mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-14 04:22:21 +00:00
Merge remote-tracking branch 'upstream/master'
This commit is contained in:
commit
24d3a98378
@ -53,6 +53,13 @@ It should print the path to `icefall`.
|
|||||||
At present, only LibriSpeech recipe is provided. Please
|
At present, only LibriSpeech recipe is provided. Please
|
||||||
follow [egs/librispeech/ASR/README.md][LibriSpeech] to run it.
|
follow [egs/librispeech/ASR/README.md][LibriSpeech] to run it.
|
||||||
|
|
||||||
|
## Use Pre-trained models
|
||||||
|
|
||||||
|
See [egs/librispeech/ASR/conformer_ctc/README.md](egs/librispeech/ASR/conformer_ctc/README.md)
|
||||||
|
for how to use pre-trained models.
|
||||||
|
[](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing)
|
||||||
|
|
||||||
|
|
||||||
[LibriSpeech]: egs/librispeech/ASR/README.md
|
[LibriSpeech]: egs/librispeech/ASR/README.md
|
||||||
[k2-install]: https://k2.readthedocs.io/en/latest/installation/index.html#
|
[k2-install]: https://k2.readthedocs.io/en/latest/installation/index.html#
|
||||||
[k2]: https://github.com/k2-fsa/k2
|
[k2]: https://github.com/k2-fsa/k2
|
||||||
|
23
egs/librispeech/ASR/RESULTS.md
Normal file
23
egs/librispeech/ASR/RESULTS.md
Normal file
@ -0,0 +1,23 @@
|
|||||||
|
## Results
|
||||||
|
|
||||||
|
### LibriSpeech BPE training results (Conformer-CTC)
|
||||||
|
#### 2021-08-19
|
||||||
|
(Wei Kang): Result of https://github.com/k2-fsa/icefall/pull/13
|
||||||
|
|
||||||
|
TensorBoard log is available at https://tensorboard.dev/experiment/GnRzq8WWQW62dK4bklXBTg/#scalars
|
||||||
|
|
||||||
|
Pretrained model is available at https://huggingface.co/pkufool/conformer_ctc
|
||||||
|
|
||||||
|
The best decoding results (WER) are listed below, we got this results by averaging models from epoch 15 to 34, and using `attention-decoder` decoder with num_paths equals to 100.
|
||||||
|
|
||||||
|
||test-clean|test-other|
|
||||||
|
|--|--|--|
|
||||||
|
|WER| 2.57% | 5.94% |
|
||||||
|
|
||||||
|
To get more unique paths, we scaled the lattice.scores with 0.5 (see https://github.com/k2-fsa/icefall/pull/10#discussion_r690951662 for more details), we searched the lm_score_scale and attention_score_scale for best results, the scales that produced the WER above are also listed below.
|
||||||
|
|
||||||
|
||lm_scale|attention_scale|
|
||||||
|
|--|--|--|
|
||||||
|
|test-clean|1.3|1.2|
|
||||||
|
|test-other|1.2|1.1|
|
||||||
|
|
351
egs/librispeech/ASR/conformer_ctc/README.md
Normal file
351
egs/librispeech/ASR/conformer_ctc/README.md
Normal file
@ -0,0 +1,351 @@
|
|||||||
|
|
||||||
|
# How to use a pre-trained model to transcribe a sound file or multiple sound files
|
||||||
|
|
||||||
|
(See the bottom of this document for the link to a colab notebook.)
|
||||||
|
|
||||||
|
You need to prepare 4 files:
|
||||||
|
|
||||||
|
- a model checkpoint file, e.g., epoch-20.pt
|
||||||
|
- HLG.pt, the decoding graph
|
||||||
|
- words.txt, the word symbol table
|
||||||
|
- a sound file, whose sampling rate has to be 16 kHz.
|
||||||
|
Supported formats are those supported by `torchaudio.load()`,
|
||||||
|
e.g., wav and flac.
|
||||||
|
|
||||||
|
Also, you need to install `kaldifeat`. Please refer to
|
||||||
|
<https://github.com/csukuangfj/kaldifeat> for installation.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./conformer_ctc/pretrained.py --help
|
||||||
|
```
|
||||||
|
|
||||||
|
displays the help information.
|
||||||
|
|
||||||
|
## HLG decoding
|
||||||
|
|
||||||
|
Once you have the above files ready and have `kaldifeat` installed,
|
||||||
|
you can run:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./conformer_ctc/pretrained.py \
|
||||||
|
--checkpoint /path/to/your/checkpoint.pt \
|
||||||
|
--words-file /path/to/words.txt \
|
||||||
|
--HLG /path/to/HLG.pt \
|
||||||
|
/path/to/your/sound.wav
|
||||||
|
```
|
||||||
|
|
||||||
|
and you will see the transcribed result.
|
||||||
|
|
||||||
|
If you want to transcribe multiple files at the same time, you can use:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./conformer_ctc/pretrained.py \
|
||||||
|
--checkpoint /path/to/your/checkpoint.pt \
|
||||||
|
--words-file /path/to/words.txt \
|
||||||
|
--HLG /path/to/HLG.pt \
|
||||||
|
/path/to/your/sound1.wav \
|
||||||
|
/path/to/your/sound2.wav \
|
||||||
|
/path/to/your/sound3.wav
|
||||||
|
```
|
||||||
|
|
||||||
|
**Note**: This is the fastest decoding method.
|
||||||
|
|
||||||
|
## HLG decoding + LM rescoring
|
||||||
|
|
||||||
|
`./conformer_ctc/pretrained.py` also supports `whole lattice LM rescoring`
|
||||||
|
and `attention decoder rescoring`.
|
||||||
|
|
||||||
|
To use whole lattice LM rescoring, you also need the following files:
|
||||||
|
|
||||||
|
- G.pt, e.g., `data/lm/G_4_gram.pt` if you have run `./prepare.sh`
|
||||||
|
|
||||||
|
The command to run decoding with LM rescoring is:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./conformer_ctc/pretrained.py \
|
||||||
|
--checkpoint /path/to/your/checkpoint.pt \
|
||||||
|
--words-file /path/to/words.txt \
|
||||||
|
--HLG /path/to/HLG.pt \
|
||||||
|
--method whole-lattice-rescoring \
|
||||||
|
--G data/lm/G_4_gram.pt \
|
||||||
|
--ngram-lm-scale 0.8 \
|
||||||
|
/path/to/your/sound1.wav \
|
||||||
|
/path/to/your/sound2.wav \
|
||||||
|
/path/to/your/sound3.wav
|
||||||
|
```
|
||||||
|
|
||||||
|
## HLG Decoding + LM rescoring + attention decoder rescoring
|
||||||
|
|
||||||
|
To use attention decoder for rescoring, you need the following extra information:
|
||||||
|
|
||||||
|
- sos token ID
|
||||||
|
- eos token ID
|
||||||
|
|
||||||
|
The command to run decoding with attention decoder rescoring is:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./conformer_ctc/pretrained.py \
|
||||||
|
--checkpoint /path/to/your/checkpoint.pt \
|
||||||
|
--words-file /path/to/words.txt \
|
||||||
|
--HLG /path/to/HLG.pt \
|
||||||
|
--method attention-decoder \
|
||||||
|
--G data/lm/G_4_gram.pt \
|
||||||
|
--ngram-lm-scale 1.3 \
|
||||||
|
--attention-decoder-scale 1.2 \
|
||||||
|
--lattice-score-scale 0.5 \
|
||||||
|
--num-paths 100 \
|
||||||
|
--sos-id 1 \
|
||||||
|
--eos-id 1 \
|
||||||
|
/path/to/your/sound1.wav \
|
||||||
|
/path/to/your/sound2.wav \
|
||||||
|
/path/to/your/sound3.wav
|
||||||
|
```
|
||||||
|
|
||||||
|
# Decoding with a pre-trained model in action
|
||||||
|
|
||||||
|
We have uploaded a pre-trained model to <https://huggingface.co/pkufool/conformer_ctc>
|
||||||
|
|
||||||
|
The following shows the steps about the usage of the provided pre-trained model.
