Draft of 0mean changes..

This commit is contained in:
Daniel Povey 2022-03-15 23:46:53 +08:00
parent fc873cc50d
commit 261d7602a7
3 changed files with 13 additions and 8 deletions

View File

@ -60,8 +60,8 @@ class Conv2dSubsampling(nn.Module):
# itself has learned scale, so the extra degree of freedom is not
# needed.
self.out_norm = BasicNorm(odim, learn_eps=False)
# constrain mean of output to be close to zero.
self.out_balancer = DerivBalancer(channel_dim=-1, min_positive=0.4, max_positive=0.6)
# constrain median of output to be close to zero.
self.out_balancer = DerivBalancer(channel_dim=-1, min_positive=0.45, max_positive=0.55)
self._reset_parameters()
def _reset_parameters(self):
@ -536,7 +536,7 @@ class DerivBalancer(torch.nn.Module):
"""
def __init__(self, channel_dim: int,
min_positive: float = 0.05,
max_positive: float = 1.0,
max_positive: float = 0.95,
max_factor: float = 0.01,
min_abs: float = 0.2,
max_abs: float = 100.0):

View File

@ -88,7 +88,7 @@ class Conformer(Transformer):
def forward(
self, x: torch.Tensor, x_lens: torch.Tensor, warmup_mode: bool
self, x: torch.Tensor, x_lens: torch.Tensor, warmup_mode: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
@ -179,6 +179,9 @@ class ConformerEncoderLayer(nn.Module):
self.pre_norm_final = Identity()
self.norm_final = BasicNorm(d_model)
# try to ensure the output is close to zero-mean (or at least, zero-median).
self.balancer = DerivBalancer(channel_dim=-1, min_positive=0.45, max_positive=0.55)
self.dropout = nn.Dropout(dropout)
@ -227,7 +230,7 @@ class ConformerEncoderLayer(nn.Module):
# feed forward module
src = src + self.dropout(self.feed_forward(src))
src = self.norm_final(self.pre_norm_final(src))
src = self.balancer(self.norm_final(self.pre_norm_final(src)))
return src
@ -862,7 +865,8 @@ class ConvolutionModule(nn.Module):
# constrain the rms values to a reasonable range via a constraint of max_abs=10.0,
# it will be in a better position to start learning something, i.e. to latch onto
# the correct range.
self.deriv_balancer1 = DerivBalancer(channel_dim=1, max_abs=10.0)
self.deriv_balancer1 = DerivBalancer(channel_dim=1, max_abs=10.0,
min_positive=0.05, max_positive=1.0)
self.depthwise_conv = ScaledConv1d(
channels,
@ -874,7 +878,8 @@ class ConvolutionModule(nn.Module):
bias=bias,
)
self.deriv_balancer2 = DerivBalancer(channel_dim=1)
self.deriv_balancer2 = DerivBalancer(channel_dim=1,
min_positive=0.05, max_positive=1.0)
# Shape: (channels, 1), broadcasts with (batch, channel, time).
self.activation = SwishOffset()

View File

@ -110,7 +110,7 @@ def get_parser():
parser.add_argument(
"--exp-dir",
type=str,
default="transducer_stateless/randcombine1_expscale3_rework2c_maxabs1000_maxp0.95_noexp_convderiv3warmup_embed_scale",
default="transducer_stateless/randcombine1_expscale3_rework2c_maxabs1000_maxp0.95_noexp_convderiv2warmup_scale_0mean",
help="""The experiment dir.
It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved