mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Begin to use multiple datasets in training (#213)
* Begin to use multiple datasets. * Finish preparing training datasets. * Minor fixes * Copy files. * Finish training code. * Display losses for gigaspeech and librispeech separately. * Fix decode.py * Make the probability to select a batch from GigaSpeech configurable. * Update results. * Minor fixes.
This commit is contained in:
parent
1c35ae1dba
commit
2332ba312d
152
.github/workflows/run-pretrained-transducer-stateless-librispeech-100h.yml
vendored
Normal file
152
.github/workflows/run-pretrained-transducer-stateless-librispeech-100h.yml
vendored
Normal file
@ -0,0 +1,152 @@
|
|||||||
|
# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
|
||||||
|
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
name: run-pre-trained-trandsucer-stateless-multi-datasets-librispeech-100h
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
pull_request:
|
||||||
|
types: [labeled]
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
run_pre_trained_transducer_stateless_multi_datasets_librispeech_100h:
|
||||||
|
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-18.04]
|
||||||
|
python-version: [3.7, 3.8, 3.9]
|
||||||
|
torch: ["1.10.0"]
|
||||||
|
torchaudio: ["0.10.0"]
|
||||||
|
k2-version: ["1.9.dev20211101"]
|
||||||
|
|
||||||
|
fail-fast: false
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Setup Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v1
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
|
||||||
|
- name: Install Python dependencies
|
||||||
|
run: |
|
||||||
|
python3 -m pip install --upgrade pip pytest
|
||||||
|
# numpy 1.20.x does not support python 3.6
|
||||||
|
pip install numpy==1.19
|
||||||
|
pip install torch==${{ matrix.torch }}+cpu torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
||||||
|
pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
|
||||||
|
|
||||||
|
python3 -m pip install git+https://github.com/lhotse-speech/lhotse
|
||||||
|
python3 -m pip install kaldifeat
|
||||||
|
# We are in ./icefall and there is a file: requirements.txt in it
|
||||||
|
pip install -r requirements.txt
|
||||||
|
|
||||||
|
- name: Install graphviz
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
python3 -m pip install -qq graphviz
|
||||||
|
sudo apt-get -qq install graphviz
|
||||||
|
|
||||||
|
- name: Download pre-trained model
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
sudo apt-get -qq install git-lfs tree sox
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
mkdir tmp
|
||||||
|
cd tmp
|
||||||
|
git lfs install
|
||||||
|
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21
|
||||||
|
|
||||||
|
cd ..
|
||||||
|
tree tmp
|
||||||
|
soxi tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/*.wav
|
||||||
|
ls -lh tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/*.wav
|
||||||
|
|
||||||
|
- name: Run greedy search decoding (max-sym-per-frame 1)
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
export PYTHONPATH=$PWD:PYTHONPATH
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
./transducer_stateless_multi_datasets/pretrained.py \
|
||||||
|
--method greedy_search \
|
||||||
|
--max-sym-per-frame 1 \
|
||||||
|
--checkpoint ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/exp/pretrained.pt \
|
||||||
|
--bpe-model ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/data/lang_bpe_500/bpe.model \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1089-134686-0001.wav \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0001.wav \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0002.wav
|
||||||
|
|
||||||
|
- name: Run greedy search decoding (max-sym-per-frame 2)
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
export PYTHONPATH=$PWD:PYTHONPATH
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
./transducer_stateless_multi_datasets/pretrained.py \
|
||||||
|
--method greedy_search \
|
||||||
|
--max-sym-per-frame 2 \
|
||||||
|
--checkpoint ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/exp/pretrained.pt \
|
||||||
|
--bpe-model ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/data/lang_bpe_500/bpe.model \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1089-134686-0001.wav \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0001.wav \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0002.wav
|
||||||
|
|
||||||
|
- name: Run greedy search decoding (max-sym-per-frame 3)
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
export PYTHONPATH=$PWD:PYTHONPATH
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
./transducer_stateless_multi_datasets/pretrained.py \
|
||||||
|
--method greedy_search \
|
||||||
|
--max-sym-per-frame 3 \
|
||||||
|
--checkpoint ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/exp/pretrained.pt \
|
||||||
|
--bpe-model ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/data/lang_bpe_500/bpe.model \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1089-134686-0001.wav \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0001.wav \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0002.wav
|
||||||
|
|
||||||
|
- name: Run beam search decoding
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
./transducer_stateless_multi_datasets/pretrained.py \
|
||||||
|
--method beam_search \
|
||||||
|
--beam-size 4 \
|
||||||
|
--checkpoint ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/exp/pretrained.pt \
|
||||||
|
--bpe-model ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/data/lang_bpe_500/bpe.model \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1089-134686-0001.wav \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0001.wav \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0002.wav
|
||||||
|
|
||||||
|
- name: Run modified beam search decoding
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
./transducer_stateless_multi_datasets/pretrained.py \
|
||||||
|
--method modified_beam_search \
|
||||||
|
--beam-size 4 \
|
||||||
|
--checkpoint ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/exp/pretrained.pt \
|
||||||
|
--bpe-model ./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/data/lang_bpe_500/bpe.model \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1089-134686-0001.wav \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0001.wav \
|
||||||
|
./tmp/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/test_wavs/1221-135766-0002.wav
|
@ -9,11 +9,12 @@ for how to run models in this recipe.