|
||||||
|
|
||||||
|
### (1) Download the pre-trained model
|
||||||
|
|
||||||
|
```bash
|
||||||
|
sudo apt-get install git-lfs
|
||||||
|
cd /path/to/icefall/egs/librispeech/ASR
|
||||||
|
git lfs install
|
||||||
|
mkdir tmp
|
||||||
|
cd tmp
|
||||||
|
git clone https://huggingface.co/pkufool/conformer_ctc
|
||||||
|
```
|
||||||
|
|
||||||
|
**CAUTION**: You have to install `git-lfst` to download the pre-trained model.
|
||||||
|
|
||||||
|
You will find the following files:
|
||||||
|
|
||||||
|
```
|
||||||
|
tmp
|
||||||
|
`-- conformer_ctc
|
||||||
|
|-- README.md
|
||||||
|
|-- data
|
||||||
|
| |-- lang_bpe
|
||||||
|
| | |-- HLG.pt
|
||||||
|
| | |-- bpe.model
|
||||||
|
| | |-- tokens.txt
|
||||||
|
| | `-- words.txt
|
||||||
|
| `-- lm
|
||||||
|
| `-- G_4_gram.pt
|
||||||
|
|-- exp
|
||||||
|
| `-- pretraind.pt
|
||||||
|
`-- test_wavs
|
||||||
|
|-- 1089-134686-0001.flac
|
||||||
|
|-- 1221-135766-0001.flac
|
||||||
|
|-- 1221-135766-0002.flac
|
||||||
|
`-- trans.txt
|
||||||
|
|
||||||
|
6 directories, 11 files
|
||||||
|
```
|
||||||
|
|
||||||
|
**File descriptions**:
|
||||||
|
|
||||||
|
- `data/lang_bpe/HLG.pt`
|
||||||
|
|
||||||
|
It is the decoding graph.
|
||||||
|
|
||||||
|
- `data/lang_bpe/bpe.model`
|
||||||
|
|
||||||
|
It is a sentencepiece model. You can use it to reproduce our results.
|
||||||
|
|
||||||
|
- `data/lang_bpe/tokens.txt`
|
||||||
|
|
||||||
|
It contains tokens and their IDs, generated from `bpe.model`.
|
||||||
|
Provided only for convienice so that you can look up the SOS/EOS ID easily.
|
||||||
|
|
||||||
|
- `data/lang_bpe/words.txt`
|
||||||
|
|
||||||
|
It contains words and their IDs.
|
||||||
|
|
||||||
|
- `data/lm/G_4_gram.pt`
|
||||||
|
|
||||||
|
It is a 4-gram LM, useful for LM rescoring.
|
||||||
|
|
||||||
|
- `exp/pretrained.pt`
|
||||||
|
|
||||||
|
It contains pre-trained model parameters, obtained by averaging
|
||||||
|
checkpoints from `epoch-15.pt` to `epoch-34.pt`.
|
||||||
|
Note: We have removed optimizer `state_dict` to reduce file size.
|
||||||
|
|
||||||
|
- `test_waves/*.flac`
|
||||||
|
|
||||||
|
It contains some test sound files from LibriSpeech `test-clean` dataset.
|
||||||
|
|
||||||
|
- `test_waves/trans.txt`
|
||||||
|
|
||||||
|
It contains the reference transcripts for the sound files in `test_waves/`.
|
||||||
|
|
||||||
|
The information of the test sound files is listed below:
|
||||||
|
|
||||||
|
```
|
||||||
|
$ soxi tmp/conformer_ctc/test_wavs/*.flac
|
||||||
|
|
||||||
|
Input File : 'tmp/conformer_ctc/test_wavs/1089-134686-0001.flac'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 16000
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors
|
||||||
|
File Size : 116k
|
||||||
|
Bit Rate : 140k
|
||||||
|
Sample Encoding: 16-bit FLAC
|
||||||
|
|
||||||
|
Input File : 'tmp/conformer_ctc/test_wavs/1221-135766-0001.flac'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 16000
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors
|
||||||
|
File Size : 343k
|
||||||
|
Bit Rate : 164k
|
||||||
|
Sample Encoding: 16-bit FLAC
|
||||||
|
|
||||||
|
Input File : 'tmp/conformer_ctc/test_wavs/1221-135766-0002.flac'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 16000
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors
|
||||||
|
File Size : 105k
|
||||||
|
Bit Rate : 174k
|
||||||
|
Sample Encoding: 16-bit FLAC
|
||||||
|
|
||||||
|
Total Duration of 3 files: 00:00:28.16
|
||||||
|
```
|
||||||
|
|
||||||
|
### (2) Use HLG decoding
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd /path/to/icefall/egs/librispeech/ASR
|
||||||
|
|
||||||
|
./conformer_ctc/pretrained.py \
|
||||||
|
--checkpoint ./tmp/conformer_ctc/exp/pretraind.pt \
|
||||||
|
--words-file ./tmp/conformer_ctc/data/lang_bpe/words.txt \
|
||||||
|
--HLG ./tmp/conformer_ctc/data/lang_bpe/HLG.pt \
|
||||||
|
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||||
|
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||||
|
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||||
|
```
|
||||||
|
|
||||||
|
The output is given below:
|
||||||
|
|
||||||
|
```
|
||||||
|
2021-08-20 11:03:05,712 INFO [pretrained.py:217] device: cuda:0
|
||||||
|
2021-08-20 11:03:05,712 INFO [pretrained.py:219] Creating model
|
||||||
|
2021-08-20 11:03:11,345 INFO [pretrained.py:238] Loading HLG from ./tmp/conformer_ctc/data/lang_bpe/HLG.pt
|
||||||
|
2021-08-20 11:03:18,442 INFO [pretrained.py:255] Constructing Fbank computer
|
||||||
|
2021-08-20 11:03:18,444 INFO [pretrained.py:265] Reading sound files: ['./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||||
|
2021-08-20 11:03:18,507 INFO [pretrained.py:271] Decoding started
|
||||||
|
2021-08-20 11:03:18,795 INFO [pretrained.py:300] Use HLG decoding
|
||||||
|
2021-08-20 11:03:19,149 INFO [pretrained.py:339]
|
||||||
|
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||||
|
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||||
|
|
||||||
|
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||||
|
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||||
|
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||||
|
|
||||||
|
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||||
|
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||||
|
|
||||||
|
|
||||||
|
2021-08-20 11:03:19,149 INFO [pretrained.py:341] Decoding Done
|
||||||
|
```
|
||||||
|
|
||||||
|
### (3) Use HLG decoding + LM rescoring
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./conformer_ctc/pretrained.py \
|
||||||
|
--checkpoint ./tmp/conformer_ctc/exp/pretraind.pt \
|
||||||
|
--words-file ./tmp/conformer_ctc/data/lang_bpe/words.txt \
|
||||||
|
--HLG ./tmp/conformer_ctc/data/lang_bpe/HLG.pt \
|
||||||
|
--method whole-lattice-rescoring \
|
||||||
|
--G ./tmp/conformer_ctc/data/lm/G_4_gram.pt \
|
||||||
|
--ngram-lm-scale 0.8 \
|
||||||
|
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||||
|
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||||
|
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||||
|
```
|
||||||
|
|
||||||
|
The output is:
|
||||||
|
|
||||||
|
```
|
||||||
|
2021-08-20 11:12:17,565 INFO [pretrained.py:217] device: cuda:0
|
||||||
|
2021-08-20 11:12:17,565 INFO [pretrained.py:219] Creating model
|
||||||
|
2021-08-20 11:12:23,728 INFO [pretrained.py:238] Loading HLG from ./tmp/conformer_ctc/data/lang_bpe/HLG.pt
|
||||||
|
2021-08-20 11:12:30,035 INFO [pretrained.py:246] Loading G from ./tmp/conformer_ctc/data/lm/G_4_gram.pt
|
||||||
|
2021-08-20 11:13:10,779 INFO [pretrained.py:255] Constructing Fbank computer
|
||||||
|
2021-08-20 11:13:10,787 INFO [pretrained.py:265] Reading sound files: ['./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||||
|
2021-08-20 11:13:10,798 INFO [pretrained.py:271] Decoding started
|
||||||
|
2021-08-20 11:13:11,085 INFO [pretrained.py:305] Use HLG decoding + LM rescoring
|
||||||
|
2021-08-20 11:13:11,736 INFO [pretrained.py:339]
|
||||||
|
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||||
|
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||||
|
|
||||||
|
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||||
|
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||||
|
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||||
|
|
||||||
|
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||||
|
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||||
|
|
||||||
|
|
||||||
|
2021-08-20 11:13:11,737 INFO [pretrained.py:341] Decoding Done
|
||||||
|
```
|
||||||
|
|
||||||
|
### (4) Use HLG decoding + LM rescoring + attention decoder rescoring
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./conformer_ctc/pretrained.py \
|
||||||
|
--checkpoint ./tmp/conformer_ctc/exp/pretraind.pt \
|
||||||
|
--words-file ./tmp/conformer_ctc/data/lang_bpe/words.txt \
|
||||||
|
--HLG ./tmp/conformer_ctc/data/lang_bpe/HLG.pt \
|
||||||
|
--method attention-decoder \
|
||||||
|
--G ./tmp/conformer_ctc/data/lm/G_4_gram.pt \
|
||||||
|
--ngram-lm-scale 1.3 \
|
||||||
|
--attention-decoder-scale 1.2 \
|
||||||
|
--lattice-score-scale 0.5 \
|
||||||
|
--num-paths 100 \
|
||||||
|
--sos-id 1 \
|
||||||
|
--eos-id 1 \
|
||||||
|
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||||
|
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||||
|
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||||
|
```
|
||||||
|
|
||||||
|
The output is:
|
||||||
|
|
||||||
|
```
|
||||||
|
2021-08-20 11:19:11,397 INFO [pretrained.py:217] device: cuda:0
|
||||||
|
2021-08-20 11:19:11,397 INFO [pretrained.py:219] Creating model
|
||||||
|
2021-08-20 11:19:17,354 INFO [pretrained.py:238] Loading HLG from ./tmp/conformer_ctc/data/lang_bpe/HLG.pt
|
||||||
|
2021-08-20 11:19:24,615 INFO [pretrained.py:246] Loading G from ./tmp/conformer_ctc/data/lm/G_4_gram.pt
|
||||||
|
2021-08-20 11:20:04,576 INFO [pretrained.py:255] Constructing Fbank computer
|
||||||
|
2021-08-20 11:20:04,584 INFO [pretrained.py:265] Reading sound files: ['./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||||
|
2021-08-20 11:20:04,595 INFO [pretrained.py:271] Decoding started
|
||||||
|
2021-08-20 11:20:04,854 INFO [pretrained.py:313] Use HLG + LM rescoring + attention decoder rescoring
|
||||||
|
2021-08-20 11:20:05,805 INFO [pretrained.py:339]
|
||||||
|
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||||
|
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||||
|
|
||||||
|
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||||
|
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||||
|
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||||
|
|
||||||
|
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||||
|
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||||
|
|
||||||
|
|
||||||
|
2021-08-20 11:20:05,805 INFO [pretrained.py:341] Decoding Done
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: We provide a colab notebook for demonstration.
