minor updates

This commit is contained in:
JinZr 2024-10-09 14:04:21 +08:00
parent 43267e3e29
commit 2356621059
3 changed files with 19 additions and 205 deletions

View File

@ -157,27 +157,7 @@ class Encodec(nn.Module):
x=speech, x_hat=speech_hat x=speech, x_hat=speech_hat
) )
# loss, rec_loss, adv_loss, feat_loss, d_weight = loss_g(
# commit_loss,
# speech,
# speech_hat,
# fmap,
# fmap_hat,
# y,
# y_hat,
# y_p,
# y_p_hat,
# y_s,
# y_s_hat,
# fmap_p,
# fmap_p_hat,
# fmap_s,
# fmap_s_hat,
# args=self.params,
# )
stats = dict( stats = dict(
# generator_loss=loss.item(),
generator_wav_reconstruction_loss=wav_reconstruction_loss.item(), generator_wav_reconstruction_loss=wav_reconstruction_loss.item(),
generator_mel_reconstruction_loss=mel_reconstruction_loss.item(), generator_mel_reconstruction_loss=mel_reconstruction_loss.item(),
generator_feature_stft_loss=feature_stft_loss.item(), generator_feature_stft_loss=feature_stft_loss.item(),
@ -187,7 +167,6 @@ class Encodec(nn.Module):
generator_period_adv_loss=gen_period_adv_loss.item(), generator_period_adv_loss=gen_period_adv_loss.item(),
generator_scale_adv_loss=gen_scale_adv_loss.item(), generator_scale_adv_loss=gen_scale_adv_loss.item(),
generator_commit_loss=commit_loss.item(), generator_commit_loss=commit_loss.item(),
# d_weight=d_weight.item(),
) )
if return_sample: if return_sample:
@ -260,18 +239,16 @@ class Encodec(nn.Module):
speech_hat.contiguous().detach() speech_hat.contiguous().detach()
) )
disc_period_real_adv_loss, disc_period_fake_adv_loss = torch.tensor( disc_period_real_adv_loss = torch.tensor(0.0)
0.0 disc_period_fake_adv_loss = torch.tensor(0.0)
), torch.tensor(0.0)
if self.multi_period_discriminator is not None: if self.multi_period_discriminator is not None:
y_p, y_p_hat, fmap_p, fmap_p_hat = self.multi_period_discriminator( y_p, y_p_hat, fmap_p, fmap_p_hat = self.multi_period_discriminator(
speech.contiguous(), speech.contiguous(),
speech_hat.contiguous().detach(), speech_hat.contiguous().detach(),
) )
disc_scale_real_adv_loss, disc_scale_fake_adv_loss = torch.tensor( disc_scale_real_adv_loss = torch.tensor(0.0)
0.0 disc_scale_fake_adv_loss = torch.tensor(0.0)
), torch.tensor(0.0)
if self.multi_scale_discriminator is not None: if self.multi_scale_discriminator is not None:
y_s, y_s_hat, fmap_s, fmap_s_hat = self.multi_scale_discriminator( y_s, y_s_hat, fmap_s, fmap_s_hat = self.multi_scale_discriminator(
speech.contiguous(), speech.contiguous(),

