
|
143
egs/multi_ja_en/ASR/zipformer/multi_dataset.py
Normal file
143
egs/multi_ja_en/ASR/zipformer/multi_dataset.py
Normal file
@ -0,0 +1,143 @@
|
|||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict
|
||||||
|
|
||||||
|
from lhotse import CutSet, load_manifest_lazy
|
||||||
|
|
||||||
|
|
||||||
|
class MultiDataset:
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
manifest_dir:
|
||||||
|
It is expected to contain the following files:
|
||||||
|
- reazonspeech_cuts_train.jsonl.gz
|
||||||
|
- librispeech_cuts_train-clean-100.jsonl.gz
|
||||||
|
- librispeech_cuts_train-clean-360.jsonl.gz
|
||||||
|
- librispeech_cuts_train-other-500.jsonl.gz
|
||||||
|
"""
|
||||||
|
self.fbank_dir = Path(args.manifest_dir)
|
||||||
|
|
||||||
|
def train_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get multidataset train cuts")
|
||||||
|
|
||||||
|
logging.info("Loading Reazonspeech in lazy mode")
|
||||||
|
reazonspeech_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "reazonspeech_cuts_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Loading LibriSpeech in lazy mode")
|
||||||
|
train_clean_100_cuts = self.train_clean_100_cuts()
|
||||||
|
train_clean_360_cuts = self.train_clean_360_cuts()
|
||||||
|
train_other_500_cuts = self.train_other_500_cuts()
|
||||||
|
|
||||||
|
return CutSet.mux(
|
||||||
|
reazonspeech_cuts,
|
||||||
|
train_clean_100_cuts,
|
||||||
|
train_clean_360_cuts,
|
||||||
|
train_other_500_cuts,
|
||||||
|
weights=[
|
||||||
|
len(reazonspeech_cuts),
|
||||||
|
len(train_clean_100_cuts),
|
||||||
|
len(train_clean_360_cuts),
|
||||||
|
len(train_other_500_cuts),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
def dev_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get multidataset dev cuts")
|
||||||
|
|
||||||
|
logging.info("Loading Reazonspeech DEV set in lazy mode")
|
||||||
|
reazonspeech_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "reazonspeech_cuts_dev.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Loading LibriSpeech DEV set in lazy mode")
|
||||||
|
dev_clean_cuts = self.dev_clean_cuts()
|
||||||
|
dev_other_cuts = self.dev_other_cuts()
|
||||||
|
|
||||||
|
return CutSet.mux(
|
||||||
|
reazonspeech_dev_cuts,
|
||||||
|
dev_clean_cuts,
|
||||||
|
dev_other_cuts,
|
||||||
|
weights=[
|
||||||
|
len(reazonspeech_dev_cuts),
|
||||||
|
len(dev_clean_cuts),
|
||||||
|
len(dev_other_cuts),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_cuts(self) -> Dict[str, CutSet]:
|
||||||
|
logging.info("About to get multidataset test cuts")
|
||||||
|
|
||||||
|
logging.info("Loading Reazonspeech set in lazy mode")
|
||||||
|
reazonspeech_test_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "reazonspeech_cuts_test.jsonl.gz"
|
||||||
|
)
|
||||||
|
reazonspeech_dev_cuts = load_manifest_lazy(
|
||||||
|
self.fbank_dir / "reazonspeech_cuts_dev.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Loading LibriSpeech set in lazy mode")
|
||||||
|
test_clean_cuts = self.test_clean_cuts()
|
||||||
|
test_other_cuts = self.test_other_cuts()
|
||||||
|
|
||||||
|
test_cuts = {
|
||||||
|
"reazonspeech_test": reazonspeech_test_cuts,
|
||||||
|
"reazonspeech_dev": reazonspeech_dev_cuts,
|
||||||
|
"librispeech_test_clean": test_clean_cuts,
|
||||||
|
"librispeech_test_other": test_other_cuts,
|
||||||
|
}
|
||||||
|
|
||||||
|
return test_cuts
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_clean_100_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train-clean-100 cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.fbank_dir / "librispeech_cuts_train-clean-100.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_clean_360_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train-clean-360 cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.fbank_dir / "librispeech_cuts_train-clean-360.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_other_500_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train-other-500 cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.fbank_dir / "librispeech_cuts_train-other-500.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_clean_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get dev-clean cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.fbank_dir / "librispeech_cuts_dev-clean.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_other_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get dev-other cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.fbank_dir / "librispeech_cuts_dev-other.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_clean_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test-clean cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.fbank_dir / "librispeech_cuts_test-clean.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_other_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test-other cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.fbank_dir / "librispeech_cuts_test-other.jsonl.gz"
|
||||||
|
)
|
1
egs/multi_ja_en/ASR/zipformer/my_profile.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/my_profile.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/my_profile.py
|
1
egs/multi_ja_en/ASR/zipformer/onnx_decode.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/onnx_decode.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/onnx_decode.py
|
1
egs/multi_ja_en/ASR/zipformer/onnx_pretrained.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/onnx_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/onnx_pretrained.py
|
1
egs/multi_ja_en/ASR/zipformer/optim.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/optim.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/optim.py
|
1
egs/multi_ja_en/ASR/zipformer/pretrained.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/pretrained.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/pretrained.py
|
1
egs/multi_ja_en/ASR/zipformer/scaling.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/scaling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/scaling.py
|
1
egs/multi_ja_en/ASR/zipformer/scaling_converter.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/scaling_converter.py
|
1
egs/multi_ja_en/ASR/zipformer/streaming_beam_search.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/streaming_beam_search.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/streaming_beam_search.py
|
935
egs/multi_ja_en/ASR/zipformer/streaming_decode.py
Executable file
935
egs/multi_ja_en/ASR/zipformer/streaming_decode.py
Executable file
@ -0,0 +1,935 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang,
|
||||||
|
# Fangjun Kuang,
|
||||||
|
# Zengwei Yao)
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
Monolingual:
|
||||||
|
./zipformer/streaming_decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 32 \
|
||||||
|
--left-context-frames 256 \
|
||||||
|
--exp-dir ./zipformer/exp-large \
|
||||||
|
--lang data/lang_char \
|
||||||
|
--num-encoder-layers 2,2,4,5,4,2 \
|
||||||
|
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||||
|
--encoder-dim 192,256,512,768,512,256 \
|
||||||
|
--encoder-unmasked-dim 192,192,256,320,256,192
|
||||||
|
|
||||||
|
Bilingual:
|
||||||
|
./zipformer/streaming_decode.py \
|
||||||
|
--bilingual 1 \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 32 \
|
||||||
|
--left-context-frames 256 \
|
||||||
|
--exp-dir ./zipformer/exp-large \
|
||||||
|
--lang data/lang_char \
|
||||||
|
--num-encoder-layers 2,2,4,5,4,2 \
|
||||||
|
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||||
|
--encoder-dim 192,256,512,768,512,256 \
|
||||||
|
--encoder-unmasked-dim 192,192,256,320,256,192 \
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import pdb
|
||||||
|
import subprocess as sp
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import numpy as np
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from asr_datamodule import ReazonSpeechAsrDataModule
|
||||||
|
from decode_stream import DecodeStream
|
||||||
|
from kaldifeat import Fbank, FbankOptions
|
||||||
|
from lhotse import CutSet
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from multi_dataset import MultiDataset
|
||||||
|
from streaming_beam_search import (
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from tokenizer import Tokenizer
|
||||||
|
from torch import Tensor, nn
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
make_pad_mask,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bilingual",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether the model is bilingual or not. 1 = bilingual.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=Path,
|
||||||
|
default="data/lang_char",
|
||||||
|
help="The lang dir containing word table and LG graph",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Supported decoding methods are:
|
||||||
|
greedy_search
|
||||||
|
modified_beam_search
|
||||||
|
fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num_active_paths",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An interger indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=32,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-decode-streams",
|
||||||
|
type=int,
|
||||||
|
default=2000,
|
||||||
|
help="The number of streams that can be decoded parallel.",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_init_states(
|
||||||
|
model: nn.Module,
|
||||||
|
batch_size: int = 1,
|
||||||
|
device: torch.device = torch.device("cpu"),
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||||
|
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||||
|
states[-2] is the cached left padding for ConvNeXt module,
|
||||||
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||||
|
states[-1] is processed_lens of shape (batch,), which records the number
|
||||||
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||||
|
"""
|
||||||
|
states = model.encoder.get_init_states(batch_size, device)
|
||||||
|
|
||||||
|
embed_states = model.encoder_embed.get_init_states(batch_size, device)
|
||||||
|
states.append(embed_states)
|
||||||
|
|
||||||
|
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||||
|
states.append(processed_lens)
|
||||||
|
|
||||||
|
return states
|
||||||
|
|
||||||
|
|
||||||
|
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
|
||||||
|
"""Stack list of zipformer states that correspond to separate utterances
|
||||||
|
into a single emformer state, so that it can be used as an input for
|
||||||
|
zipformer when those utterances are formed into a batch.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_list:
|
||||||
|
Each element in state_list corresponding to the internal state
|
||||||
|
of the zipformer model for a single utterance. For element-n,
|
||||||
|
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
|
||||||
|
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
|
||||||
|
cached_val2, cached_conv1, cached_conv2).