|
||||||
|
[](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing)
|
||||||
|
|
||||||
|
Due to limited memory provided by Colab, you have to upgrade to Colab Pro to
|
||||||
|
run `HLG decoding + LM rescoring` and `HLG decoding + LM rescoring + attention decoder rescoring`.
|
||||||
|
Otherwise, you can only run `HLG decoding` with Colab.
|
1
egs/librispeech/ASR/conformer_ctc/asr_datamodule.py
Symbolic link
1
egs/librispeech/ASR/conformer_ctc/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../tdnn_lstm_ctc/asr_datamodule.py
|
@ -13,14 +13,15 @@ from typing import Dict, List, Optional, Tuple
|
|||||||
import k2
|
import k2
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
from conformer import Conformer
|
from conformer import Conformer
|
||||||
|
|
||||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
|
||||||
from icefall.decode import (
|
from icefall.decode import (
|
||||||
get_lattice,
|
get_lattice,
|
||||||
nbest_decoding,
|
nbest_decoding,
|
||||||
|
nbest_oracle,
|
||||||
one_best_decoding,
|
one_best_decoding,
|
||||||
rescore_with_attention_decoder,
|
rescore_with_attention_decoder,
|
||||||
rescore_with_n_best_list,
|
rescore_with_n_best_list,
|
||||||
@ -56,6 +57,18 @@ def get_parser():
|
|||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. ",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lattice-score-scale",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="The scale to be applied to `lattice.scores`."
|
||||||
|
"It's needed if you use any kinds of n-best based rescoring. "
|
||||||
|
"Currently, it is used when the decoding method is: nbest, "
|
||||||
|
"nbest-rescoring, attention-decoder, and nbest-oracle. "
|
||||||
|
"A smaller value results in more unique paths.",
|
||||||
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -85,10 +98,14 @@ def get_params() -> AttributeDict:
|
|||||||
# - nbest-rescoring
|
# - nbest-rescoring
|
||||||
# - whole-lattice-rescoring
|
# - whole-lattice-rescoring
|
||||||
# - attention-decoder
|
# - attention-decoder
|
||||||
|
# - nbest-oracle
|
||||||
|
# "method": "nbest",
|
||||||
|
# "method": "nbest-rescoring",
|
||||||
# "method": "whole-lattice-rescoring",
|
# "method": "whole-lattice-rescoring",
|
||||||
"method": "attention-decoder",
|
"method": "attention-decoder",
|
||||||
|
# "method": "nbest-oracle",
|
||||||
# num_paths is used when method is "nbest", "nbest-rescoring",
|
# num_paths is used when method is "nbest", "nbest-rescoring",
|
||||||
# and attention-decoder
|
# attention-decoder, and nbest-oracle
|
||||||
"num_paths": 100,
|
"num_paths": 100,
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
@ -179,6 +196,19 @@ def decode_one_batch(
|
|||||||
subsampling_factor=params.subsampling_factor,
|
subsampling_factor=params.subsampling_factor,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if params.method == "nbest-oracle":
|
||||||
|
# Note: You can also pass rescored lattices to it.
|
||||||
|
# We choose the HLG decoded lattice for speed reasons
|
||||||
|
# as HLG decoding is faster and the oracle WER
|
||||||
|
# is slightly worse than that of rescored lattices.
|
||||||
|
return nbest_oracle(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
ref_texts=supervisions["text"],
|
||||||
|
lexicon=lexicon,
|
||||||
|
scale=params.lattice_score_scale,
|
||||||
|
)
|
||||||
|
|
||||||
if params.method in ["1best", "nbest"]:
|
if params.method in ["1best", "nbest"]:
|
||||||
if params.method == "1best":
|
if params.method == "1best":
|
||||||
best_path = one_best_decoding(
|
best_path = one_best_decoding(
|
||||||
@ -190,8 +220,9 @@ def decode_one_batch(
|
|||||||
lattice=lattice,
|
lattice=lattice,
|
||||||
num_paths=params.num_paths,
|
num_paths=params.num_paths,
|
||||||
use_double_scores=params.use_double_scores,
|
use_double_scores=params.use_double_scores,
|
||||||
|
scale=params.lattice_score_scale,
|
||||||
)
|
)
|
||||||
key = f"no_rescore-{params.num_paths}"
|
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
|
||||||
|
|
||||||
hyps = get_texts(best_path)
|
hyps = get_texts(best_path)
|
||||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||||
@ -212,6 +243,7 @@ def decode_one_batch(
|
|||||||
G=G,
|
G=G,
|
||||||
num_paths=params.num_paths,
|
num_paths=params.num_paths,
|
||||||
lm_scale_list=lm_scale_list,
|
lm_scale_list=lm_scale_list,
|
||||||
|
scale=params.lattice_score_scale,
|
||||||
)
|
)
|
||||||
elif params.method == "whole-lattice-rescoring":
|
elif params.method == "whole-lattice-rescoring":
|
||||||
best_path_dict = rescore_with_whole_lattice(
|
best_path_dict = rescore_with_whole_lattice(
|
||||||
@ -231,6 +263,7 @@ def decode_one_batch(
|
|||||||
memory_key_padding_mask=memory_key_padding_mask,
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
sos_id=sos_id,
|
sos_id=sos_id,
|
||||||
eos_id=eos_id,
|
eos_id=eos_id,
|
||||||
|
scale=params.lattice_score_scale,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
assert False, f"Unsupported decoding method: {params.method}"
|
assert False, f"Unsupported decoding method: {params.method}"
|
||||||
@ -284,7 +317,11 @@ def decode_dataset(
|
|||||||
results = []
|
results = []
|
||||||
|
|
||||||
num_cuts = 0
|
num_cuts = 0
|
||||||
tot_num_cuts = len(dl.dataset.cuts)
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
results = defaultdict(list)
|
results = defaultdict(list)
|
||||||
for batch_idx, batch in enumerate(dl):
|
for batch_idx, batch in enumerate(dl):
|
||||||
@ -313,10 +350,10 @@ def decode_dataset(
|
|||||||
num_cuts += len(batch["supervisions"]["text"])
|
num_cuts += len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
if batch_idx % 100 == 0:
|
if batch_idx % 100 == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(
|
||||||
f"batch {batch_idx}, cuts processed until now is "
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
f"{num_cuts}/{tot_num_cuts} "
|
|
||||||
f"({float(num_cuts)/tot_num_cuts*100:.6f}%)"
|
|
||||||
)
|
)
|
||||||
return results
|
return results
|
||||||
|
|
||||||
@ -376,7 +413,7 @@ def main():
|
|||||||
params = get_params()
|
params = get_params()
|
||||||
params.update(vars(args))
|
params.update(vars(args))
|
||||||
|
|
||||||
setup_logger(f"{params.exp_dir}/log/log-decode")
|
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
|
||||||
logging.info("Decoding started")
|
logging.info("Decoding started")
|
||||||
logging.info(params)
|
logging.info(params)
|
||||||
|
|
||||||
@ -399,7 +436,9 @@ def main():
|
|||||||
sos_id = graph_compiler.sos_id
|
sos_id = graph_compiler.sos_id
|
||||||
eos_id = graph_compiler.eos_id
|
eos_id = graph_compiler.eos_id
|
||||||
|
|
||||||
HLG = k2.Fsa.from_dict(torch.load(f"{params.lang_dir}/HLG.pt"))
|
HLG = k2.Fsa.from_dict(
|
||||||
|
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
||||||
|
)
|
||||||
HLG = HLG.to(device)
|
HLG = HLG.to(device)
|
||||||
assert HLG.requires_grad is False
|
assert HLG.requires_grad is False
|
||||||
|
|
||||||
@ -430,7 +469,7 @@ def main():
|
|||||||
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
||||||
else:
|
else:
|
||||||
logging.info("Loading pre-compiled G_4_gram.pt")
|
logging.info("Loading pre-compiled G_4_gram.pt")
|
||||||
d = torch.load(params.lm_dir / "G_4_gram.pt")
|
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu")
|
||||||
G = k2.Fsa.from_dict(d).to(device)
|
G = k2.Fsa.from_dict(d).to(device)
|
||||||
|
|
||||||
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
|
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
|
||||||
|
350
egs/librispeech/ASR/conformer_ctc/pretrained.py
Executable file
350
egs/librispeech/ASR/conformer_ctc/pretrained.py
Executable file
@ -0,0 +1,350 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifeat
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from conformer import Conformer
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
|
from icefall.decode import (
|
||||||
|
get_lattice,
|
||||||
|
one_best_decoding,
|
||||||
|
rescore_with_attention_decoder,
|
||||||
|
rescore_with_whole_lattice,
|
||||||
|
)
|
||||||
|
from icefall.utils import AttributeDict, get_texts
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpoint",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint. "
|
||||||
|
"The checkpoint is assumed to be saved by "
|
||||||
|
"icefall.checkpoint.save_checkpoint().",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--words-file",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to words.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--HLG", type=str, required=True, help="Path to HLG.pt."
