mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Draft of 0mean changes..
This commit is contained in:
parent
fc873cc50d
commit
261d7602a7
@ -60,8 +60,8 @@ class Conv2dSubsampling(nn.Module):
|
||||
# itself has learned scale, so the extra degree of freedom is not
|
||||
# needed.
|
||||
self.out_norm = BasicNorm(odim, learn_eps=False)
|
||||
# constrain mean of output to be close to zero.
|
||||
self.out_balancer = DerivBalancer(channel_dim=-1, min_positive=0.4, max_positive=0.6)
|
||||
# constrain median of output to be close to zero.
|
||||
self.out_balancer = DerivBalancer(channel_dim=-1, min_positive=0.45, max_positive=0.55)
|
||||
self._reset_parameters()
|
||||
|
||||
def _reset_parameters(self):
|
||||
@ -536,7 +536,7 @@ class DerivBalancer(torch.nn.Module):
|
||||
"""
|
||||
def __init__(self, channel_dim: int,
|
||||
min_positive: float = 0.05,
|
||||
max_positive: float = 1.0,
|
||||
max_positive: float = 0.95,
|
||||
max_factor: float = 0.01,
|
||||
min_abs: float = 0.2,
|
||||
max_abs: float = 100.0):
|
||||
|
@ -88,7 +88,7 @@ class Conformer(Transformer):
|
||||
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, x_lens: torch.Tensor, warmup_mode: bool
|
||||
self, x: torch.Tensor, x_lens: torch.Tensor, warmup_mode: bool = False
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
@ -179,6 +179,9 @@ class ConformerEncoderLayer(nn.Module):
|
||||
self.pre_norm_final = Identity()
|
||||
self.norm_final = BasicNorm(d_model)
|
||||
|
||||
# try to ensure the output is close to zero-mean (or at least, zero-median).
|
||||
self.balancer = DerivBalancer(channel_dim=-1, min_positive=0.45, max_positive=0.55)
|
||||
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
|
||||
@ -227,7 +230,7 @@ class ConformerEncoderLayer(nn.Module):
|
||||
# feed forward module
|
||||
src = src + self.dropout(self.feed_forward(src))
|
||||
|
||||
src = self.norm_final(self.pre_norm_final(src))
|
||||
src = self.balancer(self.norm_final(self.pre_norm_final(src)))
|
||||
|
||||
return src
|
||||
|
||||
@ -862,7 +865,8 @@ class ConvolutionModule(nn.Module):
|
||||
# constrain the rms values to a reasonable range via a constraint of max_abs=10.0,
|
||||
# it will be in a better position to start learning something, i.e. to latch onto
|
||||
# the correct range.
|
||||
self.deriv_balancer1 = DerivBalancer(channel_dim=1, max_abs=10.0)
|
||||
self.deriv_balancer1 = DerivBalancer(channel_dim=1, max_abs=10.0,
|
||||
min_positive=0.05, max_positive=1.0)
|
||||
|
||||
self.depthwise_conv = ScaledConv1d(
|
||||
channels,
|
||||
@ -874,7 +878,8 @@ class ConvolutionModule(nn.Module):
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
self.deriv_balancer2 = DerivBalancer(channel_dim=1)
|
||||
self.deriv_balancer2 = DerivBalancer(channel_dim=1,
|
||||
min_positive=0.05, max_positive=1.0)
|
||||
|
||||
# Shape: (channels, 1), broadcasts with (batch, channel, time).
|
||||
self.activation = SwishOffset()
|
||||
|
@ -110,7 +110,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transducer_stateless/randcombine1_expscale3_rework2c_maxabs1000_maxp0.95_noexp_convderiv3warmup_embed_scale",
|
||||
default="transducer_stateless/randcombine1_expscale3_rework2c_maxabs1000_maxp0.95_noexp_convderiv2warmup_scale_0mean",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
|
Loading…
x
Reference in New Issue
Block a user