|
||||||
|
state_list[n][-2] is the cached left padding for ConvNeXt module,
|
||||||
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||||
|
state_list[n][-1] is processed_lens of shape (batch,), which records the number
|
||||||
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
It is the inverse of :func:`unstack_states`.
|
||||||
|
"""
|
||||||
|
batch_size = len(state_list)
|
||||||
|
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
|
||||||
|
tot_num_layers = (len(state_list[0]) - 2) // 6
|
||||||
|
|
||||||
|
batch_states = []
|
||||||
|
for layer in range(tot_num_layers):
|
||||||
|
layer_offset = layer * 6
|
||||||
|
# cached_key: (left_context_len, batch_size, key_dim)
|
||||||
|
cached_key = torch.cat(
|
||||||
|
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||||
|
cached_nonlin_attn = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val1 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val2 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_conv1: (#batch, channels, left_pad)
|
||||||
|
cached_conv1 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
|
||||||
|
)
|
||||||
|
# cached_conv2: (#batch, channels, left_pad)
|
||||||
|
cached_conv2 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
|
||||||
|
)
|
||||||
|
batch_states += [
|
||||||
|
cached_key,
|
||||||
|
cached_nonlin_attn,
|
||||||
|
cached_val1,
|
||||||
|
cached_val2,
|
||||||
|
cached_conv1,
|
||||||
|
cached_conv2,
|
||||||
|
]
|
||||||
|
|
||||||
|
cached_embed_left_pad = torch.cat(
|
||||||
|
[state_list[i][-2] for i in range(batch_size)], dim=0
|
||||||
|
)
|
||||||
|
batch_states.append(cached_embed_left_pad)
|
||||||
|
|
||||||
|
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
|
||||||
|
batch_states.append(processed_lens)
|
||||||
|
|
||||||
|
return batch_states
|
||||||
|
|
||||||
|
|
||||||
|
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
||||||
|
"""Unstack the zipformer state corresponding to a batch of utterances
|
||||||
|
into a list of states, where the i-th entry is the state from the i-th
|
||||||
|
utterance in the batch.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
It is the inverse of :func:`stack_states`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
batch_states: A list of cached tensors of all encoder layers. For layer-i,
|
||||||
|
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
|
||||||
|
cached_conv1, cached_conv2).
|
||||||
|
state_list[-2] is the cached left padding for ConvNeXt module,
|
||||||
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||||
|
states[-1] is processed_lens of shape (batch,), which records the number
|
||||||
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
state_list: A list of list. Each element in state_list corresponding to the internal state
|
||||||
|
of the zipformer model for a single utterance.
|
||||||
|
"""
|
||||||
|
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
|
||||||
|
tot_num_layers = (len(batch_states) - 2) // 6
|
||||||
|
|
||||||
|
processed_lens = batch_states[-1]
|
||||||
|
batch_size = processed_lens.shape[0]
|
||||||
|
|
||||||
|
state_list = [[] for _ in range(batch_size)]
|
||||||
|
|
||||||
|
for layer in range(tot_num_layers):
|
||||||
|
layer_offset = layer * 6
|
||||||
|
# cached_key: (left_context_len, batch_size, key_dim)
|
||||||
|
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
|
||||||
|
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||||
|
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
|
||||||
|
chunks=batch_size, dim=1
|
||||||
|
)
|
||||||
|
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val1_list = batch_states[layer_offset + 2].chunk(
|
||||||
|
chunks=batch_size, dim=1
|
||||||
|
)
|
||||||
|
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val2_list = batch_states[layer_offset + 3].chunk(
|
||||||
|
chunks=batch_size, dim=1
|
||||||
|
)
|
||||||
|
# cached_conv1: (#batch, channels, left_pad)
|
||||||
|
cached_conv1_list = batch_states[layer_offset + 4].chunk(
|
||||||
|
chunks=batch_size, dim=0
|
||||||
|
)
|
||||||
|
# cached_conv2: (#batch, channels, left_pad)
|
||||||
|
cached_conv2_list = batch_states[layer_offset + 5].chunk(
|
||||||
|
chunks=batch_size, dim=0
|
||||||
|
)
|
||||||
|
for i in range(batch_size):
|
||||||
|
state_list[i] += [
|
||||||
|
cached_key_list[i],
|
||||||
|
cached_nonlin_attn_list[i],
|
||||||
|
cached_val1_list[i],
|
||||||
|
cached_val2_list[i],
|
||||||
|
cached_conv1_list[i],
|
||||||
|
cached_conv2_list[i],
|
||||||
|
]
|
||||||
|
|
||||||
|
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
|
||||||
|
for i in range(batch_size):
|
||||||
|
state_list[i].append(cached_embed_left_pad_list[i])
|
||||||
|
|
||||||
|
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
|
||||||
|
for i in range(batch_size):
|
||||||
|
state_list[i].append(processed_lens_list[i])
|
||||||
|
|
||||||
|
return state_list
|
||||||
|
|
||||||
|
|
||||||
|
def streaming_forward(
|
||||||
|
features: Tensor,
|
||||||
|
feature_lens: Tensor,
|
||||||
|
model: nn.Module,
|
||||||
|
states: List[Tensor],
|
||||||
|
chunk_size: int,
|
||||||
|
left_context_len: int,
|
||||||
|
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||||
|
"""
|
||||||
|
Returns encoder outputs, output lengths, and updated states.