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="1best",
|
||||||
|
help="""Decoding method.
|
||||||
|
Possible values are:
|
||||||
|
(1) 1best - Use the best path as decoding output. Only
|
||||||
|
the transformer encoder output is used for decoding.
|
||||||
|
We call it HLG decoding.
|
||||||
|
(2) whole-lattice-rescoring - Use an LM to rescore the
|
||||||
|
decoding lattice and then use 1best to decode the
|
||||||
|
rescored lattice.
|
||||||
|
We call it HLG decoding + n-gram LM rescoring.
|
||||||
|
(3) attention-decoder - Extract n paths from he rescored
|
||||||
|
lattice and use the transformer attention decoder for
|
||||||
|
rescoring.
|
||||||
|
We call it HLG decoding + n-gram LM rescoring + attention
|
||||||
|
decoder rescoring.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--G",
|
||||||
|
type=str,
|
||||||
|
help="""An LM for rescoring.
|
||||||
|
Used only when method is
|
||||||
|
whole-lattice-rescoring or attention-decoder.
|
||||||
|
It's usually a 4-gram LM.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="""
|
||||||
|
Used only when method is attention-decoder.
|
||||||
|
It specifies the size of n-best list.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ngram-lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=1.3,
|
||||||
|
help="""
|
||||||
|
Used only when method is whole-lattice-rescoring and attention-decoder.
|
||||||
|
It specifies the scale for n-gram LM scores.
|
||||||
|
(Note: You need to tune it on a dataset.)
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--attention-decoder-scale",
|
||||||
|
type=float,
|
||||||
|
default=1.2,
|
||||||
|
help="""
|
||||||
|
Used only when method is attention-decoder.
|
||||||
|
It specifies the scale for attention decoder scores.
|
||||||
|
(Note: You need to tune it on a dataset.)
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lattice-score-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""
|
||||||
|
Used only when method is attention-decoder.
|
||||||
|
It specifies the scale for lattice.scores when
|
||||||
|
extracting n-best lists. A smaller value results in
|
||||||
|
more unique number of paths with the risk of missing
|
||||||
|
the best path.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sos-id",
|
||||||
|
type=float,
|
||||||
|
default=1,
|
||||||
|
help="""
|
||||||
|
Used only when method is attention-decoder.
|
||||||
|
It specifies ID for the SOS token.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--eos-id",
|
||||||
|
type=float,
|
||||||
|
default=1,
|
||||||
|
help="""
|
||||||
|
Used only when method is attention-decoder.
|
||||||
|
It specifies ID for the EOS token.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"feature_dim": 80,
|
||||||
|
"nhead": 8,
|
||||||
|
"num_classes": 5000,
|
||||||
|
"sample_rate": 16000,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"num_decoder_layers": 6,
|
||||||
|
"vgg_frontend": False,
|
||||||
|
"is_espnet_structure": True,
|
||||||
|
"mmi_loss": False,
|
||||||
|
"use_feat_batchnorm": True,
|
||||||
|
"search_beam": 20,
|
||||||
|
"output_beam": 8,
|
||||||
|
"min_active_states": 30,
|
||||||
|
"max_active_states": 10000,
|
||||||
|
"use_double_scores": True,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert sample_rate == expected_sample_rate, (
|
||||||
|
f"expected sample rate: {expected_sample_rate}. "
|
||||||
|
f"Given: {sample_rate}"
|
||||||
|
)
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
logging.info("Creating model")
|
||||||
|
model = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
d_model=params.attention_dim,
|
||||||
|
num_classes=params.num_classes,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
num_decoder_layers=params.num_decoder_layers,
|
||||||
|
vgg_frontend=params.vgg_frontend,
|
||||||
|
is_espnet_structure=params.is_espnet_structure,
|
||||||
|
mmi_loss=params.mmi_loss,
|
||||||
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
|
)
|
||||||
|
|
||||||
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
|
model.load_state_dict(checkpoint["model"])
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
logging.info(f"Loading HLG from {params.HLG}")
|
||||||
|
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||||
|
HLG = HLG.to(device)
|
||||||
|
if not hasattr(HLG, "lm_scores"):
|
||||||
|
# For whole-lattice-rescoring and attention-decoder
|
||||||
|
HLG.lm_scores = HLG.scores.clone()
|
||||||
|
|
||||||
|
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
|
||||||
|
logging.info(f"Loading G from {params.G}")
|
||||||
|
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
|
||||||
|
G = G.to(device)
|
||||||
|
# Add epsilon self-loops to G as we will compose
|
||||||
|
# it with the whole lattice later
|
||||||
|
G = k2.add_epsilon_self_loops(G)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
G.lm_scores = G.scores.clone()
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info(f"Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
|
||||||
|
features = pad_sequence(
|
||||||
|
features, batch_first=True, padding_value=math.log(1e-10)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Note: We don't use key padding mask for attention during decoding
|
||||||
|
with torch.no_grad():
|
||||||
|
nnet_output, memory, memory_key_padding_mask = model(features)
|
||||||
|
|
||||||
|
batch_size = nnet_output.shape[0]
|
||||||
|
supervision_segments = torch.tensor(
|
||||||
|
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
||||||
|
dtype=torch.int32,
|
||||||
|
)
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=nnet_output,
|
||||||
|
HLG=HLG,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.method == "1best":
|
||||||
|
logging.info("Use HLG decoding")
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
elif params.method == "whole-lattice-rescoring":
|
||||||
|
logging.info("Use HLG decoding + LM rescoring")
|
||||||
|
best_path_dict = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice,
|
||||||
|
G_with_epsilon_loops=G,
|
||||||
|
lm_scale_list=[params.ngram_lm_scale],
|
||||||
|
)
|
||||||
|
best_path = next(iter(best_path_dict.values()))
|
||||||
|
elif params.method == "attention-decoder":
|
||||||
|
logging.info("Use HLG + LM rescoring + attention decoder rescoring")
|
||||||
|
rescored_lattice = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None
|
||||||
|
)
|
||||||
|
best_path_dict = rescore_with_attention_decoder(
|
||||||
|
lattice=rescored_lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
model=model,
|
||||||
|
memory=memory,
|
||||||
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
|
sos_id=params.sos_id,
|
||||||
|
eos_id=params.eos_id,
|
||||||
|
scale=params.lattice_score_scale,
|
||||||
|
ngram_lm_scale=params.ngram_lm_scale,
|
||||||
|
attention_scale=params.attention_decoder_scale,
|
||||||
|
)
|
||||||
|
best_path = next(iter(best_path_dict.values()))
|
||||||
|
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||||
|
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
words = " ".join(hyp)
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info(f"Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
@ -13,6 +13,7 @@ import torch
|
|||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
from conformer import Conformer
|
from conformer import Conformer
|
||||||
from lhotse.utils import fix_random_seed
|
from lhotse.utils import fix_random_seed
|
||||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
@ -23,7 +24,6 @@ from transformer import Noam
|
|||||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||||
from icefall.checkpoint import load_checkpoint
|
from icefall.checkpoint import load_checkpoint
|
||||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||||
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
|
||||||
from icefall.dist import cleanup_dist, setup_dist
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import (
|
from icefall.utils import (
|
||||||
@ -60,9 +60,6 @@ def get_parser():
|
|||||||
help="Should various information be logged in tensorboard.",
|
help="Should various information be logged in tensorboard.",
|
||||||
)
|
)