View File

@ -317,171 +317,3 @@ class WavReconstructionLoss(torch.nn.Module):
wav_loss = F.l1_loss(x, x_hat) wav_loss = F.l1_loss(x, x_hat)
return wav_loss return wav_loss
def adversarial_g_loss(y_disc_gen):
"""Hinge loss"""
loss = 0.0
for i in range(len(y_disc_gen)):
stft_loss = F.relu(1 - y_disc_gen[i]).mean().squeeze()
loss += stft_loss
return loss / len(y_disc_gen)
def feature_loss(fmap_r, fmap_gen):
loss = 0.0
for i in range(len(fmap_r)):
for j in range(len(fmap_r[i])):
stft_loss = (
(fmap_r[i][j] - fmap_gen[i][j]).abs() / (fmap_r[i][j].abs().mean())
).mean()
loss += stft_loss
return loss / (len(fmap_r) * len(fmap_r[0]))
def sim_loss(y_disc_r, y_disc_gen):
loss = 0.0
for i in range(len(y_disc_r)):
loss += F.mse_loss(y_disc_r[i], y_disc_gen[i])
return loss / len(y_disc_r)
def reconstruction_loss(x, x_hat, args, eps=1e-7):
# NOTE (lsx): hard-coded now
L = args.lambda_wav * F.mse_loss(x, x_hat) # wav L1 loss
# loss_sisnr = sisnr_loss(G_x, x) #
# L += 0.01*loss_sisnr
# 2^6=64 -> 2^10=1024
# NOTE (lsx): add 2^11
for i in range(6, 12):
# for i in range(5, 12): # Encodec setting
s = 2**i
melspec = MelSpectrogram(
sample_rate=args.sampling_rate,
n_fft=max(s, 512),
win_length=s,
hop_length=s // 4,
n_mels=64,
wkwargs={"device": x_hat.device},
).to(x_hat.device)
S_x = melspec(x)
S_x_hat = melspec(x_hat)
l1_loss = (S_x - S_x_hat).abs().mean()
l2_loss = (
((torch.log(S_x.abs() + eps) - torch.log(S_x_hat.abs() + eps)) ** 2).mean(
dim=-2
)
** 0.5
).mean()
alpha = (s / 2) ** 0.5
L += l1_loss + alpha * l2_loss
return L
def adopt_weight(weight, global_step, threshold=0, value=0.0):
if global_step < threshold:
weight = value
return weight
def calculate_adaptive_weight(nll_loss, g_loss, last_layer, args):
if last_layer is not None:
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
else:
print("last_layer cannot be none")
assert 1 == 2
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
d_weight = torch.clamp(d_weight, 1.0, 1.0).detach()
d_weight = d_weight * args.lambda_adv
return d_weight
def loss_g(
codebook_loss,
speech,
speech_hat,
fmap,
fmap_hat,
y,
y_hat,
y_df,
y_df_hat,
y_ds,
y_ds_hat,
fmap_f,
fmap_f_hat,
fmap_s,
fmap_s_hat,
args=None,
):
"""
args:
codebook_loss: commit loss.
speech: ground-truth wav.
speech_hat: reconstructed wav.
fmap: real stft-D feature map.
fmap_hat: fake stft-D feature map.
y: real stft-D logits.
y_hat: fake stft-D logits.
global_step: global training step.
y_df: real MPD logits.
y_df_hat: fake MPD logits.
y_ds: real MSD logits.
y_ds_hat: fake MSD logits.
fmap_f: real MPD feature map.
fmap_f_hat: fake MPD feature map.
fmap_s: real MSD feature map.
fmap_s_hat: fake MSD feature map.
"""
rec_loss = reconstruction_loss(speech.contiguous(), speech_hat.contiguous(), args)
adv_g_loss = adversarial_g_loss(y_hat)
adv_mpd_loss = adversarial_g_loss(y_df_hat)
adv_msd_loss = adversarial_g_loss(y_ds_hat)
adv_loss = (
adv_g_loss + adv_mpd_loss + adv_msd_loss
) / 3.0 # NOTE(lsx): need to divide by 3?
feat_loss = feature_loss(
fmap, fmap_hat
) # + sim_loss(y_disc_r, y_disc_gen) # NOTE(lsx): need logits?
feat_loss_mpd = feature_loss(
fmap_f, fmap_f_hat
) # + sim_loss(y_df_hat_r, y_df_hat_g)
feat_loss_msd = feature_loss(
fmap_s, fmap_s_hat
) # + sim_loss(y_ds_hat_r, y_ds_hat_g)
feat_loss_tot = (feat_loss + feat_loss_mpd + feat_loss_msd) / 3.0
d_weight = torch.tensor(1.0)
# disc_factor = adopt_weight(
# args.lambda_adv, global_step, threshold=args.discriminator_iter_start
# )
disc_factor = 1
if disc_factor == 0.0:
fm_loss_wt = 0
else:
fm_loss_wt = args.lambda_feat
loss = (
rec_loss
+ d_weight * disc_factor * adv_loss
+ fm_loss_wt * feat_loss_tot
+ args.lambda_com * codebook_loss
)
return loss, rec_loss, adv_loss, feat_loss_tot, d_weight
if __name__ == "__main__":
# la = FeatureLoss(average_by_layers=True, average_by_discriminators=True)
# aa = [torch.rand(192, 192) for _ in range(3)]
# bb = [torch.rand(192, 192) for _ in range(3)]
# print(la(bb, aa))
# print(feature_loss(aa, bb))
la = GeneratorAdversarialLoss(average_by_discriminators=True, loss_type="hinge")
aa = torch.Tensor([0.1, 0.2, 0.3, 0.4])
bb = torch.Tensor([0.4, 0.3, 0.2, 0.1])
print(la(aa))
print(adversarial_g_loss(aa))
print(la(bb))
print(adversarial_g_loss(bb))