|
||||||
|
"""
|
||||||
|
cached_embed_left_pad = states[-2]
|
||||||
|
(x, x_lens, new_cached_embed_left_pad,) = model.encoder_embed.streaming_forward(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
cached_left_pad=cached_embed_left_pad,
|
||||||
|
)
|
||||||
|
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||||
|
|
||||||
|
src_key_padding_mask = make_pad_mask(x_lens)
|
||||||
|
|
||||||
|
# processed_mask is used to mask out initial states
|
||||||
|
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||||
|
x.size(0), left_context_len
|
||||||
|
)
|
||||||
|
processed_lens = states[-1] # (batch,)
|
||||||
|
# (batch, left_context_size)
|
||||||
|
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||||
|
# Update processed lengths
|
||||||
|
new_processed_lens = processed_lens + x_lens
|
||||||
|
|
||||||
|
# (batch, left_context_size + chunk_size)
|
||||||
|
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||||
|
|
||||||
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
encoder_states = states[:-2]
|
||||||
|
(
|
||||||
|
encoder_out,
|
||||||
|
encoder_out_lens,
|
||||||
|
new_encoder_states,
|
||||||
|
) = model.encoder.streaming_forward(
|
||||||
|
x=x,
|
||||||
|
x_lens=x_lens,
|
||||||
|
states=encoder_states,
|
||||||
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
|
)
|
||||||
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
|
||||||
|
new_states = new_encoder_states + [
|
||||||
|
new_cached_embed_left_pad,
|
||||||
|
new_processed_lens,
|
||||||
|
]
|
||||||
|
return encoder_out, encoder_out_lens, new_states
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_chunk(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
decode_streams: List[DecodeStream],
|
||||||
|
) -> List[int]:
|
||||||
|
"""Decode one chunk frames of features for each decode_streams and
|
||||||
|
return the indexes of finished streams in a List.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
decode_streams:
|
||||||
|
A List of DecodeStream, each belonging to a utterance.
|
||||||
|
Returns:
|
||||||
|
Return a List containing which DecodeStreams are finished.
|
||||||
|
"""
|
||||||
|
chunk_size = int(params.chunk_size)
|
||||||
|
left_context_len = int(params.left_context_frames)
|
||||||
|
|
||||||
|
features = []
|
||||||
|
feature_lens = []
|
||||||
|
states = []
|
||||||
|
processed_lens = [] # Used in fast-beam-search
|
||||||
|
|
||||||
|
for stream in decode_streams:
|
||||||
|
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
|
||||||
|
features.append(feat)
|
||||||
|
feature_lens.append(feat_len)
|
||||||
|
states.append(stream.states)
|
||||||
|
processed_lens.append(stream.done_frames)
|
||||||
|
|
||||||
|
feature_lens = torch.tensor(feature_lens, device=model.device)
|
||||||
|
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||||
|
|
||||||
|
# Make sure the length after encoder_embed is at least 1.
|
||||||
|
# The encoder_embed subsample features (T - 7) // 2
|
||||||
|
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||||
|
tail_length = chunk_size * 2 + 7 + 2 * 3
|
||||||
|
if features.size(1) < tail_length:
|
||||||
|
pad_length = tail_length - features.size(1)
|
||||||
|
feature_lens += pad_length
|
||||||
|
features = torch.nn.functional.pad(
|
||||||
|
features,
|
||||||
|
(0, 0, 0, pad_length),
|
||||||
|
mode="constant",
|
||||||
|
value=LOG_EPS,
|
||||||
|
)
|
||||||
|
|
||||||
|
states = stack_states(states)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens, new_states = streaming_forward(
|
||||||
|
features=features,
|
||||||
|
feature_lens=feature_lens,
|
||||||
|
model=model,
|
||||||
|
states=states,
|
||||||
|
chunk_size=chunk_size,
|
||||||
|
left_context_len=left_context_len,
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
processed_lens = torch.tensor(processed_lens, device=model.device)
|
||||||
|
processed_lens = processed_lens + encoder_out_lens
|
||||||
|
fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
processed_lens=processed_lens,
|
||||||
|
streams=decode_streams,
|
||||||
|
beam=params.beam,
|
||||||
|
max_states=params.max_states,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
streams=decode_streams,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
num_active_paths=params.num_active_paths,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||||
|
|
||||||
|
states = unstack_states(new_states)
|
||||||
|
|
||||||
|
finished_streams = []
|
||||||
|
for i in range(len(decode_streams)):
|
||||||
|
decode_streams[i].states = states[i]
|
||||||
|
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||||
|
if decode_streams[i].done:
|
||||||
|
finished_streams.append(i)
|
||||||
|
# finished_streams.append(i)
|
||||||
|
|
||||||
|
return finished_streams
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
cuts: CutSet,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: Tokenizer,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
cuts:
|
||||||
|
Lhotse Cutset containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
opts = FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = 16000
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
|
||||||
|
log_interval = 100
|
||||||
|
|
||||||
|
decode_results = []
|
||||||
|
# Contain decode streams currently running.
|
||||||
|
decode_streams = []
|
||||||
|
for num, cut in enumerate(cuts):
|
||||||
|
# each utterance has a DecodeStream.
|
||||||
|
initial_states = get_init_states(model=model, batch_size=1, device=device)
|
||||||
|
decode_stream = DecodeStream(
|
||||||
|
params=params,
|
||||||
|
cut_id=cut.id,
|
||||||
|
initial_states=initial_states,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
audio: np.ndarray = cut.load_audio()
|
||||||
|
# audio.shape: (1, num_samples)
|
||||||
|
assert len(audio.shape) == 2
|
||||||
|
assert audio.shape[0] == 1, "Should be single channel"
|
||||||
|
assert audio.dtype == np.float32, audio.dtype
|
||||||
|
|
||||||
|
# The trained model is using normalized samples
|
||||||
|
# - this is to avoid sending [-32k,+32k] signal in...
|
||||||
|
# - some lhotse AudioTransform classes can make the signal
|
||||||
|
# be out of range [-1, 1], hence the tolerance 10
|
||||||
|
assert (
|
||||||
|
np.abs(audio).max() <= 10
|
||||||
|
), "Should be normalized to [-1, 1], 10 for tolerance..."
|
||||||
|
|
||||||
|
samples = torch.from_numpy(audio).squeeze(0)
|
||||||
|
|
||||||
|
fbank = Fbank(opts)
|
||||||
|
feature = fbank(samples.to(device))
|
||||||
|
decode_stream.set_features(feature, tail_pad_len=30)
|
||||||
|
decode_stream.ground_truth = cut.supervisions[0].text
|
||||||
|
|
||||||
|
decode_streams.append(decode_stream)
|
||||||
|
|
||||||
|
while len(decode_streams) >= params.num_decode_streams:
|
||||||
|
finished_streams = decode_one_chunk(
|
||||||
|
params=params, model=model, decode_streams=decode_streams
|
||||||
|
)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
decode_streams[i].id,
|
||||||
|
decode_streams[i].ground_truth.split(),
|
||||||
|
sp.decode(decode_streams[i].decoding_result()).split(),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
if num % log_interval == 0:
|
||||||
|
logging.info(f"Cuts processed until now is {num}.")