|
||||||
|
|
||||||
# TODO: add extra arguments and support DDP training.
|
|
||||||
# Currently, only single GPU training is implemented. Will add
|
|
||||||
# DDP training once single GPU training is finished.
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -127,7 +124,7 @@ def get_params() -> AttributeDict:
|
|||||||
"""
|
"""
|
||||||
params = AttributeDict(
|
params = AttributeDict(
|
||||||
{
|
{
|
||||||
"exp_dir": Path("conformer_ctc/exp_new"),
|
"exp_dir": Path("conformer_ctc/exp"),
|
||||||
"lang_dir": Path("data/lang_bpe"),
|
"lang_dir": Path("data/lang_bpe"),
|
||||||
"feature_dim": 80,
|
"feature_dim": 80,
|
||||||
"weight_decay": 1e-6,
|
"weight_decay": 1e-6,
|
||||||
@ -145,7 +142,6 @@ def get_params() -> AttributeDict:
|
|||||||
"beam_size": 10,
|
"beam_size": 10,
|
||||||
"reduction": "sum",
|
"reduction": "sum",
|
||||||
"use_double_scores": True,
|
"use_double_scores": True,
|
||||||
#
|
|
||||||
"accum_grad": 1,
|
"accum_grad": 1,
|
||||||
"att_rate": 0.7,
|
"att_rate": 0.7,
|
||||||
"attention_dim": 512,
|
"attention_dim": 512,
|
||||||
|
@ -1,14 +1,16 @@
|
|||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import List, Union
|
from typing import List, Union
|
||||||
|
|
||||||
from lhotse import Fbank, FbankConfig, load_manifest
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||||
from lhotse.dataset import (
|
from lhotse.dataset import (
|
||||||
BucketingSampler,
|
BucketingSampler,
|
||||||
CutConcatenate,
|
CutConcatenate,
|
||||||
CutMix,
|
CutMix,
|
||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SingleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
@ -19,7 +21,7 @@ from icefall.dataset.datamodule import DataModule
|
|||||||
from icefall.utils import str2bool
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
class AsrDataModule(DataModule):
|
class LibriSpeechAsrDataModule(DataModule):
|
||||||
"""
|
"""
|
||||||
DataModule for K2 ASR experiments.
|
DataModule for K2 ASR experiments.
|
||||||
It assumes there is always one train and valid dataloader,
|
It assumes there is always one train and valid dataloader,
|
||||||
@ -47,6 +49,13 @@ class AsrDataModule(DataModule):
|
|||||||
"effective batch sizes, sampling strategies, applied data "
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
"augmentations, etc.",
|
"augmentations, etc.",
|
||||||
)
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--full-libri",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use 960h LibriSpeech. "
|
||||||
|
"Otherwise, use 100h subset.",
|
||||||
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--feature-dir",
|
"--feature-dir",
|
||||||
type=Path,
|
type=Path,
|
||||||
@ -77,7 +86,7 @@ class AsrDataModule(DataModule):
|
|||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--concatenate-cuts",
|
"--concatenate-cuts",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=True,
|
default=False,
|
||||||
help="When enabled, utterances (cuts) will be concatenated "
|
help="When enabled, utterances (cuts) will be concatenated "
|
||||||
"to minimize the amount of padding.",
|
"to minimize the amount of padding.",
|
||||||
)
|
)
|
||||||
@ -104,6 +113,29 @@ class AsrDataModule(DataModule):
|
|||||||
"extraction. Will drop existing precomputed feature manifests "
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
"if available.",
|
"if available.",
|
||||||
)
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
def train_dataloaders(self) -> DataLoader:
|
def train_dataloaders(self) -> DataLoader:
|
||||||
logging.info("About to get train cuts")
|
logging.info("About to get train cuts")
|
||||||
@ -138,9 +170,9 @@ class AsrDataModule(DataModule):
|
|||||||
]
|
]
|
||||||
|
|
||||||
train = K2SpeechRecognitionDataset(
|
train = K2SpeechRecognitionDataset(
|
||||||
cuts_train,
|
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_transforms=input_transforms,
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
|
|
||||||
if self.args.on_the_fly_feats:
|
if self.args.on_the_fly_feats:
|
||||||
@ -154,14 +186,13 @@ class AsrDataModule(DataModule):
|
|||||||
# to be strict (e.g. could be randomized)
|
# to be strict (e.g. could be randomized)
|
||||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
# Drop feats to be on the safe side.
|
# Drop feats to be on the safe side.
|
||||||
cuts_train = cuts_train.drop_features()
|
|
||||||
train = K2SpeechRecognitionDataset(
|
train = K2SpeechRecognitionDataset(
|
||||||
cuts=cuts_train,
|
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
),
|
),
|
||||||
input_transforms=input_transforms,
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
|
|
||||||
if self.args.bucketing_sampler:
|
if self.args.bucketing_sampler:
|
||||||
@ -169,44 +200,60 @@ class AsrDataModule(DataModule):
|
|||||||
train_sampler = BucketingSampler(
|
train_sampler = BucketingSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=True,
|
shuffle=self.args.shuffle,
|
||||||
num_buckets=self.args.num_buckets,
|
num_buckets=self.args.num_buckets,
|
||||||
|
bucket_method="equal_duration",
|
||||||
|
drop_last=True,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SingleCutSampler.")
|
logging.info("Using SingleCutSampler.")
|
||||||
train_sampler = SingleCutSampler(
|
train_sampler = SingleCutSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
shuffle=True,
|
shuffle=self.args.shuffle,
|
||||||
)
|
)
|
||||||
logging.info("About to create train dataloader")
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
train_dl = DataLoader(
|
train_dl = DataLoader(
|
||||||
train,
|
train,
|
||||||
sampler=train_sampler,
|
sampler=train_sampler,
|
||||||
batch_size=None,
|
batch_size=None,
|
||||||
num_workers=4,
|
num_workers=self.args.num_workers,
|
||||||
persistent_workers=True,
|
persistent_workers=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
return train_dl
|
return train_dl
|
||||||
|
|
||||||
def valid_dataloaders(self) -> DataLoader:
|
def valid_dataloaders(self) -> DataLoader:
|
||||||
logging.info("About to get dev cuts")
|
logging.info("About to get dev cuts")
|
||||||
cuts_valid = self.valid_cuts()
|
cuts_valid = self.valid_cuts()
|
||||||
|
|
||||||
|
transforms = []
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
logging.info("About to create dev dataset")
|
logging.info("About to create dev dataset")
|
||||||
if self.args.on_the_fly_feats:
|
if self.args.on_the_fly_feats:
|
||||||
cuts_valid = cuts_valid.drop_features()
|
|
||||||
validate = K2SpeechRecognitionDataset(
|
validate = K2SpeechRecognitionDataset(
|
||||||
cuts_valid.drop_features(),
|
cut_transforms=transforms,
|
||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
),
|
),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
validate = K2SpeechRecognitionDataset(cuts_valid)
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
valid_sampler = SingleCutSampler(
|
valid_sampler = SingleCutSampler(
|
||||||
cuts_valid,
|
cuts_valid,
|
||||||
max_duration=self.args.max_duration,
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
)
|
)
|
||||||
logging.info("About to create dev dataloader")
|
logging.info("About to create dev dataloader")
|
||||||
valid_dl = DataLoader(
|
valid_dl = DataLoader(
|
||||||
@ -214,8 +261,9 @@ class AsrDataModule(DataModule):
|
|||||||
sampler=valid_sampler,
|
sampler=valid_sampler,
|
||||||
batch_size=None,
|
batch_size=None,
|
||||||
num_workers=2,
|
num_workers=2,
|
||||||
persistent_workers=True,
|
persistent_workers=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
return valid_dl
|
return valid_dl
|
||||||
|
|
||||||
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
||||||
@ -228,10 +276,12 @@ class AsrDataModule(DataModule):
|
|||||||
for cuts_test in cuts:
|
for cuts_test in cuts:
|
||||||
logging.debug("About to create test dataset")
|
logging.debug("About to create test dataset")
|
||||||
test = K2SpeechRecognitionDataset(
|
test = K2SpeechRecognitionDataset(
|
||||||
cuts_test,
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(
|
||||||
Fbank(FbankConfig(num_mel_bins=80))
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
),
|
)
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else PrecomputedFeatures(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
sampler = SingleCutSampler(
|
sampler = SingleCutSampler(
|
||||||
cuts_test, max_duration=self.args.max_duration
|
cuts_test, max_duration=self.args.max_duration
|
||||||
@ -246,3 +296,42 @@ class AsrDataModule(DataModule):
|
|||||||
return test_loaders
|
return test_loaders
|
||||||
else:
|
else:
|
||||||
return test_loaders[0]
|
return test_loaders[0]
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train cuts")
|
||||||
|
cuts_train = load_manifest(
|
||||||
|
self.args.feature_dir / "cuts_train-clean-100.json.gz"
|
||||||
|
)
|
||||||
|
if self.args.full_libri:
|
