From 274e9de876897b1665543f76be53bee68789089c Mon Sep 17 00:00:00 2001 From: dohe0342 Date: Tue, 14 Feb 2023 00:51:47 +0900 Subject: [PATCH] from local --- egs/tedlium2/ASR/conformer_ctc2/.train.py.swp | Bin 49152 -> 53248 bytes egs/tedlium2/ASR/conformer_ctc2/train.py | 27 ++++++++++++------ 2 files changed, 18 insertions(+), 9 deletions(-) diff --git a/egs/tedlium2/ASR/conformer_ctc2/.train.py.swp b/egs/tedlium2/ASR/conformer_ctc2/.train.py.swp index 7e1995bf3d8c37f9e3363e27221b86001c8959c4..d054c650fb2f883eb680071626206bb2227b5585 100644 GIT binary patch delta 898 zcmY+?OGp%P9KiA4v=29RS2t)i4VoGxD_N~Wps!xIi+Tyk?YQ?@T1VA>KzNt21KTp zGtYJw-+VCig^@e+5RY*dqu7IHXn5`J!YEp>8y-w$iHu_q1K5iKJoAejLklXf2ETmV zflIi6^Jw+SVJW6lgcn|s6F7hp6yv8yb`iaCTZ5{DZQyTmNw$0x_L0ULEJ@}GndKs59u+H zm%Qg^KE@5-Qgr|3iM+=(T)`piL=7T%5)!$GLDXS8=7J(Oa1q@wP>XEbC4GIUgN7CO zlp{lOD@WuUPGS`G2qB33*&_XDL?J?$C37Ef8^_QpVVJ+N<-0?e#SNB;n_D0K&7FuuZO(}RFahbf2=!My0m2?qgf-FmAP8nNXDxcFPO+|E7THQYM*ZE-N|TI O+A!LUM2DHE68Q(-tht>4 delta 350 zcmXBPze@sf7{~GFd#87odF4eY6v0hFH;71!HMH8$>L3_V2L1RS^2UOO>_BRW1f3cp z{X*0h1qCe)4UrKD(Go2+H201^@PY@P&oew>(+op1y__q}FZhLQPDo0mQ2tnXD|XVK z!z!W8l&jQw|h&9m_*MK*+ms|$YKzWagkHB(ZVW%xNOQ4!)r`rA8VLK00%anO_5_9;s6_% zg#m@WA##o*Y@vcYGH{W^-^)E!?@UCs+dz-qC6zYxwH5UroTzj%YR`!HME_hStY6^k BKcoNv diff --git a/egs/tedlium2/ASR/conformer_ctc2/train.py b/egs/tedlium2/ASR/conformer_ctc2/train.py index 6c6149955..a3cf82b07 100755 --- a/egs/tedlium2/ASR/conformer_ctc2/train.py +++ b/egs/tedlium2/ASR/conformer_ctc2/train.py @@ -935,12 +935,14 @@ def run(rank, world_size, args): if params.print_diagnostics: diagnostic = diagnostics.attach_diagnostics(model) - librispeech = LibriSpeechAsrDataModule(args) + #librispeech = LibriSpeechAsrDataModule(args) + tedlium = TedAsrDataModule(args) - if params.full_libri: - train_cuts = librispeech.train_all_shuf_cuts() - else: - train_cuts = librispeech.train_clean_100_cuts() + #if params.full_libri: + # train_cuts = librispeech.train_all_shuf_cuts() + #else: + # train_cuts = librispeech.train_clean_100_cuts() + train_cuts = tedlium.train_cuts() def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 20 seconds @@ -975,13 +977,20 @@ def run(rank, world_size, args): else: sampler_state_dict = None - train_dl = librispeech.train_dataloaders( + #train_dl = librispeech.train_dataloaders( + # train_cuts, sampler_state_dict=sampler_state_dict + #) + + #valid_cuts = librispeech.dev_clean_cuts() + #valid_cuts += librispeech.dev_other_cuts() + #valid_dl = librispeech.valid_dataloaders(valid_cuts) + + train_dl = tedlium.train_dataloaders( train_cuts, sampler_state_dict=sampler_state_dict ) - valid_cuts = librispeech.dev_clean_cuts() - valid_cuts += librispeech.dev_other_cuts() - valid_dl = librispeech.valid_dataloaders(valid_cuts) + valid_cuts = tedlium.dev_cuts() + valid_dl = tedlium.valid_dataloaders(valid_cuts) if params.print_diagnostics: scan_pessimistic_batches_for_oom(