|
||||||
|
|
||||||
|
# decode final chunks of last sequences
|
||||||
|
while len(decode_streams):
|
||||||
|
finished_streams = decode_one_chunk(
|
||||||
|
params=params, model=model, decode_streams=decode_streams
|
||||||
|
)
|
||||||
|
|
||||||
|
if not finished_streams:
|
||||||
|
print("No finished streams, breaking the loop")
|
||||||
|
break
|
||||||
|
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
try:
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
decode_streams[i].id,
|
||||||
|
decode_streams[i].ground_truth.split(),
|
||||||
|
sp.decode(decode_streams[i].decoding_result()).split(),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
except IndexError as e:
|
||||||
|
print(f"IndexError: {e}")
|
||||||
|
print(f"decode_streams length: {len(decode_streams)}")
|
||||||
|
print(f"finished_streams: {finished_streams}")
|
||||||
|
print(f"i: {i}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
key = "greedy_search"
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
key = (
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
key = f"num_active_paths_{params.num_active_paths}"
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
return {key: decode_results}
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
ReazonSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
Tokenizer.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
assert params.causal, params.causal
|
||||||
|
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
|
||||||
|
assert (
|
||||||
|
"," not in params.left_context_frames
|
||||||
|
), "left_context_frames should be one value in decoding."
|
||||||
|
params.suffix += f"-chunk-{params.chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||||
|
|
||||||
|
# for fast_beam_search
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
|
||||||
|
if params.use_averaged_model:
|
||||||
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
if not params.bilingual:
|
||||||
|
sp = Tokenizer.load(params.lang, params.lang_type)
|
||||||
|
else:
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
decoding_graph = None
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
|
args.return_cuts = True
|
||||||
|
reazonspeech_corpus = ReazonSpeechAsrDataModule(args)
|
||||||
|
|
||||||
|
if params.bilingual:
|
||||||
|
multi_dataset = MultiDataset(args)
|
||||||
|
|
||||||
|
def remove_short_utt(c: Cut):
|
||||||
|
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||||
|
if T <= 0:
|
||||||
|
logging.warning(
|
||||||
|
f"Excluding cut with ID: {c.id} from decoding, num_frames: {c.num_frames}"
|
||||||
|
)
|
||||||
|
return T > 0
|
||||||
|
|
||||||
|
test_sets_cuts = multi_dataset.test_cuts()
|
||||||
|
test_sets = test_sets_cuts.keys()
|
||||||
|
test_cuts = [test_sets_cuts[k] for k in test_sets]
|
||||||
|
|
||||||
|
valid_cuts = reazonspeech_corpus.valid_cuts()
|
||||||
|
test_cuts = reazonspeech_corpus.test_cuts()
|
||||||
|
|
||||||
|
test_sets = ["valid", "test"]
|
||||||
|
test_cuts = [valid_cuts, test_cuts]
|
||||||
|
|
||||||
|
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||||
|
logging.info(f"Decoding {test_set}")
|
||||||
|
if params.bilingual:
|
||||||
|
test_cut = test_cut.filter(remove_short_utt)
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
cuts=test_cut,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/multi_ja_en/ASR/zipformer/subsampling.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/subsampling.py
|
1
egs/multi_ja_en/ASR/zipformer/test_scaling.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/test_scaling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/test_scaling.py
|
1
egs/multi_ja_en/ASR/zipformer/test_subsampling.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/test_subsampling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/test_subsampling.py
|
1
egs/multi_ja_en/ASR/zipformer/tokenizer.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/tokenizer.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../local/utils/tokenizer.py
|
1462
egs/multi_ja_en/ASR/zipformer/train.py
Executable file
1462
egs/multi_ja_en/ASR/zipformer/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/multi_ja_en/ASR/zipformer/zipformer.py
Symbolic link
1
egs/multi_ja_en/ASR/zipformer/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/zipformer.py
|
@ -47,3 +47,41 @@ The decoding command is:
|
|||||||
--blank-penalty 0
|
--blank-penalty 0
|
||||||
```
|
```
|
||||||
|
|
||||||
|
#### Streaming
|
||||||
|
|
||||||
|
We have not completed evaluation of our models yet and will add evaluation results here once it's completed.
|
||||||
|
|
||||||
|
The training command is:
|
||||||
|
```shell
|
||||||
|
./zipformer/train.py \
|
||||||
|
--world-size 8 \
|
||||||
|
--num-epochs 40 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--exp-dir zipformer/exp-large \
|
||||||
|
--causal 1 \
|
||||||
|
--num-encoder-layers 2,2,4,5,4,2 \
|
||||||
|
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||||
|
--encoder-dim 192,256,512,768,512,256 \
|
||||||
|
--encoder-unmasked-dim 192,192,256,320,256,192 \
|
||||||
|
--lang data/lang_char \
|
||||||
|
--max-duration 1600
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding command is:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
./zipformer/streaming_decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 32 \
|
||||||
|
--left-context-frames 256 \
|
||||||
|
--exp-dir ./zipformer/exp-large \
|
||||||
|
--lang data/lang_char \
|
||||||
|
--num-encoder-layers 2,2,4,5,4,2 \
|
||||||
|
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||||
|
--encoder-dim 192,256,512,768,512,256 \
|
||||||
|
--encoder-unmasked-dim 192,192,256,320,256,192
|
||||||
|
```
|
||||||
|
|
||||||
|
@ -12,7 +12,6 @@ class Tokenizer:
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def add_arguments(parser: argparse.ArgumentParser):
|
def add_arguments(parser: argparse.ArgumentParser):
|
||||||
group = parser.add_argument_group(title="Lang related options")
|
group = parser.add_argument_group(title="Lang related options")
|
||||||
|
|
||||||
group.add_argument("--lang", type=Path, help="Path to lang directory.")
|
group.add_argument("--lang", type=Path, help="Path to lang directory.")
|
||||||
|
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
# Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang)
|
# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang,
|
||||||
#
|
# Fangjun Kuang,
|
||||||
|
# Zengwei Yao)
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
@ -17,28 +18,23 @@
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
Usage:
|
Usage:
|
||||||
./pruned_transducer_stateless7_streaming/streaming_decode.py \
|
./zipformer/streaming_decode.py--epoch 28 --avg 15 --causal 1 --chunk-size 32 --left-context-frames 256 --exp-dir ./zipformer/exp-large --lang data/lang_char --num-encoder-layers 2,2,4,5,4,2 --feedforward-dim 512,768,1536,2048,1536,768 --encoder-dim 192,256,512,768,512,256 --encoder-unmasked-dim 192,192,256,320,256,192
|
||||||
--epoch 28 \
|
|
||||||
--avg 15 \
|
|
||||||
--decode-chunk-len 32 \
|
|
||||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
|
||||||
--decoding_method greedy_search \
|
|
||||||
--lang data/lang_char \
|
|
||||||
--num-decode-streams 2000
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
import math
|
import math
|
||||||
|
import os
|
||||||
|
import pdb
|
||||||
|
import subprocess as sp
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, List, Optional, Tuple
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
import k2
|
import k2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
|
||||||
from asr_datamodule import ReazonSpeechAsrDataModule
|
from asr_datamodule import ReazonSpeechAsrDataModule
|
||||||
from decode import save_results
|
|
||||||
from decode_stream import DecodeStream
|
from decode_stream import DecodeStream
|
||||||
from kaldifeat import Fbank, FbankOptions
|
from kaldifeat import Fbank, FbankOptions
|
||||||
from lhotse import CutSet
|
from lhotse import CutSet
|
||||||
@ -48,9 +44,9 @@ from streaming_beam_search import (
|
|||||||
modified_beam_search,
|
modified_beam_search,
|
||||||
)
|
)
|
||||||
from tokenizer import Tokenizer
|
from tokenizer import Tokenizer
|
||||||
|
from torch import Tensor, nn
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
from train import add_model_arguments, get_params, get_transducer_model
|
from train import add_model_arguments, get_model, get_params
|
||||||
from zipformer import stack_states, unstack_states
|
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
from icefall.checkpoint import (
|
||||||
average_checkpoints,
|
average_checkpoints,
|
||||||
@ -58,7 +54,14 @@ from icefall.checkpoint import (
|
|||||||
find_checkpoints,
|
find_checkpoints,
|
||||||
load_checkpoint,
|
load_checkpoint,
|
||||||
)
|
)
|
||||||
from icefall.utils import AttributeDict, setup_logger, str2bool
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
make_pad_mask,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
LOG_EPS = math.log(1e-10)
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
@ -73,7 +76,7 @@ def get_parser():
|
|||||||
type=int,
|
type=int,
|
||||||
default=28,
|
default=28,
|
||||||
help="""It specifies the checkpoint to use for decoding.