||||||
|
cuts_train = (
|
||||||
|
cuts_train
|
||||||
|
+ load_manifest(
|
||||||
|
self.args.feature_dir / "cuts_train-clean-360.json.gz"
|
||||||
|
)
|
||||||
|
+ load_manifest(
|
||||||
|
self.args.feature_dir / "cuts_train-other-500.json.gz"
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return cuts_train
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def valid_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get dev cuts")
|
||||||
|
cuts_valid = load_manifest(
|
||||||
|
self.args.feature_dir / "cuts_dev-clean.json.gz"
|
||||||
|
) + load_manifest(self.args.feature_dir / "cuts_dev-other.json.gz")
|
||||||
|
return cuts_valid
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_cuts(self) -> List[CutSet]:
|
||||||
|
test_sets = ["test-clean", "test-other"]
|
||||||
|
cuts = []
|
||||||
|
for test_set in test_sets:
|
||||||
|
logging.debug("About to get test cuts")
|
||||||
|
cuts.append(
|
||||||
|
load_manifest(
|
||||||
|
self.args.feature_dir / f"cuts_{test_set}.json.gz"
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return cuts
|
@ -10,10 +10,10 @@ from typing import Dict, List, Optional, Tuple
|
|||||||
import k2
|
import k2
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
from model import TdnnLstm
|
from model import TdnnLstm
|
||||||
|
|
||||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
|
||||||
from icefall.decode import (
|
from icefall.decode import (
|
||||||
get_lattice,
|
get_lattice,
|
||||||
nbest_decoding,
|
nbest_decoding,
|
||||||
@ -236,7 +236,11 @@ def decode_dataset(
|
|||||||
results = []
|
results = []
|
||||||
|
|
||||||
num_cuts = 0
|
num_cuts = 0
|
||||||
tot_num_cuts = len(dl.dataset.cuts)
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
results = defaultdict(list)
|
results = defaultdict(list)
|
||||||
for batch_idx, batch in enumerate(dl):
|
for batch_idx, batch in enumerate(dl):
|
||||||
@ -263,10 +267,10 @@ def decode_dataset(
|
|||||||
num_cuts += len(batch["supervisions"]["text"])
|
num_cuts += len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
if batch_idx % 100 == 0:
|
if batch_idx % 100 == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
logging.info(
|
logging.info(
|
||||||
f"batch {batch_idx}, cuts processed until now is "
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
f"{num_cuts}/{tot_num_cuts} "
|
|
||||||
f"({float(num_cuts)/tot_num_cuts*100:.6f}%)"
|
|
||||||
)
|
)
|
||||||
return results
|
return results
|
||||||
|
|
||||||
@ -328,7 +332,9 @@ def main():
|
|||||||
|
|
||||||
logging.info(f"device: {device}")
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
HLG = k2.Fsa.from_dict(torch.load("data/lang_phone/HLG.pt"))
|
HLG = k2.Fsa.from_dict(
|
||||||
|
torch.load("data/lang_phone/HLG.pt", map_location="cpu")
|
||||||
|
)
|
||||||
HLG = HLG.to(device)
|
HLG = HLG.to(device)
|
||||||
assert HLG.requires_grad is False
|
assert HLG.requires_grad is False
|
||||||
|
|
||||||
@ -355,7 +361,7 @@ def main():
|
|||||||
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
||||||
else:
|
else:
|
||||||
logging.info("Loading pre-compiled G_4_gram.pt")
|
logging.info("Loading pre-compiled G_4_gram.pt")
|
||||||
d = torch.load(params.lm_dir / "G_4_gram.pt")
|
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu")
|
||||||
G = k2.Fsa.from_dict(d).to(device)
|
G = k2.Fsa.from_dict(d).to(device)
|
||||||
|
|
||||||
if params.method == "whole-lattice-rescoring":
|
if params.method == "whole-lattice-rescoring":
|
||||||
|
@ -1,7 +1,5 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
# This is just at the very beginning ...
|
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
@ -14,16 +12,16 @@ import torch.distributed as dist
|
|||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.optim as optim
|
import torch.optim as optim
|
||||||
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
from lhotse.utils import fix_random_seed
|
from lhotse.utils import fix_random_seed
|
||||||
from model import TdnnLstm
|
from model import TdnnLstm
|
||||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
from torch.nn.utils import clip_grad_value_
|
from torch.nn.utils import clip_grad_norm_
|
||||||
from torch.optim.lr_scheduler import StepLR
|
from torch.optim.lr_scheduler import StepLR
|
||||||
from torch.utils.tensorboard import SummaryWriter
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
|
||||||
from icefall.checkpoint import load_checkpoint
|
from icefall.checkpoint import load_checkpoint
|
||||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||||
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
|
|
||||||
from icefall.dist import cleanup_dist, setup_dist
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
@ -61,9 +59,6 @@ def get_parser():
|
|||||||
help="Should various information be logged in tensorboard.",
|
help="Should various information be logged in tensorboard.",
|
||||||
)
|
)
|
||||||
|
|
||||||
# TODO: add extra arguments and support DDP training.
|
|
||||||
# Currently, only single GPU training is implemented. Will add
|
|
||||||
# DDP training once single GPU training is finished.
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -406,7 +401,7 @@ def train_one_epoch(
|
|||||||
|
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
loss.backward()
|
loss.backward()
|
||||||
clip_grad_value_(model.parameters(), 5.0)
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
loss_cpu = loss.detach().cpu().item()
|
loss_cpu = loss.detach().cpu().item()
|
||||||
|
@ -91,7 +91,7 @@ def load_checkpoint(
|
|||||||
checkpoint.pop("model")
|
checkpoint.pop("model")
|
||||||
|
|
||||||
def load(name, obj):
|
def load(name, obj):
|
||||||
s = checkpoint[name]
|
s = checkpoint.get(name, None)
|
||||||
if obj and s:
|
if obj and s:
|
||||||
obj.load_state_dict(s)
|
obj.load_state_dict(s)
|
||||||
checkpoint.pop(name)
|
checkpoint.pop(name)
|
||||||
|
@ -1,68 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from functools import lru_cache
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
from lhotse import CutSet, load_manifest
|
|
||||||
|
|
||||||
from icefall.dataset.asr_datamodule import AsrDataModule
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
|
|
||||||
class LibriSpeechAsrDataModule(AsrDataModule):
|
|
||||||
"""
|
|
||||||
LibriSpeech ASR data module. Can be used for 100h subset
|
|
||||||
(``--full-libri false``) or full 960h set.
|
|
||||||
The train and valid cuts for standard Libri splits are
|
|
||||||
concatenated into a single CutSet/DataLoader.
|
|
||||||
"""
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
|
||||||
super().add_arguments(parser)
|
|
||||||
group = parser.add_argument_group(title="LibriSpeech specific options")
|
|
||||||
group.add_argument(
|
|
||||||
"--full-libri",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, use 960h LibriSpeech.",
|
|
||||||
)
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def train_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get train cuts")
|
|
||||||
cuts_train = load_manifest(
|
|
||||||
self.args.feature_dir / "cuts_train-clean-100.json.gz"
|
|
||||||
)
|
|
||||||
if self.args.full_libri:
|
|
||||||
cuts_train = (
|
|
||||||
cuts_train
|
|
||||||
+ load_manifest(
|
|
||||||
self.args.feature_dir / "cuts_train-clean-360.json.gz"
|
|
||||||
)
|
|
||||||
+ load_manifest(
|
|
||||||
self.args.feature_dir / "cuts_train-other-500.json.gz"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
return cuts_train
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def valid_cuts(self) -> CutSet:
|
|
||||||
logging.info("About to get dev cuts")
|
|
||||||
cuts_valid = load_manifest(
|
|
||||||
self.args.feature_dir / "cuts_dev-clean.json.gz"
|
|
||||||
) + load_manifest(self.args.feature_dir / "cuts_dev-other.json.gz")
|
|
||||||
return cuts_valid
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def test_cuts(self) -> List[CutSet]:
|
|
||||||
test_sets = ["test-clean", "test-other"]
|
|
||||||
cuts = []
|
|
||||||
for test_set in test_sets:
|
|
||||||
logging.debug("About to get test cuts")
|
|
||||||
cuts.append(
|
|
||||||
load_manifest(
|
|
||||||
self.args.feature_dir / f"cuts_{test_set}.json.gz"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
return cuts
|
|
@ -2,9 +2,42 @@ import logging
|
|||||||
from typing import Dict, List, Optional, Tuple, Union
|
from typing import Dict, List, Optional, Tuple, Union
|
||||||
|
|
||||||
import k2
|
import k2
|
||||||
|
import kaldialign
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
|
||||||
|
|
||||||
|
def _get_random_paths(
|
||||||
|
lattice: k2.Fsa,
|
||||||
|
num_paths: int,
|
||||||
|
use_double_scores: bool = True,
|
||||||
|
scale: float = 1.0,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lattice:
|
||||||
|
The decoding lattice, returned by :func:`get_lattice`.
