mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-04 22:54:18 +00:00
Finish
This commit is contained in:
parent
6f0f358bcf
commit
2732349215
@ -7,14 +7,14 @@
|
||||
This script exports a transducer model from PyTorch to ONNX.
|
||||
|
||||
We use the pre-trained model from
|
||||
https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15
|
||||
https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
|
||||
as an example to show how to use this file.
|
||||
|
||||
1. Download the pre-trained model
|
||||
|
||||
cd egs/librispeech/ASR
|
||||
cd egs/gigaspeech/ASR
|
||||
|
||||
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15
|
||||
repo_url=https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
|
@ -24,7 +24,7 @@
|
||||
|
||||
Usage:
|
||||
|
||||
Note: This is a example for librispeech dataset, if you are using different
|
||||
Note: This is a example for gigaspeech dataset, if you are using different
|
||||
dataset, you should change the argument values according to your dataset.
|
||||
|
||||
(1) Export to torchscript model using torch.jit.script()
|
||||
@ -96,7 +96,7 @@ you can do:
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/librispeech/ASR
|
||||
cd /path/to/egs/gigaspeech/ASR
|
||||
./zipformer/decode.py \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--epoch 9999 \
|
||||
@ -112,7 +112,7 @@ To use the generated file with `zipformer/decode.py` and `zipformer/streaming_de
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/librispeech/ASR
|
||||
cd /path/to/egs/gigaspeech/ASR
|
||||
|
||||
# simulated streaming decoding
|
||||
./zipformer/decode.py \
|
||||
@ -144,17 +144,13 @@ Note: If you don't want to train a model from scratch, we have
|
||||
provided one for you. You can get it at
|
||||
|
||||
- non-streaming model:
|
||||
https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15
|
||||
|
||||
- streaming model:
|
||||
https://huggingface.co/Zengwei/icefall-asr-librispeech-streaming-zipformer-2023-05-17
|
||||
https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
|
||||
|
||||
with the following commands:
|
||||
|
||||
sudo apt-get install git-lfs
|
||||
git lfs install
|
||||
git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15
|
||||
git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-streaming-zipformer-2023-05-17
|
||||
git clone https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
|
||||
# You will find the pre-trained models in exp dir
|
||||
"""
|
||||
|
||||
|
@ -40,7 +40,7 @@ import k2
|
||||
import numpy as np
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from asr_datamodule import GigaSpeechAsrDataModule
|
||||
from decode_stream import DecodeStream
|
||||
from kaldifeat import Fbank, FbankOptions
|
||||
from lhotse import CutSet
|
||||
@ -682,7 +682,7 @@ def save_results(
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
GigaSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
@ -823,15 +823,18 @@ def main():
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
gigaspeech = GigaSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
dev_cuts = gigaspeech.dev_cuts()
|
||||
test_cuts = gigaspeech.test_cuts()
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_cuts = [test_clean_cuts, test_other_cuts]
|
||||
dev_dl = gigaspeech.test_dataloaders(dev_cuts)
|
||||
test_dl = gigaspeech.test_dataloaders(test_cuts)
|
||||
|
||||
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||
test_sets = ["dev", "test"]
|
||||
test_dls = [dev_dl, test_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dls):
|
||||
results_dict = decode_dataset(
|
||||
cuts=test_cut,
|
||||
params=params,
|
||||
|
Loading…
x
Reference in New Issue
Block a user