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
Note: Epoch counts from 0.
|
Note: Epoch counts from 1.
|
||||||
You can specify --avg to use more checkpoints for model averaging.""",
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -87,12 +90,6 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--gpu",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
@ -116,7 +113,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--exp-dir",
|
"--exp-dir",
|
||||||
type=str,
|
type=str,
|
||||||
default="pruned_transducer_stateless2/exp",
|
default="zipformer/exp",
|
||||||
help="The experiment dir",
|
help="The experiment dir",
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -127,6 +124,13 @@ def get_parser():
|
|||||||
help="Path to the BPE model",
|
help="Path to the BPE model",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=Path,
|
||||||
|
default="data/lang_char",
|
||||||
|
help="The lang dir containing word table and LG graph",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--decoding-method",
|
"--decoding-method",
|
||||||
type=str,
|
type=str,
|
||||||
@ -138,14 +142,6 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--decoding-graph",
|
|
||||||
type=str,
|
|
||||||
default="",
|
|
||||||
help="""Used only when --decoding-method is
|
|
||||||
fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--num_active_paths",
|
"--num_active_paths",
|
||||||
type=int,
|
type=int,
|
||||||
@ -157,7 +153,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--beam",
|
"--beam",
|
||||||
type=float,
|
type=float,
|
||||||
default=4.0,
|
default=4,
|
||||||
help="""A floating point value to calculate the cutoff score during beam
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
`beam` in Kaldi.
|
`beam` in Kaldi.
|
||||||
@ -194,18 +190,235 @@ def get_parser():
|
|||||||
help="The number of streams that can be decoded parallel.",
|
help="The number of streams that can be decoded parallel.",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--res-dir",
|
|
||||||
type=Path,
|
|
||||||
default=None,
|
|
||||||
help="The path to save results.",
|
|
||||||
)
|
|
||||||
|
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_init_states(
|
||||||
|
model: nn.Module,
|
||||||
|
batch_size: int = 1,
|
||||||
|
device: torch.device = torch.device("cpu"),
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||||
|
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||||
|
states[-2] is the cached left padding for ConvNeXt module,
|
||||||
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||||
|
states[-1] is processed_lens of shape (batch,), which records the number
|
||||||
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||||
|
"""
|
||||||
|
states = model.encoder.get_init_states(batch_size, device)
|
||||||
|
|
||||||
|
embed_states = model.encoder_embed.get_init_states(batch_size, device)
|
||||||
|
states.append(embed_states)
|
||||||
|
|
||||||
|
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||||
|
states.append(processed_lens)
|
||||||
|
|
||||||
|
return states
|
||||||
|
|
||||||
|
|
||||||
|
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
|
||||||
|
"""Stack list of zipformer states that correspond to separate utterances
|
||||||
|
into a single emformer state, so that it can be used as an input for
|
||||||
|
zipformer when those utterances are formed into a batch.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_list:
|
||||||
|
Each element in state_list corresponding to the internal state
|
||||||
|
of the zipformer model for a single utterance. For element-n,
|
||||||
|
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
|
||||||
|
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
|
||||||
|
cached_val2, cached_conv1, cached_conv2).
|
||||||
|
state_list[n][-2] is the cached left padding for ConvNeXt module,
|
||||||
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||||
|
state_list[n][-1] is processed_lens of shape (batch,), which records the number
|
||||||
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
It is the inverse of :func:`unstack_states`.
|
||||||
|
"""
|
||||||
|
batch_size = len(state_list)
|
||||||
|
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
|
||||||
|
tot_num_layers = (len(state_list[0]) - 2) // 6
|
||||||
|
|
||||||
|
batch_states = []
|
||||||
|
for layer in range(tot_num_layers):
|
||||||
|
layer_offset = layer * 6
|
||||||
|
# cached_key: (left_context_len, batch_size, key_dim)
|
||||||
|
cached_key = torch.cat(
|
||||||
|
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||||
|
cached_nonlin_attn = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val1 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val2 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_conv1: (#batch, channels, left_pad)
|
||||||
|
cached_conv1 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
|
||||||
|
)
|
||||||
|
# cached_conv2: (#batch, channels, left_pad)
|
||||||
|
cached_conv2 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
|
||||||
|
)
|
||||||
|
batch_states += [
|
||||||
|
cached_key,
|
||||||
|
cached_nonlin_attn,
|
||||||
|
cached_val1,
|
||||||
|
cached_val2,
|
||||||
|
cached_conv1,
|
||||||
|
cached_conv2,
|
||||||
|
]
|
||||||
|
|
||||||
|
cached_embed_left_pad = torch.cat(
|
||||||
|
[state_list[i][-2] for i in range(batch_size)], dim=0
|
||||||
|
)
|
||||||
|
batch_states.append(cached_embed_left_pad)
|
||||||
|
|
||||||
|
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
|
||||||
|
batch_states.append(processed_lens)
|
||||||
|
|
||||||
|
return batch_states
|
||||||
|
|
||||||
|
|
||||||
|
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
||||||
|
"""Unstack the zipformer state corresponding to a batch of utterances
|
||||||
|
into a list of states, where the i-th entry is the state from the i-th
|
||||||
|
utterance in the batch.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
It is the inverse of :func:`stack_states`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
batch_states: A list of cached tensors of all encoder layers. For layer-i,
|
||||||
|
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
|
||||||
|
cached_conv1, cached_conv2).
|
||||||
|
state_list[-2] is the cached left padding for ConvNeXt module,
|
||||||
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||||
|
states[-1] is processed_lens of shape (batch,), which records the number
|
||||||
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
state_list: A list of list. Each element in state_list corresponding to the internal state
|
||||||
|
of the zipformer model for a single utterance.