|
|||||||
There are various folders containing the name `transducer` in this folder.
|
There are various folders containing the name `transducer` in this folder.
|
||||||
The following table lists the differences among them.
|
The following table lists the differences among them.
|
||||||
|
|
||||||
| | Encoder | Decoder |
|
| | Encoder | Decoder | Comment |
|
||||||
|------------------------|-----------|--------------------|
|
|---------------------------------------|-----------|--------------------|---------------------------------------------------|
|
||||||
| `transducer` | Conformer | LSTM |
|
| `transducer` | Conformer | LSTM | |
|
||||||
| `transducer_stateless` | Conformer | Embedding + Conv1d |
|
| `transducer_stateless` | Conformer | Embedding + Conv1d | |
|
||||||
| `transducer_lstm ` | LSTM | LSTM |
|
| `transducer_lstm` | LSTM | LSTM | |
|
||||||
|
| `transducer_stateless_multi_datasets` | Conformer | Embedding + Conv1d | Using data from GigaSpeech as extra training data |
|
||||||
|
|
||||||
The decoder in `transducer_stateless` is modified from the paper
|
The decoder in `transducer_stateless` is modified from the paper
|
||||||
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/).
|
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/).
|
||||||
|
75
egs/librispeech/ASR/RESULTS-100hours.md
Normal file
75
egs/librispeech/ASR/RESULTS-100hours.md
Normal file
@ -0,0 +1,75 @@
|
|||||||
|
# Results for train-clean-100
|
||||||
|
|
||||||
|
This page shows the WERs for test-clean/test-other using only
|
||||||
|
train-clean-100 subset as training data.
|
||||||
|
|
||||||
|
## Conformer encoder + embedding decoder
|
||||||
|
|
||||||
|
### 2022-02-21
|
||||||
|
|
||||||
|
| | test-clean | test-other | comment |
|
||||||
|
|-------------------------------------|------------|------------|------------------------------------------|
|
||||||
|
| greedy search (max sym per frame 1) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 |
|
||||||
|
| greedy search (max sym per frame 2) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 |
|
||||||
|
| greedy search (max sym per frame 3) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 |
|
||||||
|
| modified beam search (beam size 4) | 6.31 | 16.3 | --epoch 57, --avg 17, --max-duration 100 |
|
||||||
|
|
||||||
|
|
||||||
|
The training command for reproducing is given below:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd egs/librispeech/ASR/
|
||||||
|
./prepare.sh
|
||||||
|
./prepare_giga_speech.sh
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1"
|
||||||
|
|
||||||
|
./transducer_stateless_multi_datasets/train.py \
|
||||||
|
--world-size 2 \
|
||||||
|
--num-epochs 60 \
|
||||||
|
--start-epoch 0 \
|
||||||
|
--exp-dir transducer_stateless_multi_datasets/exp-100-2 \
|
||||||
|
--full-libri 0 \
|
||||||
|
--max-duration 300 \
|
||||||
|
--lr-factor 1 \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--modified-transducer-prob 0.25
|
||||||
|
--giga-prob 0.2
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding command is given below:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
for epoch in 57; do
|
||||||
|
for avg in 17; do
|
||||||
|
for sym in 1 2 3; do
|
||||||
|
./transducer_stateless_multi_datasets/decode.py \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg \
|
||||||
|
--exp-dir transducer_stateless_multi_datasets/exp-100-2 \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--max-duration 100 \
|
||||||
|
--context-size 2 \
|
||||||
|
--max-sym-per-frame $sym
|
||||||
|
done
|
||||||
|
done
|
||||||
|
done
|
||||||
|
|
||||||
|
epoch=57
|
||||||
|
avg=17
|
||||||
|
./transducer_stateless_multi_datasets/decode.py \
|
||||||
|
--epoch $epoch \
|
||||||
|
--avg $avg \
|
||||||
|
--exp-dir transducer_stateless_multi_datasets/exp-100-2 \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--max-duration 100 \
|
||||||
|
--context-size 2 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
```
|
||||||
|
|
||||||
|
The tensorboard log is available at
|
||||||
|
<https://tensorboard.dev/experiment/qUEKzMnrTZmOz1EXPda9RA/>