View File

@ -14,7 +14,6 @@ import torch.nn as nn
from codec_datamodule import LibriTTSCodecDataModule from codec_datamodule import LibriTTSCodecDataModule
from encodec import Encodec from encodec import Encodec
from lhotse.utils import fix_random_seed from lhotse.utils import fix_random_seed
from loss import adopt_weight
from scheduler import WarmupCosineLrScheduler from scheduler import WarmupCosineLrScheduler
from torch import nn from torch import nn
from torch.cuda.amp import GradScaler, autocast from torch.cuda.amp import GradScaler, autocast
@ -189,10 +188,10 @@ def get_params() -> AttributeDict:
"audio_normalization": False, "audio_normalization": False,
"chunk_size": 1.0, # in seconds "chunk_size": 1.0, # in seconds
"lambda_adv": 3.0, # loss scaling coefficient for adversarial loss "lambda_adv": 3.0, # loss scaling coefficient for adversarial loss
"lambda_wav": 1.0, # loss scaling coefficient for waveform loss "lambda_wav": 0.1, # loss scaling coefficient for waveform loss
"lambda_feat": 3.0, # loss scaling coefficient for feat loss "lambda_feat": 4.0, # loss scaling coefficient for feat loss
"lambda_rec": 1.0, # loss scaling coefficient for reconstruction loss "lambda_rec": 1.0, # loss scaling coefficient for reconstruction loss
"lambda_com": 100.0, # loss scaling coefficient for commitment loss "lambda_com": 1.0, # loss scaling coefficient for commitment loss
} }
) )
@ -361,6 +360,12 @@ def prepare_input(
return audio, audio_lens, features, features_lens return audio, audio_lens, features, features_lens
def train_discriminator(weight, global_step, threshold=0, value=0.0):
if global_step < threshold:
weight = value
return weight
def train_one_epoch( def train_one_epoch(
params: AttributeDict, params: AttributeDict,
model: Union[nn.Module, DDP], model: Union[nn.Module, DDP],
@ -447,7 +452,7 @@ def train_one_epoch(
try: try:
with autocast(enabled=params.use_fp16): with autocast(enabled=params.use_fp16):
d_weight = adopt_weight( d_weight = train_discriminator(
params.lambda_adv, params.lambda_adv,
params.cur_epoch, params.cur_epoch,
threshold=params.discriminator_epoch_start, threshold=params.discriminator_epoch_start,
@ -483,7 +488,7 @@ def train_one_epoch(
scaler.step(optimizer_d) scaler.step(optimizer_d)
with autocast(enabled=params.use_fp16): with autocast(enabled=params.use_fp16):
g_weight = adopt_weight( g_weight = train_discriminator(
params.lambda_adv, params.lambda_adv,
params.cur_epoch, params.cur_epoch,
threshold=params.discriminator_epoch_start, threshold=params.discriminator_epoch_start,
@ -702,7 +707,7 @@ def compute_validation_loss(
loss_info = MetricsTracker() loss_info = MetricsTracker()
loss_info["samples"] = batch_size loss_info["samples"] = batch_size
d_weight = adopt_weight( d_weight = train_discriminator(
params.lambda_adv, params.lambda_adv,
params.cur_epoch, params.cur_epoch,
threshold=params.discriminator_epoch_start, threshold=params.discriminator_epoch_start,
@ -735,7 +740,7 @@ def compute_validation_loss(
for k, v in stats_d.items(): for k, v in stats_d.items():
loss_info[k] = v * batch_size loss_info[k] = v * batch_size
g_weight = adopt_weight( g_weight = train_discriminator(
params.lambda_adv, params.lambda_adv,
params.cur_epoch, params.cur_epoch,
threshold=params.discriminator_epoch_start, threshold=params.discriminator_epoch_start,
@ -845,7 +850,7 @@ def scan_pessimistic_batches_for_oom(
+ disc_period_fake_adv_loss + disc_period_fake_adv_loss
+ disc_scale_real_adv_loss + disc_scale_real_adv_loss
+ disc_scale_fake_adv_loss + disc_scale_fake_adv_loss
) * adopt_weight( ) * train_discriminator(
params.lambda_adv, params.lambda_adv,
params.cur_epoch, params.cur_epoch,
threshold=params.discriminator_train_start, threshold=params.discriminator_train_start,
@ -873,7 +878,7 @@ def scan_pessimistic_batches_for_oom(
) )
loss_g = ( loss_g = (
(gen_stft_adv_loss + gen_period_adv_loss + gen_scale_adv_loss) (gen_stft_adv_loss + gen_period_adv_loss + gen_scale_adv_loss)
* adopt_weight( * train_discriminator(
params.lambda_adv, params.lambda_adv,
0, 0,
threshold=params.discriminator_epoch_start, threshold=params.discriminator_epoch_start,