|
||||||
|
"""
|
||||||
|
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
|
||||||
|
tot_num_layers = (len(batch_states) - 2) // 6
|
||||||
|
|
||||||
|
processed_lens = batch_states[-1]
|
||||||
|
batch_size = processed_lens.shape[0]
|
||||||
|
|
||||||
|
state_list = [[] for _ in range(batch_size)]
|
||||||
|
|
||||||
|
for layer in range(tot_num_layers):
|
||||||
|
layer_offset = layer * 6
|
||||||
|
# cached_key: (left_context_len, batch_size, key_dim)
|
||||||
|
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
|
||||||
|
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||||
|
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
|
||||||
|
chunks=batch_size, dim=1
|
||||||
|
)
|
||||||
|
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val1_list = batch_states[layer_offset + 2].chunk(
|
||||||
|
chunks=batch_size, dim=1
|
||||||
|
)
|
||||||
|
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val2_list = batch_states[layer_offset + 3].chunk(
|
||||||
|
chunks=batch_size, dim=1
|
||||||
|
)
|
||||||
|
# cached_conv1: (#batch, channels, left_pad)
|
||||||
|
cached_conv1_list = batch_states[layer_offset + 4].chunk(
|
||||||
|
chunks=batch_size, dim=0
|
||||||
|
)
|
||||||
|
# cached_conv2: (#batch, channels, left_pad)
|
||||||
|
cached_conv2_list = batch_states[layer_offset + 5].chunk(
|
||||||
|
chunks=batch_size, dim=0
|
||||||
|
)
|
||||||
|
for i in range(batch_size):
|
||||||
|
state_list[i] += [
|
||||||
|
cached_key_list[i],
|
||||||
|
cached_nonlin_attn_list[i],
|
||||||
|
cached_val1_list[i],
|
||||||
|
cached_val2_list[i],
|
||||||
|
cached_conv1_list[i],
|
||||||
|
cached_conv2_list[i],
|
||||||
|
]
|
||||||
|
|
||||||
|
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
|
||||||
|
for i in range(batch_size):
|
||||||
|
state_list[i].append(cached_embed_left_pad_list[i])
|
||||||
|
|
||||||
|
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
|
||||||
|
for i in range(batch_size):
|
||||||
|
state_list[i].append(processed_lens_list[i])
|
||||||
|
|
||||||
|
return state_list
|
||||||
|
|
||||||
|
|
||||||
|
def streaming_forward(
|
||||||
|
features: Tensor,
|
||||||
|
feature_lens: Tensor,
|
||||||
|
model: nn.Module,
|
||||||
|
states: List[Tensor],
|
||||||
|
chunk_size: int,
|
||||||
|
left_context_len: int,
|
||||||
|
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||||
|
"""
|
||||||
|
Returns encoder outputs, output lengths, and updated states.
|
||||||
|
"""
|
||||||
|
cached_embed_left_pad = states[-2]
|
||||||
|
(x, x_lens, new_cached_embed_left_pad,) = model.encoder_embed.streaming_forward(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
cached_left_pad=cached_embed_left_pad,
|
||||||
|
)
|
||||||
|
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||||
|
|
||||||
|
src_key_padding_mask = make_pad_mask(x_lens)
|
||||||
|
|
||||||
|
# processed_mask is used to mask out initial states
|
||||||
|
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||||
|
x.size(0), left_context_len
|
||||||
|
)
|
||||||
|
processed_lens = states[-1] # (batch,)
|
||||||
|
# (batch, left_context_size)
|
||||||
|
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||||
|
# Update processed lengths
|
||||||
|
new_processed_lens = processed_lens + x_lens
|
||||||
|
|
||||||
|
# (batch, left_context_size + chunk_size)
|
||||||
|
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||||
|
|
||||||
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
encoder_states = states[:-2]
|
||||||
|
(
|
||||||
|
encoder_out,
|
||||||
|
encoder_out_lens,
|
||||||
|
new_encoder_states,
|
||||||
|
) = model.encoder.streaming_forward(
|
||||||
|
x=x,
|
||||||
|
x_lens=x_lens,
|
||||||
|
states=encoder_states,
|
||||||
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
|
)
|
||||||
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
|
||||||
|
new_states = new_encoder_states + [
|
||||||
|
new_cached_embed_left_pad,
|
||||||
|
new_processed_lens,
|
||||||
|
]
|
||||||
|
return encoder_out, encoder_out_lens, new_states
|
||||||
|
|
||||||
|
|
||||||
def decode_one_chunk(
|
def decode_one_chunk(
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
@ -224,27 +437,32 @@ def decode_one_chunk(
|
|||||||
Returns:
|
Returns:
|
||||||
Return a List containing which DecodeStreams are finished.
|
Return a List containing which DecodeStreams are finished.
|
||||||
"""
|
"""
|
||||||
device = model.device
|
# pdb.set_trace()
|
||||||
|
# print(model)
|
||||||
|
# print(model.device)
|
||||||
|
# device = model.device
|
||||||
|
chunk_size = int(params.chunk_size)
|
||||||
|
left_context_len = int(params.left_context_frames)
|
||||||
|
|
||||||
features = []
|
features = []
|
||||||
feature_lens = []
|
feature_lens = []
|
||||||
states = []
|
states = []
|
||||||
processed_lens = []
|
processed_lens = [] # Used in fast-beam-search
|
||||||
|
|
||||||
for stream in decode_streams:
|
for stream in decode_streams:
|
||||||
feat, feat_len = stream.get_feature_frames(params.decode_chunk_len)
|
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
|
||||||
features.append(feat)
|
features.append(feat)
|
||||||
feature_lens.append(feat_len)
|
feature_lens.append(feat_len)
|
||||||
states.append(stream.states)
|
states.append(stream.states)
|
||||||
processed_lens.append(stream.done_frames)
|
processed_lens.append(stream.done_frames)
|
||||||
|
|
||||||
feature_lens = torch.tensor(feature_lens, device=device)
|
feature_lens = torch.tensor(feature_lens, device=model.device)
