From 237708d1c3efed75300f32808ee15824588125cf Mon Sep 17 00:00:00 2001 From: dohe0342 Date: Tue, 3 Jan 2023 17:04:58 +0900 Subject: [PATCH] from local --- egs/librispeech/ASR/.run_adapter.sh.swp | Bin 12288 -> 12288 bytes .../.data2vec_audio.py.swp | Bin 45056 -> 45056 bytes .../data2vec_audio.py | 2 +- 3 files changed, 1 insertion(+), 1 deletion(-) diff --git a/egs/librispeech/ASR/.run_adapter.sh.swp b/egs/librispeech/ASR/.run_adapter.sh.swp index b83ad4d92cda5a0606ef1389e938aa02f6d6ba88..06138da613719961d698caa49299d75271bfe9c0 100644 GIT binary patch delta 31 lcmZojXh;xCG6?hZRj|}EU;qLE1_rB#o0GW}Hj2H{2LOR32v`6B delta 31 lcmZojXh;xCG6?hZRj|}EU;qLE1_pzNo0IR#Zxnl_4*-Rz2_FCe diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index 5c0e5dbe472f6eb66ed883c9e6d89559d45edbe5..62292f92a5af0cd836e9102fc8811dba1adc5b10 100644 GIT binary patch delta 352 zcmWN@F-rmg0EXeOGtD!*5L{dp;aVDUXiIO2nybMf$?#~5Ajj|;1V=+#6)YWEGH%NT z9dwC`pq3`r7XLtzy~6{KH#NMe(O;|w`vJ*rnDtDhU`dCF<8wuNKp75FNMaV1o-sxj zx46J5irB_F5?FL0!wK?8G^ENuZIt Q5Bpo!$L7L@-)R+M|Kx`_ivR!s delta 349 zcmWN@KT84u0EgjUXKJUNC@!rY!MO-VgPXWS&DGG5C3FNWf#@jQ4T7uTF8FU~O1LQ- zbclwi2y$t2Z0QRqN$>E$<1Y+HKBr6wv!VjYp*@rHZUQNt;Uk%E*Z4lJy~(h}cz!UTP^;Nl7;I6?L9B@`s> N8`Id!2mS6v>L2>oHb(#e diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index dd0507e05..aba350f42 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -43,7 +43,7 @@ class TransformerEncoderAdapter(TransformerEncoder): for p in self.adapters.parameters(): # p.data = nn.Parameter(torch.zeros(p.size()).to('cuda')) - p.data = nn.Parameter(torch.randn(p.size()).to('cuda')/100.) + p.data = nn.Parameter(torch.randn(p.size()).to('cuda')/20.) def forward(self, x, padding_mask=None, layer=None, tgt_layer=None): x, layer_results = self.extract_features_with_adapter(