|
||||||
|
num_paths:
|
||||||
|
It specifies the size `n` in n-best. Note: Paths are selected randomly
|
||||||
|
and those containing identical word sequences are remove dand only one
|
||||||
|
of them is kept.
|
||||||
|
use_double_scores:
|
||||||
|
True to use double precision floating point in the computation.
|
||||||
|
False to use single precision.
|
||||||
|
scale:
|
||||||
|
It's the scale applied to the lattice.scores. A smaller value
|
||||||
|
yields more unique paths.
|
||||||
|
Returns:
|
||||||
|
Return a k2.RaggedInt with 3 axes [seq][path][arc_pos]
|
||||||
|
"""
|
||||||
|
saved_scores = lattice.scores.clone()
|
||||||
|
lattice.scores *= scale
|
||||||
|
path = k2.random_paths(lattice, num_paths=num_paths, use_double_scores=True)
|
||||||
|
lattice.scores = saved_scores
|
||||||
|
return path
|
||||||
|
|
||||||
|
|
||||||
def _intersect_device(
|
def _intersect_device(
|
||||||
a_fsas: k2.Fsa,
|
a_fsas: k2.Fsa,
|
||||||
@ -129,7 +162,10 @@ def one_best_decoding(
|
|||||||
|
|
||||||
|
|
||||||
def nbest_decoding(
|
def nbest_decoding(
|
||||||
lattice: k2.Fsa, num_paths: int, use_double_scores: bool = True
|
lattice: k2.Fsa,
|
||||||
|
num_paths: int,
|
||||||
|
use_double_scores: bool = True,
|
||||||
|
scale: float = 1.0,
|
||||||
) -> k2.Fsa:
|
) -> k2.Fsa:
|
||||||
"""It implements something like CTC prefix beam search using n-best lists.
|
"""It implements something like CTC prefix beam search using n-best lists.
|
||||||
|
|
||||||
@ -152,12 +188,18 @@ def nbest_decoding(
|
|||||||
use_double_scores:
|
use_double_scores:
|
||||||
True to use double precision floating point in the computation.
|
True to use double precision floating point in the computation.
|
||||||
False to use single precision.
|
False to use single precision.
|
||||||
|
scale:
|
||||||
|
It's the scale applied to the lattice.scores. A smaller value
|
||||||
|
yields more unique paths.
|
||||||
Returns:
|
Returns:
|
||||||
An FsaVec containing linear FSAs.
|
An FsaVec containing linear FSAs.
|
||||||
"""
|
"""
|
||||||
# First, extract `num_paths` paths for each sequence.
|
path = _get_random_paths(
|
||||||
# path is a k2.RaggedInt with axes [seq][path][arc_pos]
|
lattice=lattice,
|
||||||
path = k2.random_paths(lattice, num_paths=num_paths, use_double_scores=True)
|
num_paths=num_paths,
|
||||||
|
use_double_scores=use_double_scores,
|
||||||
|
scale=scale,
|
||||||
|
)
|
||||||
|
|
||||||
# word_seq is a k2.RaggedInt sharing the same shape as `path`
|
# word_seq is a k2.RaggedInt sharing the same shape as `path`
|
||||||
# but it contains word IDs. Note that it also contains 0s and -1s.
|
# but it contains word IDs. Note that it also contains 0s and -1s.
|
||||||
@ -320,7 +362,11 @@ def compute_am_and_lm_scores(
|
|||||||
|
|
||||||
|
|
||||||
def rescore_with_n_best_list(
|
def rescore_with_n_best_list(
|
||||||
lattice: k2.Fsa, G: k2.Fsa, num_paths: int, lm_scale_list: List[float]
|
lattice: k2.Fsa,
|
||||||
|
G: k2.Fsa,
|
||||||
|
num_paths: int,
|
||||||
|
lm_scale_list: List[float],
|
||||||
|
scale: float = 1.0,
|
||||||
) -> Dict[str, k2.Fsa]:
|
) -> Dict[str, k2.Fsa]:
|
||||||
"""Decode using n-best list with LM rescoring.
|
"""Decode using n-best list with LM rescoring.
|
||||||
|
|
||||||
@ -342,6 +388,9 @@ def rescore_with_n_best_list(
|
|||||||
It is the size `n` in `n-best` list.
|
It is the size `n` in `n-best` list.
|
||||||
lm_scale_list:
|
lm_scale_list:
|
||||||
A list containing lm_scale values.
|
A list containing lm_scale values.
|
||||||
|
scale:
|
||||||
|
It's the scale applied to the lattice.scores. A smaller value
|
||||||
|
yields more unique paths.
|
||||||
Returns:
|
Returns:
|
||||||
A dict of FsaVec, whose key is an lm_scale and the value is the
|
A dict of FsaVec, whose key is an lm_scale and the value is the
|
||||||
best decoding path for each sequence in the lattice.
|
best decoding path for each sequence in the lattice.
|
||||||
@ -356,9 +405,12 @@ def rescore_with_n_best_list(
|
|||||||
assert G.device == device
|
assert G.device == device
|
||||||
assert hasattr(G, "aux_labels") is False
|
assert hasattr(G, "aux_labels") is False
|
||||||
|
|
||||||
# First, extract `num_paths` paths for each sequence.
|
path = _get_random_paths(
|
||||||
# path is a k2.RaggedInt with axes [seq][path][arc_pos]
|
lattice=lattice,
|
||||||
path = k2.random_paths(lattice, num_paths=num_paths, use_double_scores=True)
|
num_paths=num_paths,
|
||||||
|
use_double_scores=True,
|
||||||
|
scale=scale,
|
||||||
|
)
|
||||||
|
|
||||||
# word_seq is a k2.RaggedInt sharing the same shape as `path`
|
# word_seq is a k2.RaggedInt sharing the same shape as `path`
|
||||||
# but it contains word IDs. Note that it also contains 0s and -1s.
|
# but it contains word IDs. Note that it also contains 0s and -1s.
|
||||||
@ -376,7 +428,7 @@ def rescore_with_n_best_list(
|
|||||||
#
|
#
|
||||||
# num_repeats is also a k2.RaggedInt with 2 axes containing the
|
# num_repeats is also a k2.RaggedInt with 2 axes containing the
|
||||||
# multiplicities of each path.
|
# multiplicities of each path.
|
||||||
# num_repeats.num_elements() == unique_word_seqs.num_elements()
|
# num_repeats.num_elements() == unique_word_seqs.tot_size(1)
|
||||||
#
|
#
|
||||||
# Since k2.ragged.unique_sequences will reorder paths within a seq,
|
# Since k2.ragged.unique_sequences will reorder paths within a seq,
|
||||||
# `new2old` is a 1-D torch.Tensor mapping from the output path index
|
# `new2old` is a 1-D torch.Tensor mapping from the output path index
|
||||||
@ -494,6 +546,8 @@ def rescore_with_whole_lattice(
|
|||||||
del lattice.lm_scores
|
del lattice.lm_scores
|
||||||
assert hasattr(lattice, "lm_scores") is False
|
assert hasattr(lattice, "lm_scores") is False
|
||||||
|
|
||||||
|
assert hasattr(G_with_epsilon_loops, "lm_scores")
|
||||||
|
|
||||||
# Now, lattice.scores contains only am_scores
|
# Now, lattice.scores contains only am_scores
|
||||||
|
|
||||||
# inv_lattice has word IDs as labels.
|
# inv_lattice has word IDs as labels.
|
||||||
@ -549,14 +603,88 @@ def rescore_with_whole_lattice(
|
|||||||
return ans
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def nbest_oracle(
|
||||||
|
lattice: k2.Fsa,
|
||||||
|
num_paths: int,
|
||||||
|
ref_texts: List[str],
|
||||||
|
lexicon: Lexicon,
|
||||||
|
scale: float = 1.0,
|
||||||
|
) -> Dict[str, List[List[int]]]:
|
||||||
|
"""Select the best hypothesis given a lattice and a reference transcript.
|
||||||
|
|
||||||
|
The basic idea is to extract n paths from the given lattice, unique them,
|
||||||
|
and select the one that has the minimum edit distance with the corresponding
|
||||||
|
reference transcript as the decoding output.
|
||||||
|
|
||||||
|
The decoding result returned from this function is the best result that
|
||||||
|
we can obtain using n-best decoding with all kinds of rescoring techniques.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lattice:
|
||||||
|
An FsaVec. It can be the return value of :func:`get_lattice`.
|
||||||
|
Note: We assume its aux_labels contain word IDs.
|
||||||
|
num_paths:
|
||||||
|
The size of `n` in n-best.
|
||||||
|
ref_texts:
|
||||||
|
A list of reference transcript. Each entry contains space(s)
|
||||||
|
separated words
|
||||||
|
lexicon:
|
||||||
|
It is used to convert word IDs to word symbols.
|
||||||
|
scale:
|
||||||
|
It's the scale applied to the lattice.scores. A smaller value
|
||||||
|
yields more unique paths.