|
||||||
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||||
|
|
||||||
# We subsample features with ((x_len - 7) // 2 + 1) // 2 and the max downsampling
|
# Make sure the length after encoder_embed is at least 1.
|
||||||
# factor in encoders is 8.
|
# The encoder_embed subsample features (T - 7) // 2
|
||||||
# After feature embedding (x_len - 7) // 2, we have (23 - 7) // 2 = 8.
|
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||||
tail_length = 23
|
tail_length = chunk_size * 2 + 7 + 2 * 3
|
||||||
if features.size(1) < tail_length:
|
if features.size(1) < tail_length:
|
||||||
pad_length = tail_length - features.size(1)
|
pad_length = tail_length - features.size(1)
|
||||||
feature_lens += pad_length
|
feature_lens += pad_length
|
||||||
@ -256,12 +474,14 @@ def decode_one_chunk(
|
|||||||
)
|
)
|
||||||
|
|
||||||
states = stack_states(states)
|
states = stack_states(states)
|
||||||
processed_lens = torch.tensor(processed_lens, device=device)
|
|
||||||
|
|
||||||
encoder_out, encoder_out_lens, new_states = model.encoder.streaming_forward(
|
encoder_out, encoder_out_lens, new_states = streaming_forward(
|
||||||
x=features,
|
features=features,
|
||||||
x_lens=feature_lens,
|
feature_lens=feature_lens,
|
||||||
|
model=model,
|
||||||
states=states,
|
states=states,
|
||||||
|
chunk_size=chunk_size,
|
||||||
|
left_context_len=left_context_len,
|
||||||
)
|
)
|
||||||
|
|
||||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
@ -269,6 +489,7 @@ def decode_one_chunk(
|
|||||||
if params.decoding_method == "greedy_search":
|
if params.decoding_method == "greedy_search":
|
||||||
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||||
elif params.decoding_method == "fast_beam_search":
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
processed_lens = torch.tensor(processed_lens, device=model.device)
|
||||||
processed_lens = processed_lens + encoder_out_lens
|
processed_lens = processed_lens + encoder_out_lens
|
||||||
fast_beam_search_one_best(
|
fast_beam_search_one_best(
|
||||||
model=model,
|
model=model,
|
||||||
@ -295,8 +516,9 @@ def decode_one_chunk(
|
|||||||
for i in range(len(decode_streams)):
|
for i in range(len(decode_streams)):
|
||||||
decode_streams[i].states = states[i]
|
decode_streams[i].states = states[i]
|
||||||
decode_streams[i].done_frames += encoder_out_lens[i]
|
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||||
if decode_streams[i].done:
|
# if decode_streams[i].done:
|
||||||
finished_streams.append(i)
|
# finished_streams.append(i)
|
||||||
|
finished_streams.append(i)
|
||||||
|
|
||||||
return finished_streams
|
return finished_streams
|
||||||
|
|
||||||
@ -305,7 +527,7 @@ def decode_dataset(
|
|||||||
cuts: CutSet,
|
cuts: CutSet,
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
sp: Tokenizer,
|
tokenizer: Tokenizer,
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
"""Decode dataset.
|
"""Decode dataset.
|
||||||
@ -317,7 +539,7 @@ def decode_dataset(
|
|||||||
It is returned by :func:`get_params`.
|
It is returned by :func:`get_params`.
|
||||||
model:
|
model:
|
||||||
The neural model.
|
The neural model.
|
||||||
sp:
|
tokenizer:
|
||||||
The BPE model.
|
The BPE model.
|
||||||
decoding_graph:
|
decoding_graph:
|
||||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
@ -338,14 +560,14 @@ def decode_dataset(
|
|||||||
opts.frame_opts.samp_freq = 16000
|
opts.frame_opts.samp_freq = 16000
|
||||||
opts.mel_opts.num_bins = 80
|
opts.mel_opts.num_bins = 80
|
||||||
|
|
||||||
log_interval = 50
|
log_interval = 100
|
||||||
|
|
||||||
decode_results = []
|
decode_results = []
|
||||||
# Contain decode streams currently running.
|
# Contain decode streams currently running.
|
||||||
decode_streams = []
|
decode_streams = []
|
||||||
for num, cut in enumerate(cuts):
|
for num, cut in enumerate(cuts):
|
||||||
# each utterance has a DecodeStream.
|
# each utterance has a DecodeStream.
|
||||||
initial_states = model.encoder.get_init_state(device=device)
|
initial_states = get_init_states(model=model, batch_size=1, device=device)
|
||||||
decode_stream = DecodeStream(
|
decode_stream = DecodeStream(
|
||||||
params=params,
|
params=params,
|
||||||
cut_id=cut.id,
|
cut_id=cut.id,
|
||||||
@ -361,15 +583,19 @@ def decode_dataset(
|
|||||||
assert audio.dtype == np.float32, audio.dtype
|
assert audio.dtype == np.float32, audio.dtype
|
||||||
|
|
||||||
# The trained model is using normalized samples
|
# The trained model is using normalized samples
|
||||||
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
# - this is to avoid sending [-32k,+32k] signal in...
|
||||||
|
# - some lhotse AudioTransform classes can make the signal
|
||||||
|
# be out of range [-1, 1], hence the tolerance 10
|
||||||
|
assert (
|
||||||
|
np.abs(audio).max() <= 10
|
||||||
|
), "Should be normalized to [-1, 1], 10 for tolerance..."
|
||||||
|
|
||||||
samples = torch.from_numpy(audio).squeeze(0)
|
samples = torch.from_numpy(audio).squeeze(0)
|
||||||
|
|
||||||
fbank = Fbank(opts)
|
fbank = Fbank(opts)
|
||||||
feature = fbank(samples.to(device))
|
feature = fbank(samples.to(device))
|
||||||
decode_stream.set_features(feature, tail_pad_len=params.decode_chunk_len)
|
decode_stream.set_features(feature, tail_pad_len=30)
|
||||||
decode_stream.ground_truth = cut.supervisions[0].custom[params.transcript_mode]
|
decode_stream.ground_truth = cut.supervisions[0].text
|
||||||
|
|
||||||
decode_streams.append(decode_stream)
|
decode_streams.append(decode_stream)
|
||||||
|
|
||||||
while len(decode_streams) >= params.num_decode_streams:
|
while len(decode_streams) >= params.num_decode_streams:
|
||||||
@ -380,8 +606,8 @@ def decode_dataset(
|
|||||||
decode_results.append(
|
decode_results.append(
|
||||||
(
|
(
|
||||||
decode_streams[i].id,
|
decode_streams[i].id,
|
||||||
sp.text2word(decode_streams[i].ground_truth),
|
decode_streams[i].ground_truth.split(),
|
||||||
sp.text2word(sp.decode(decode_streams[i].decoding_result())),
|
tokenizer.decode(decode_streams[i].decoding_result()).split(),
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
del decode_streams[i]
|
del decode_streams[i]
|
||||||
@ -391,18 +617,37 @@ def decode_dataset(
|
|||||||
|
|
||||||
# decode final chunks of last sequences
|
# decode final chunks of last sequences
|
||||||
while len(decode_streams):
|
while len(decode_streams):
|
||||||
|
# print("INSIDE LEN DECODE STREAMS")
|
||||||
|
# pdb.set_trace()
|
||||||
|
# print(model.device)
|
||||||
|
# test_device = model.device
|
||||||
|
# print("done")
|
||||||
finished_streams = decode_one_chunk(
|
finished_streams = decode_one_chunk(
|
||||||
params=params, model=model, decode_streams=decode_streams
|
params=params, model=model, decode_streams=decode_streams
|
||||||
)
|
)
|
||||||
|
# print('INSIDE FOR LOOP ')
|
||||||
|
# print(finished_streams)
|
||||||
|
|
||||||
|
if not finished_streams:
|
||||||
|
print("No finished streams, breaking the loop")
|
||||||
|
break
|
||||||
|
|
||||||
for i in sorted(finished_streams, reverse=True):
|
for i in sorted(finished_streams, reverse=True):
|
||||||
decode_results.append(
|
try:
|
||||||
(
|
decode_results.append(
|
||||||
decode_streams[i].id,
|
(
|
||||||
sp.text2word(decode_streams[i].ground_truth),
|
decode_streams[i].id,
|
||||||
sp.text2word(sp.decode(decode_streams[i].decoding_result())),
|
decode_streams[i].ground_truth.split(),
|
||||||
|
tokenizer.decode(decode_streams[i].decoding_result()).split(),
|
||||||
|
)
|
||||||
)
|
)
|
||||||
)
|
del decode_streams[i]
|
||||||
del decode_streams[i]
|
except IndexError as e:
|
||||||
|
print(f"IndexError: {e}")
|
||||||
|
print(f"decode_streams length: {len(decode_streams)}")
|
||||||
|
print(f"finished_streams: {finished_streams}")
|
||||||
|
print(f"i: {i}")
|
||||||
|
continue
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
if params.decoding_method == "greedy_search":
|
||||||
key = "greedy_search"
|
key = "greedy_search"
|
||||||
@ -416,9 +661,54 @@ def decode_dataset(
|
|||||||
key = f"num_active_paths_{params.num_active_paths}"
|
key = f"num_active_paths_{params.num_active_paths}"
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||||
|
torch.cuda.synchronize()
|
||||||
return {key: decode_results}
|
return {key: decode_results}
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def main():
|
def main():
|
||||||
parser = get_parser()
|
parser = get_parser()
|
||||||
@ -430,16 +720,20 @@ def main():
|
|||||||
params = get_params()
|
params = get_params()
|
||||||
params.update(vars(args))
|
params.update(vars(args))
|
||||||
|
|
||||||
if not params.res_dir:
|
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
|
||||||
|
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
else:
|
else:
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
# for streaming
|
assert params.causal, params.causal
|
||||||
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_len}"
|
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
|
||||||
|
assert (
|
||||||
|
"," not in params.left_context_frames
|
||||||
|
), "left_context_frames should be one value in decoding."
