Zipformer recipe for SPGISpeech (#1449)

This commit is contained in:
Xiaoyu Yang 2024-02-22 15:53:19 +08:00 committed by GitHub
parent 819bb45539
commit 2483b8b4da
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
16 changed files with 2912 additions and 18 deletions

View File

@ -1,5 +1,70 @@
## Results
### SPGISpeech BPE training results (Zipformer Transducer)
#### 2024-01-05
#### Zipformer encoder + embedding decoder
Transducer: Zipformer encoder + stateless decoder.
The WERs are:
| | dev | val | comment |
|---------------------------|------------|------------|------------------------------------------|
| greedy search | 2.08 | 2.14 | --epoch 30 --avg 10 |
| modified beam search | 2.05 | 2.09 | --epoch 30 --avg 10 --beam-size 4 |
| fast beam search | 2.07 | 2.17 | --epoch 30 --avg 10 --beam 20 --max-contexts 8 --max-states 64 |
**NOTE:** SPGISpeech transcripts can be prepared in `ortho` or `norm` ways, which refer to whether the
transcripts are orthographic or normalized. These WERs correspond to the normalized transcription
scenario.
The training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3"
python zipformer/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir zipformer/exp \
--num-workers 2 \
--max-duration 1000
```
The decoding command is:
```
# greedy search
python ./zipformer/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./zipformer/exp \
--max-duration 1000 \
--decoding-method greedy_search
# modified beam search
python ./zipformer/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./zipformer/exp \
--max-duration 1000 \
--decoding-method modified_beam_search
# fast beam search
python ./zipformer/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./zipformer/exp \
--max-duration 1000 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
```
### SPGISpeech BPE training results (Pruned Transducer)
#### 2022-05-11
@ -43,28 +108,28 @@ The decoding command is:
```
# greedy search
./pruned_transducer_stateless2/decode.py \
--iter 696000 --avg 10 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 100 \
--decoding-method greedy_search
--iter 696000 --avg 10 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 100 \
--decoding-method greedy_search
# modified beam search
./pruned_transducer_stateless2/decode.py \
--iter 696000 --avg 10 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
--iter 696000 --avg 10 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
# fast beam search
./pruned_transducer_stateless2/decode.py \
--iter 696000 --avg 10 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
--iter 696000 --avg 10 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
```
Pretrained model is available at <https://huggingface.co/desh2608/icefall-asr-spgispeech-pruned-transducer-stateless2>

View File

@ -102,6 +102,20 @@ class SPGISpeechAsrDataModule:
help="Determines the maximum duration of a concatenated cut "
"relative to the duration of the longest cut in a batch.",
)
group.add_argument(
"--drop-last",
type=str2bool,
default=False,
help="When enabled, the last batch will be dropped",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['supervisions']['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--gap",
type=float,
@ -143,7 +157,7 @@ class SPGISpeechAsrDataModule:
group.add_argument(
"--num-workers",
type=int,
default=8,
default=2,
help="The number of training dataloader workers that "
"collect the batches.",
)
@ -176,7 +190,7 @@ class SPGISpeechAsrDataModule:
The state dict for the training sampler.
"""
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(self.args.manifest_dir / "cuts_musan.jsonl.gz")
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
transforms = []
if self.args.enable_musan:
@ -223,11 +237,13 @@ class SPGISpeechAsrDataModule:
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
else:
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
logging.info("Using DynamicBucketingSampler.")
@ -276,10 +292,12 @@ class SPGISpeechAsrDataModule:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
return_cuts=self.args.return_cuts,
)
else:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
return_cuts=self.args.return_cuts,
)
valid_sampler = DynamicBucketingSampler(
cuts_valid,
@ -303,6 +321,7 @@ class SPGISpeechAsrDataModule:
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
if self.args.on_the_fly_feats
else PrecomputedFeatures(),
return_cuts=self.args.return_cuts,
)
sampler = DynamicBucketingSampler(
cuts, max_duration=self.args.max_duration, shuffle=False

View File

@ -0,0 +1 @@
../pruned_transducer_stateless2/asr_datamodule.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/decoder.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/transducer_stateless/encoder_interface.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/joiner.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/model.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/optim.py

View File

@ -0,0 +1,382 @@
#!/usr/bin/env python3
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads a checkpoint and uses it to decode waves.
You can generate the checkpoint with the following command:
Note: This is a example for spgispeech dataset, if you are using different
dataset, you should change the argument values according to your dataset.
- For non-streaming model:
./zipformer/export.py \
--exp-dir ./zipformer/exp \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 30 \
--avg 9
- For streaming model:
./zipformer/export.py \
--exp-dir ./zipformer/exp \
--causal 1 \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 30 \
--avg 9
Usage of this script:
- For non-streaming model:
(1) greedy search
./zipformer/pretrained.py \
--checkpoint ./zipformer/exp/pretrained.pt \
--tokens data/lang_bpe_500/tokens.txt \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav
(2) modified beam search
./zipformer/pretrained.py \
--checkpoint ./zipformer/exp/pretrained.pt \
--tokens ./data/lang_bpe_500/tokens.txt \
--method modified_beam_search \
/path/to/foo.wav \
/path/to/bar.wav
(3) fast beam search
./zipformer/pretrained.py \
--checkpoint ./zipformer/exp/pretrained.pt \
--tokens ./data/lang_bpe_500/tokens.txt \
--method fast_beam_search \
/path/to/foo.wav \
/path/to/bar.wav
- For streaming model:
(1) greedy search
./zipformer/pretrained.py \
--checkpoint ./zipformer/exp/pretrained.pt \
--causal 1 \
--chunk-size 16 \
--left-context-frames 128 \
--tokens ./data/lang_bpe_500/tokens.txt \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav
(2) modified beam search
./zipformer/pretrained.py \
--checkpoint ./zipformer/exp/pretrained.pt \
--causal 1 \
--chunk-size 16 \
--left-context-frames 128 \
--tokens ./data/lang_bpe_500/tokens.txt \
--method modified_beam_search \
/path/to/foo.wav \
/path/to/bar.wav
(3) fast beam search
./zipformer/pretrained.py \
--checkpoint ./zipformer/exp/pretrained.pt \
--causal 1 \
--chunk-size 16 \
--left-context-frames 128 \
--tokens ./data/lang_bpe_500/tokens.txt \
--method fast_beam_search \
/path/to/foo.wav \
/path/to/bar.wav
You can also use `./zipformer/exp/epoch-xx.pt`.
Note: ./zipformer/exp/pretrained.pt is generated by ./zipformer/export.py
"""
import argparse
import logging
import math
from typing import List
import k2
import kaldifeat
import torch
import torchaudio
from beam_search import (
fast_beam_search_one_best,
greedy_search_batch,
modified_beam_search,
)
from export import num_tokens
from torch.nn.utils.rnn import pad_sequence
from train import add_model_arguments, get_model, get_params
from icefall.utils import make_pad_mask
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint. "
"The checkpoint is assumed to be saved by "
"icefall.checkpoint.save_checkpoint().",
)
parser.add_argument(
"--tokens",
type=str,
help="""Path to tokens.txt.""",
)
parser.add_argument(
"--method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- modified_beam_search
- fast_beam_search
""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame. Used only when
--method is greedy_search.
""",
)
add_model_arguments(parser)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0].contiguous())
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
params.update(vars(args))
token_table = k2.SymbolTable.from_file(params.tokens)
params.blank_id = token_table["<blk>"]
params.unk_id = token_table["<unk>"]
params.vocab_size = num_tokens(token_table) + 1
logging.info(f"{params}")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
if params.causal:
assert (
"," not in params.chunk_size
), "chunk_size should be one value in decoding."
assert (
"," not in params.left_context_frames
), "left_context_frames should be one value in decoding."
logging.info("Creating model")
model = get_model(params)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = params.sample_rate
opts.mel_opts.num_bins = params.feature_dim
opts.mel_opts.high_freq = -400
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {params.sound_files}")
waves = read_sound_files(
filenames=params.sound_files, expected_sample_rate=params.sample_rate
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
feature_lengths = torch.tensor(feature_lengths, device=device)
# model forward
encoder_out, encoder_out_lens = model.forward_encoder(features, feature_lengths)
hyps = []
msg = f"Using {params.method}"
logging.info(msg)
def token_ids_to_words(token_ids: List[int]) -> str:
text = ""
for i in token_ids:
text += token_table[i]
return text.replace("", " ").strip()
if params.method == "fast_beam_search":
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for hyp in hyp_tokens:
hyps.append(token_ids_to_words(hyp))
elif params.method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
for hyp in hyp_tokens:
hyps.append(token_ids_to_words(hyp))
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for hyp in hyp_tokens:
hyps.append(token_ids_to_words(hyp))
else:
raise ValueError(f"Unsupported method: {params.method}")
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
s += f"{filename}:\n{hyp}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/scaling.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/scaling_converter.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/subsampling.py

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/zipformer.py