|
||||||
|
Return:
|
||||||
|
Return a dict. Its key contains the information about the parameters
|
||||||
|
when calling this function, while its value contains the decoding output.
|
||||||
|
`len(ans_dict) == len(ref_texts)`
|
||||||
|
"""
|
||||||
|
path = _get_random_paths(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=num_paths,
|
||||||
|
use_double_scores=True,
|
||||||
|
scale=scale,
|
||||||
|
)
|
||||||
|
|
||||||
|
word_seq = k2.index(lattice.aux_labels, path)
|
||||||
|
word_seq = k2.ragged.remove_values_leq(word_seq, 0)
|
||||||
|
unique_word_seq, _, _ = k2.ragged.unique_sequences(
|
||||||
|
word_seq, need_num_repeats=False, need_new2old_indexes=False
|
||||||
|
)
|
||||||
|
unique_word_ids = k2.ragged.to_list(unique_word_seq)
|
||||||
|
assert len(unique_word_ids) == len(ref_texts)
|
||||||
|
# unique_word_ids[i] contains all hypotheses of the i-th utterance
|
||||||
|
|
||||||
|
results = []
|
||||||
|
for hyps, ref in zip(unique_word_ids, ref_texts):
|
||||||
|
# Note hyps is a list-of-list ints
|
||||||
|
# Each sublist contains a hypothesis
|
||||||
|
ref_words = ref.strip().split()
|
||||||
|
# CAUTION: We don't convert ref_words to ref_words_ids
|
||||||
|
# since there may exist OOV words in ref_words
|
||||||
|
best_hyp_words = None
|
||||||
|
min_error = float("inf")
|
||||||
|
for hyp_words in hyps:
|
||||||
|
hyp_words = [lexicon.word_table[i] for i in hyp_words]
|
||||||
|
this_error = kaldialign.edit_distance(ref_words, hyp_words)["total"]
|
||||||
|
if this_error < min_error:
|
||||||
|
min_error = this_error
|
||||||
|
best_hyp_words = hyp_words
|
||||||
|
results.append(best_hyp_words)
|
||||||
|
|
||||||
|
return {f"nbest_{num_paths}_scale_{scale}_oracle": results}
|
||||||
|
|
||||||
|
|
||||||
def rescore_with_attention_decoder(
|
def rescore_with_attention_decoder(
|
||||||
lattice: k2.Fsa,
|
lattice: k2.Fsa,
|
||||||
num_paths: int,
|
num_paths: int,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
memory: torch.Tensor,
|
memory: torch.Tensor,
|
||||||
memory_key_padding_mask: torch.Tensor,
|
memory_key_padding_mask: Optional[torch.Tensor],
|
||||||
sos_id: int,
|
sos_id: int,
|
||||||
eos_id: int,
|
eos_id: int,
|
||||||
|
scale: float = 1.0,
|
||||||
|
ngram_lm_scale: Optional[float] = None,
|
||||||
|
attention_scale: Optional[float] = None,
|
||||||
) -> Dict[str, k2.Fsa]:
|
) -> Dict[str, k2.Fsa]:
|
||||||
"""This function extracts n paths from the given lattice and uses
|
"""This function extracts n paths from the given lattice and uses
|
||||||
an attention decoder to rescore them. The path with the highest
|
an attention decoder to rescore them. The path with the highest
|
||||||
@ -580,6 +708,13 @@ def rescore_with_attention_decoder(
|
|||||||
The token ID for SOS.
|
The token ID for SOS.
|
||||||
eos_id:
|
eos_id:
|
||||||
The token ID for EOS.
|
The token ID for EOS.
|
||||||
|
scale:
|
||||||
|
It's the scale applied to the lattice.scores. A smaller value
|
||||||
|
yields more unique paths.
|
||||||
|
ngram_lm_scale:
|
||||||
|
Optional. It specifies the scale for n-gram LM scores.
|
||||||
|
attention_scale:
|
||||||
|
Optional. It specifies the scale for attention decoder scores.
|
||||||
Returns:
|
Returns:
|
||||||
A dict of FsaVec, whose key contains a string
|
A dict of FsaVec, whose key contains a string
|
||||||
ngram_lm_scale_attention_scale and the value is the
|
ngram_lm_scale_attention_scale and the value is the
|
||||||
@ -587,7 +722,12 @@ def rescore_with_attention_decoder(
|
|||||||
"""
|
"""
|
||||||
# First, extract `num_paths` paths for each sequence.
|
# First, extract `num_paths` paths for each sequence.
|
||||||
# path is a k2.RaggedInt with axes [seq][path][arc_pos]
|
# path is a k2.RaggedInt with axes [seq][path][arc_pos]
|
||||||
path = k2.random_paths(lattice, num_paths=num_paths, use_double_scores=True)
|
path = _get_random_paths(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=num_paths,
|
||||||
|
use_double_scores=True,
|
||||||
|
scale=scale,
|
||||||
|
)
|
||||||
|
|
||||||
# word_seq is a k2.RaggedInt sharing the same shape as `path`
|
# word_seq is a k2.RaggedInt sharing the same shape as `path`
|
||||||
# but it contains word IDs. Note that it also contains 0s and -1s.
|
# but it contains word IDs. Note that it also contains 0s and -1s.
|
||||||
@ -605,12 +745,12 @@ def rescore_with_attention_decoder(
|
|||||||
#
|
#
|
||||||
# num_repeats is also a k2.RaggedInt with 2 axes containing the
|
# num_repeats is also a k2.RaggedInt with 2 axes containing the
|
||||||
# multiplicities of each path.
|
# multiplicities of each path.
|
||||||
# num_repeats.num_elements() == unique_word_seqs.num_elements()
|
# num_repeats.num_elements() == unique_word_seqs.tot_size(1)
|
||||||
#
|
#
|
||||||
# Since k2.ragged.unique_sequences will reorder paths within a seq,
|
# Since k2.ragged.unique_sequences will reorder paths within a seq,
|
||||||
# `new2old` is a 1-D torch.Tensor mapping from the output path index
|
# `new2old` is a 1-D torch.Tensor mapping from the output path index
|
||||||
# to the input path index.
|
# to the input path index.
|
||||||
# new2old.numel() == unique_word_seqs.tot_size(1)
|
# new2old.numel() == unique_word_seq.tot_size(1)
|
||||||
unique_word_seq, num_repeats, new2old = k2.ragged.unique_sequences(
|
unique_word_seq, num_repeats, new2old = k2.ragged.unique_sequences(
|
||||||
word_seq, need_num_repeats=True, need_new2old_indexes=True
|
word_seq, need_num_repeats=True, need_new2old_indexes=True
|
||||||
)
|
)
|
||||||
@ -662,11 +802,13 @@ def rescore_with_attention_decoder(
|
|||||||
path_to_seq_map_long = path_to_seq_map.to(torch.long)
|
path_to_seq_map_long = path_to_seq_map.to(torch.long)
|
||||||
expanded_memory = memory.index_select(1, path_to_seq_map_long)
|
expanded_memory = memory.index_select(1, path_to_seq_map_long)
|
||||||
|
|
||||||
|
if memory_key_padding_mask is not None:
|
||||||
expanded_memory_key_padding_mask = memory_key_padding_mask.index_select(
|
expanded_memory_key_padding_mask = memory_key_padding_mask.index_select(
|
||||||
0, path_to_seq_map_long
|
0, path_to_seq_map_long
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
expanded_memory_key_padding_mask = None
|
||||||
|
|
||||||
# TODO: pass the sos_token_id and eos_token_id via function arguments
|
|
||||||
nll = model.decoder_nll(
|
nll = model.decoder_nll(
|
||||||
memory=expanded_memory,
|
memory=expanded_memory,
|
||||||
memory_key_padding_mask=expanded_memory_key_padding_mask,
|
memory_key_padding_mask=expanded_memory_key_padding_mask,
|
||||||
@ -681,11 +823,17 @@ def rescore_with_attention_decoder(
|
|||||||
assert attention_scores.ndim == 1
|
assert attention_scores.ndim == 1
|
||||||
assert attention_scores.numel() == num_word_seqs
|
assert attention_scores.numel() == num_word_seqs
|
||||||
|
|
||||||
|
if ngram_lm_scale is None:
|
||||||
ngram_lm_scale_list = [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0]
|
ngram_lm_scale_list = [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0]
|
||||||
ngram_lm_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0]
|
ngram_lm_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0]
|
||||||
|
else:
|
||||||
|
ngram_lm_scale_list = [ngram_lm_scale]
|
||||||
|
|
||||||
|
if attention_scale is None:
|
||||||
attention_scale_list = [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0]
|
attention_scale_list = [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0]
|
||||||
attention_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0]
|
attention_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0]
|
||||||
|
else:
|
||||||
|
attention_scale_list = [attention_scale]
|
||||||
|
|
||||||
path_2axes = k2.ragged.remove_axis(path, 0)
|
path_2axes = k2.ragged.remove_axis(path, 0)
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user