|
||||||
|
params.suffix += f"-chunk-{params.chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||||
|
|
||||||
# for fast_beam_search
|
# for fast_beam_search
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
@ -455,21 +749,21 @@ def main():
|
|||||||
|
|
||||||
device = torch.device("cpu")
|
device = torch.device("cpu")
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
device = torch.device("cuda", params.gpu)
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
logging.info(f"Device: {device}")
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
sp = Tokenizer.load(params.lang, params.lang_type)
|
sp_token = Tokenizer.load(params.lang, params.lang_type)
|
||||||
|
|
||||||
# <blk> and <unk> is defined in local/prepare_lang_char.py
|
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||||
params.blank_id = sp.piece_to_id("<blk>")
|
params.blank_id = sp_token.piece_to_id("<blk>")
|
||||||
params.unk_id = sp.piece_to_id("<unk>")
|
params.unk_id = sp_token.piece_to_id("<unk>")
|
||||||
params.vocab_size = sp.get_piece_size()
|
params.vocab_size = sp_token.get_piece_size()
|
||||||
|
|
||||||
logging.info(params)
|
logging.info(params)
|
||||||
|
|
||||||
logging.info("About to create model")
|
logging.info("About to create model")
|
||||||
model = get_transducer_model(params)
|
model = get_model(params)
|
||||||
|
|
||||||
if not params.use_averaged_model:
|
if not params.use_averaged_model:
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
@ -553,42 +847,51 @@ def main():
|
|||||||
model.device = device
|
model.device = device
|
||||||
|
|
||||||
decoding_graph = None
|
decoding_graph = None
|
||||||
if params.decoding_graph:
|
if params.decoding_method == "fast_beam_search":
|
||||||
decoding_graph = k2.Fsa.from_dict(
|
|
||||||
torch.load(params.decoding_graph, map_location=device)
|
|
||||||
)
|
|
||||||
elif params.decoding_method == "fast_beam_search":
|
|
||||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
args.return_cuts = True
|
args.return_cuts = True
|
||||||
reazonspeech_corpus = ReazonSpeechAsrDataModule(args)
|
reazonspeech_corpus = ReazonSpeechAsrDataModule(args)
|
||||||
|
|
||||||
for subdir in ["valid"]:
|
valid_cuts = reazonspeech_corpus.valid_cuts()
|
||||||
|
test_cuts = reazonspeech_corpus.test_cuts()
|
||||||
|
|
||||||
|
test_sets = ["valid", "test"]
|
||||||
|
test_cuts = [valid_cuts, test_cuts]
|
||||||
|
|
||||||
|
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||||
results_dict = decode_dataset(
|
results_dict = decode_dataset(
|
||||||
cuts=getattr(reazonspeech_corpus, f"{subdir}_cuts")(),
|
cuts=test_cut,
|
||||||
params=params,
|
params=params,
|
||||||
model=model,
|
model=model,
|
||||||
sp=sp,
|
tokenizer=sp_token,
|
||||||
decoding_graph=decoding_graph,
|
decoding_graph=decoding_graph,
|
||||||
)
|
)
|
||||||
tot_err = save_results(
|
save_results(
|
||||||
params=params, test_set_name=subdir, results_dict=results_dict
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
)
|
)
|
||||||
|
|
||||||
with (
|
# valid_cuts = reazonspeech_corpus.valid_cuts()
|
||||||
params.res_dir
|
|
||||||
/ (
|
# for valid_cut in valid_cuts:
|
||||||
f"{subdir}-{params.decode_chunk_len}"
|
# results_dict = decode_dataset(
|
||||||
f"_{params.avg}_{params.epoch}.cer"
|
# cuts=valid_cut,
|
||||||
)
|
# params=params,
|
||||||
).open("w") as fout:
|
# model=model,
|
||||||
if len(tot_err) == 1:
|
# sp=sp,
|
||||||
fout.write(f"{tot_err[0][1]}")
|
# decoding_graph=decoding_graph,
|
||||||
else:
|
# )
|
||||||
fout.write("\n".join(f"{k}\t{v}") for k, v in tot_err)
|
# save_results(
|
||||||
|
# params=params,
|
||||||
|
# test_set_name="valid",
|
||||||
|
# results_dict=results_dict,
|
||||||
|
# )
|
||||||
|
|
||||||
logging.info("Done!")
|
logging.info("Done!")
|
||||||
|
|
||||||
|
@ -68,6 +68,7 @@ from .utils import (
|
|||||||
str2bool,
|
str2bool,
|
||||||
subsequent_chunk_mask,
|
subsequent_chunk_mask,
|
||||||
tokenize_by_CJK_char,
|
tokenize_by_CJK_char,
|
||||||
|
tokenize_by_ja_char,
|
||||||
write_error_stats,
|
write_error_stats,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -1758,6 +1758,30 @@ def tokenize_by_CJK_char(line: str) -> str:
|
|||||||
return " ".join([w.strip() for w in chars if w.strip()])
|
return " ".join([w.strip() for w in chars if w.strip()])
|
||||||
|
|
||||||
|
|
||||||
|
def tokenize_by_ja_char(line: str) -> str:
|
||||||
|
"""
|
||||||
|
Tokenize a line of text with Japanese characters.
|
||||||
|
|
||||||
|
Note: All non-Japanese characters will be upper case.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
input = "こんにちは世界は hello world の日本語"
|
||||||
|
output = "こ ん に ち は 世 界 は HELLO WORLD の 日 本 語"
|
||||||
|
|
||||||
|
Args:
|
||||||
|
line:
|
||||||
|
The input text.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
A new string tokenized by Japanese characters.
|
||||||
|
"""
|
||||||
|
pattern = re.compile(r"([\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF])")
|
||||||
|
chars = pattern.split(line.strip())
|
||||||
|
return " ".join(
|
||||||
|
[w.strip().upper() if not pattern.match(w) else w for w in chars if w.strip()]
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def display_and_save_batch(
|
def display_and_save_batch(
|
||||||
batch: dict,
|
batch: dict,
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
|
Loading…
x
Reference in New Issue
Block a user