mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Zipformer recipe for SPGISpeech (#1449)
This commit is contained in:
parent
819bb45539
commit
2483b8b4da
@ -1,5 +1,70 @@
|
||||
## Results
|
||||
|
||||
### SPGISpeech BPE training results (Zipformer Transducer)
|
||||
|
||||
#### 2024-01-05
|
||||
|
||||
#### Zipformer encoder + embedding decoder
|
||||
|
||||
Transducer: Zipformer encoder + stateless decoder.
|
||||
|
||||
The WERs are:
|
||||
|
||||
| | dev | val | comment |
|
||||
|---------------------------|------------|------------|------------------------------------------|
|
||||
| greedy search | 2.08 | 2.14 | --epoch 30 --avg 10 |
|
||||
| modified beam search | 2.05 | 2.09 | --epoch 30 --avg 10 --beam-size 4 |
|
||||
| fast beam search | 2.07 | 2.17 | --epoch 30 --avg 10 --beam 20 --max-contexts 8 --max-states 64 |
|
||||
|
||||
**NOTE:** SPGISpeech transcripts can be prepared in `ortho` or `norm` ways, which refer to whether the
|
||||
transcripts are orthographic or normalized. These WERs correspond to the normalized transcription
|
||||
scenario.
|
||||
|
||||
The training command for reproducing is given below:
|
||||
|
||||
```
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
python zipformer/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 1 \
|
||||
--use-fp16 1 \
|
||||
--exp-dir zipformer/exp \
|
||||
--num-workers 2 \
|
||||
--max-duration 1000
|
||||
```
|
||||
|
||||
The decoding command is:
|
||||
```
|
||||
# greedy search
|
||||
python ./zipformer/decode.py \
|
||||
--epoch $epoch \
|
||||
--avg $avg \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 1000 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
# modified beam search
|
||||
python ./zipformer/decode.py \
|
||||
--epoch $epoch \
|
||||
--avg $avg \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 1000 \
|
||||
--decoding-method modified_beam_search
|
||||
|
||||
# fast beam search
|
||||
python ./zipformer/decode.py \
|
||||
--epoch $epoch \
|
||||
--avg $avg \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 1000 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
```
|
||||
|
||||
### SPGISpeech BPE training results (Pruned Transducer)
|
||||
|
||||
#### 2022-05-11
|
||||
@ -43,28 +108,28 @@ The decoding command is:
|
||||
```
|
||||
# greedy search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--iter 696000 --avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method greedy_search
|
||||
--iter 696000 --avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
# modified beam search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--iter 696000 --avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
--iter 696000 --avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
# fast beam search
|
||||
./pruned_transducer_stateless2/decode.py \
|
||||
--iter 696000 --avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 1500 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
--iter 696000 --avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||
--max-duration 1500 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
```
|
||||
|
||||
Pretrained model is available at <https://huggingface.co/desh2608/icefall-asr-spgispeech-pruned-transducer-stateless2>
|
||||
|
@ -102,6 +102,20 @@ class SPGISpeechAsrDataModule:
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, the last batch will be dropped",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
@ -143,7 +157,7 @@ class SPGISpeechAsrDataModule:
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=8,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
@ -176,7 +190,7 @@ class SPGISpeechAsrDataModule:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "cuts_musan.jsonl.gz")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
|
||||
transforms = []
|
||||
if self.args.enable_musan:
|
||||
@ -223,11 +237,13 @@ class SPGISpeechAsrDataModule:
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
@ -276,10 +292,12 @@ class SPGISpeechAsrDataModule:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
@ -303,6 +321,7 @@ class SPGISpeechAsrDataModule:
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||
|
1
egs/spgispeech/ASR/zipformer/asr_datamodule.py
Symbolic link
1
egs/spgispeech/ASR/zipformer/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/asr_datamodule.py
|
1
egs/spgispeech/ASR/zipformer/beam_search.py
Symbolic link
1
egs/spgispeech/ASR/zipformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py
|
1052
egs/spgispeech/ASR/zipformer/decode.py
Executable file
1052
egs/spgispeech/ASR/zipformer/decode.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/spgispeech/ASR/zipformer/decoder.py
Symbolic link
1
egs/spgispeech/ASR/zipformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decoder.py
|
1
egs/spgispeech/ASR/zipformer/encoder_interface.py
Symbolic link
1
egs/spgispeech/ASR/zipformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/transducer_stateless/encoder_interface.py
|
1
egs/spgispeech/ASR/zipformer/joiner.py
Symbolic link
1
egs/spgispeech/ASR/zipformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/joiner.py
|
1
egs/spgispeech/ASR/zipformer/model.py
Symbolic link
1
egs/spgispeech/ASR/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/model.py
|
1
egs/spgispeech/ASR/zipformer/optim.py
Symbolic link
1
egs/spgispeech/ASR/zipformer/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/optim.py
|
382
egs/spgispeech/ASR/zipformer/pretrained.py
Executable file
382
egs/spgispeech/ASR/zipformer/pretrained.py
Executable file
@ -0,0 +1,382 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This script loads a checkpoint and uses it to decode waves.
|
||||
You can generate the checkpoint with the following command:
|
||||
|
||||
Note: This is a example for spgispeech dataset, if you are using different
|
||||
dataset, you should change the argument values according to your dataset.
