This commit is contained in:
Yifan Yang 2023-10-17 19:15:55 +08:00
parent 6f0f358bcf
commit 2732349215
3 changed files with 19 additions and 20 deletions

View File

@ -7,14 +7,14 @@
This script exports a transducer model from PyTorch to ONNX.
We use the pre-trained model from
https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15
https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
as an example to show how to use this file.
1. Download the pre-trained model
cd egs/librispeech/ASR
cd egs/gigaspeech/ASR
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15
repo_url=https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)

View File

@ -24,7 +24,7 @@
Usage:
Note: This is a example for librispeech dataset, if you are using different
Note: This is a example for gigaspeech dataset, if you are using different
dataset, you should change the argument values according to your dataset.
(1) Export to torchscript model using torch.jit.script()
@ -96,7 +96,7 @@ you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/librispeech/ASR
cd /path/to/egs/gigaspeech/ASR
./zipformer/decode.py \
--exp-dir ./zipformer/exp \
--epoch 9999 \
@ -112,7 +112,7 @@ To use the generated file with `zipformer/decode.py` and `zipformer/streaming_de
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/librispeech/ASR
cd /path/to/egs/gigaspeech/ASR
# simulated streaming decoding
./zipformer/decode.py \
@ -144,17 +144,13 @@ Note: If you don't want to train a model from scratch, we have
provided one for you. You can get it at
- non-streaming model:
https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15
- streaming model:
https://huggingface.co/Zengwei/icefall-asr-librispeech-streaming-zipformer-2023-05-17
https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
with the following commands:
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15
git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-streaming-zipformer-2023-05-17
git clone https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
# You will find the pre-trained models in exp dir
"""

View File

@ -40,7 +40,7 @@ import k2
import numpy as np
import sentencepiece as spm
import torch
from asr_datamodule import LibriSpeechAsrDataModule
from asr_datamodule import GigaSpeechAsrDataModule
from decode_stream import DecodeStream
from kaldifeat import Fbank, FbankOptions
from lhotse import CutSet
@ -682,7 +682,7 @@ def save_results(
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
GigaSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
@ -823,15 +823,18 @@ def main():
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
librispeech = LibriSpeechAsrDataModule(args)
gigaspeech = GigaSpeechAsrDataModule(args)
test_clean_cuts = librispeech.test_clean_cuts()
test_other_cuts = librispeech.test_other_cuts()
dev_cuts = gigaspeech.dev_cuts()
test_cuts = gigaspeech.test_cuts()
test_sets = ["test-clean", "test-other"]
test_cuts = [test_clean_cuts, test_other_cuts]
dev_dl = gigaspeech.test_dataloaders(dev_cuts)
test_dl = gigaspeech.test_dataloaders(test_cuts)
for test_set, test_cut in zip(test_sets, test_cuts):
test_sets = ["dev", "test"]
test_dls = [dev_dl, test_dl]
for test_set, test_dl in zip(test_sets, test_dls):
results_dict = decode_dataset(
cuts=test_cut,
params=params,