|
||||
|
||||
- For non-streaming model:
|
||||
|
||||
./zipformer/export.py \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--tokens data/lang_bpe_500/tokens.txt \
|
||||
--epoch 30 \
|
||||
--avg 9
|
||||
|
||||
- For streaming model:
|
||||
|
||||
./zipformer/export.py \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--causal 1 \
|
||||
--tokens data/lang_bpe_500/tokens.txt \
|
||||
--epoch 30 \
|
||||
--avg 9
|
||||
|
||||
Usage of this script:
|
||||
|
||||
- For non-streaming model:
|
||||
|
||||
(1) greedy search
|
||||
./zipformer/pretrained.py \
|
||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||
--tokens data/lang_bpe_500/tokens.txt \
|
||||
--method greedy_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(2) modified beam search
|
||||
./zipformer/pretrained.py \
|
||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||
--method modified_beam_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(3) fast beam search
|
||||
./zipformer/pretrained.py \
|
||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||
--method fast_beam_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
- For streaming model:
|
||||
|
||||
(1) greedy search
|
||||
./zipformer/pretrained.py \
|
||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||
--causal 1 \
|
||||
--chunk-size 16 \
|
||||
--left-context-frames 128 \
|
||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||
--method greedy_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(2) modified beam search
|
||||
./zipformer/pretrained.py \
|
||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||
--causal 1 \
|
||||
--chunk-size 16 \
|
||||
--left-context-frames 128 \
|
||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||
--method modified_beam_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
(3) fast beam search
|
||||
./zipformer/pretrained.py \
|
||||
--checkpoint ./zipformer/exp/pretrained.pt \
|
||||
--causal 1 \
|
||||
--chunk-size 16 \
|
||||
--left-context-frames 128 \
|
||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||
--method fast_beam_search \
|
||||
/path/to/foo.wav \
|
||||
/path/to/bar.wav
|
||||
|
||||
|
||||
You can also use `./zipformer/exp/epoch-xx.pt`.
|
||||
|
||||
Note: ./zipformer/exp/pretrained.pt is generated by ./zipformer/export.py
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
import torch
|
||||
import torchaudio
|
||||
from beam_search import (
|
||||
fast_beam_search_one_best,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from export import num_tokens
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall.utils import make_pad_mask
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--checkpoint",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint. "
|
||||
"The checkpoint is assumed to be saved by "
|
||||
"icefall.checkpoint.save_checkpoint().",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
help="""Path to tokens.txt.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="The sample rate of the input sound file",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame. Used only when
|
||||
--method is greedy_search.
|
||||
""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert (
|
||||
sample_rate == expected_sample_rate
|
||||
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
|
||||
params.update(vars(args))
|
||||
|
||||
token_table = k2.SymbolTable.from_file(params.tokens)
|
||||
|
||||
params.blank_id = token_table["<blk>"]
|
||||
params.unk_id = token_table["<unk>"]
|
||||
params.vocab_size = num_tokens(token_table) + 1
|
||||
|
||||
logging.info(f"{params}")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
if params.causal:
|
||||
assert (
|
||||
"," not in params.chunk_size
|
||||
), "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
|
||||
logging.info("Creating model")
|
||||
model = get_model(params)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||
model.load_state_dict(checkpoint["model"], strict=False)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = params.sample_rate
|
||||
opts.mel_opts.num_bins = params.feature_dim
|
||||
opts.mel_opts.high_freq = -400
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {params.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.size(0) for f in features]
|
||||
|
||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||
|
||||
# model forward
|
||||
encoder_out, encoder_out_lens = model.forward_encoder(features, feature_lengths)
|
||||
|
||||
hyps = []
|
||||
msg = f"Using {params.method}"
|
||||
logging.info(msg)
|
||||
|
||||
def token_ids_to_words(token_ids: List[int]) -> str:
|
||||
text = ""
|
||||
for i in token_ids:
|
||||
text += token_table[i]
|
||||
return text.replace("▁", " ").strip()
|
||||
|
||||
if params.method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in hyp_tokens:
|
||||
hyps.append(token_ids_to_words(hyp))
|
||||
elif params.method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
|
||||
for hyp in hyp_tokens:
|
||||
hyps.append(token_ids_to_words(hyp))
|
||||
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for hyp in hyp_tokens:
|
||||
hyps.append(token_ids_to_words(hyp))
|
||||
else:
|
||||
raise ValueError(f"Unsupported method: {params.method}")
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
s += f"{filename}:\n{hyp}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
1
egs/spgispeech/ASR/zipformer/scaling.py
Symbolic link
1
egs/spgispeech/ASR/zipformer/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling.py
|
1
egs/spgispeech/ASR/zipformer/scaling_converter.py
Symbolic link
1
egs/spgispeech/ASR/zipformer/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling_converter.py
|
1
egs/spgispeech/ASR/zipformer/subsampling.py
Symbolic link
1
egs/spgispeech/ASR/zipformer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/subsampling.py
|
1365
egs/spgispeech/ASR/zipformer/train.py
Executable file
1365
egs/spgispeech/ASR/zipformer/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/spgispeech/ASR/zipformer/zipformer.py
Symbolic link
1
egs/spgispeech/ASR/zipformer/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/zipformer.py
|
Loading…
x
Reference in New Issue
Block a user