|
||||||
|
|
||||||
|
A pre-trained model and decoding logs can be found at
|
||||||
|
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21>
|
@ -28,7 +28,7 @@ import os
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer
|
from lhotse import ChunkedLilcomHdf5Writer, CutSet, Fbank, FbankConfig
|
||||||
from lhotse.recipes.utils import read_manifests_if_cached
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
from icefall.utils import get_executor
|
from icefall.utils import get_executor
|
||||||
@ -85,7 +85,7 @@ def compute_fbank_librispeech():
|
|||||||
# when an executor is specified, make more partitions
|
# when an executor is specified, make more partitions
|
||||||
num_jobs=num_jobs if ex is None else 80,
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
executor=ex,
|
executor=ex,
|
||||||
storage_type=LilcomHdf5Writer,
|
storage_type=ChunkedLilcomHdf5Writer,
|
||||||
)
|
)
|
||||||
cut_set.to_json(output_dir / f"cuts_{partition}.json.gz")
|
cut_set.to_json(output_dir / f"cuts_{partition}.json.gz")
|
||||||
|
|
||||||
|
@ -28,7 +28,7 @@ import os
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer, combine
|
from lhotse import ChunkedLilcomHdf5Writer, CutSet, Fbank, FbankConfig, combine
|
||||||
from lhotse.recipes.utils import read_manifests_if_cached
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
from icefall.utils import get_executor
|
from icefall.utils import get_executor
|
||||||
@ -82,7 +82,7 @@ def compute_fbank_musan():
|
|||||||
storage_path=f"{output_dir}/feats_musan",
|
storage_path=f"{output_dir}/feats_musan",
|
||||||
num_jobs=num_jobs if ex is None else 80,
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
executor=ex,
|
executor=ex,
|
||||||
storage_type=LilcomHdf5Writer,
|
storage_type=ChunkedLilcomHdf5Writer,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
musan_cuts.to_json(musan_cuts_path)
|
musan_cuts.to_json(musan_cuts_path)
|
||||||
|
123
egs/librispeech/ASR/local/preprocess_gigaspeech.py
Normal file
123
egs/librispeech/ASR/local/preprocess_gigaspeech.py
Normal file
@ -0,0 +1,123 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
||||||
|
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import re
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from lhotse import CutSet, SupervisionSegment
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
# Similar text filtering and normalization procedure as in:
|
||||||
|
# https://github.com/SpeechColab/GigaSpeech/blob/main/toolkits/kaldi/gigaspeech_data_prep.sh
|
||||||
|
|
||||||
|
|
||||||
|
def normalize_text(
|
||||||
|
utt: str,
|
||||||
|
punct_pattern=re.compile(r"<(COMMA|PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"),
|
||||||
|
whitespace_pattern=re.compile(r"\s\s+"),
|
||||||
|
) -> str:
|
||||||
|
return whitespace_pattern.sub(" ", punct_pattern.sub("", utt))
|
||||||
|
|
||||||
|
|
||||||
|
def has_no_oov(
|
||||||
|
sup: SupervisionSegment,
|
||||||
|
oov_pattern=re.compile(r"<(SIL|MUSIC|NOISE|OTHER)>"),
|
||||||
|
) -> bool:
|
||||||
|
return oov_pattern.search(sup.text) is None
|
||||||
|
|
||||||
|
|
||||||
|
def preprocess_giga_speech():
|
||||||
|
src_dir = Path("data/manifests")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
output_dir.mkdir(exist_ok=True)
|
||||||
|
|
||||||
|
dataset_parts = (
|
||||||
|
"DEV",
|
||||||
|
"TEST",
|
||||||
|
"XS",
|
||||||
|
"S",
|
||||||
|
"M",
|
||||||
|
"L",
|
||||||
|
"XL",
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Loading manifest (may take 4 minutes)")
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts,
|
||||||
|
output_dir=src_dir,
|
||||||
|
prefix="gigaspeech",
|
||||||
|
suffix="jsonl.gz",
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
for partition, m in manifests.items():
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
raw_cuts_path = output_dir / f"cuts_{partition}_raw.jsonl.gz"
|
||||||
|
if raw_cuts_path.is_file():
|
||||||
|
logging.info(f"{partition} already exists - skipping")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Note this step makes the recipe different than LibriSpeech:
|
||||||
|
# We must filter out some utterances and remove punctuation
|
||||||
|
# to be consistent with Kaldi.
|
||||||
|
logging.info("Filtering OOV utterances from supervisions")
|
||||||
|
m["supervisions"] = m["supervisions"].filter(has_no_oov)
|
||||||
|
logging.info(f"Normalizing text in {partition}")
|
||||||
|
for sup in m["supervisions"]:
|
||||||
|
sup.text = normalize_text(sup.text)
|
||||||
|
sup.custom = {"origin": "giga"}
|
||||||
|
|
||||||
|
# Create long-recording cut manifests.
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
cut_set = CutSet.from_manifests(
|
||||||
|
recordings=m["recordings"],
|
||||||
|
supervisions=m["supervisions"],
|
||||||
|
)
|
||||||
|
# Run data augmentation that needs to be done in the
|
||||||
|
# time domain.
|
||||||
|
if partition not in ["DEV", "TEST"]:
|
||||||
|
logging.info(
|
||||||
|
f"Speed perturb for {partition} with factors 0.9 and 1.1 "
|
||||||
|
"(Perturbing may take 8 minutes and saving may take 20 minutes)"
|
||||||
|
)
|
||||||
|
cut_set = (
|
||||||
|
cut_set
|
||||||
|
+ cut_set.perturb_speed(0.9)
|
||||||
|
+ cut_set.perturb_speed(1.1)
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("About to split cuts into smaller chunks.")
|
||||||
|
cut_set = cut_set.trim_to_supervisions(
|
||||||
|
keep_overlapping=False, min_duration=None
|
||||||
|
)
|
||||||
|
logging.info(f"Saving to {raw_cuts_path}")
|
||||||
|
cut_set.to_file(raw_cuts_path)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
preprocess_giga_speech()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
109
egs/librispeech/ASR/prepare_giga_speech.sh
Executable file
109
egs/librispeech/ASR/prepare_giga_speech.sh
Executable file
@ -0,0 +1,109 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -eou pipefail
|
||||||
|
|
||||||
|
nj=15
|
||||||
|
stage=-1
|
||||||
|
stop_stage=100
|
||||||
|
|
||||||
|
# We assume dl_dir (download dir) contains the following
|
||||||
|
# directories and files. If not, they will be downloaded
|
||||||
|
# by this script automatically.
|
||||||
|
#
|
||||||
|
# - $dl_dir/GigaSpeech
|
||||||
|
# You can find audio, dict, GigaSpeech.json inside it.
|
||||||
|
# You can apply for the download credentials by following
|
||||||
|
# https://github.com/SpeechColab/GigaSpeech#download
|
||||||
|
|
||||||
|
# Number of hours for GigaSpeech subsets
|
||||||
|
# XL 10k hours
|
||||||
|
# L 2.5k hours
|
||||||
|
# M 1k hours
|
||||||
|
# S 250 hours
|
||||||
|
# XS 10 hours
|
||||||
|
# DEV 12 hours
|
||||||
|
# Test 40 hours
|
||||||
|
|
||||||
|
dl_dir=$PWD/download
|
||||||
|
|
||||||
|
. shared/parse_options.sh || exit 1
|
||||||
|
|
||||||
|
# All files generated by this script are saved in "data".
|
||||||
|
# You can safely remove "data" and rerun this script to regenerate it.
|
||||||
|
mkdir -p data
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
log "dl_dir: $dl_dir"
|
||||||
|
|
||||||
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||||
|
log "Stage 0: Download data"
|
||||||
|
|
||||||
|
[ ! -e $dl_dir/GigaSpeech ] && mkdir -p $dl_dir/GigaSpeech
|
||||||
|
|
||||||
|
# If you have pre-downloaded it to /path/to/GigaSpeech,
|
||||||
|
# you can create a symlink
|
||||||
|
#
|
||||||
|
# ln -sfv /path/to/GigaSpeech $dl_dir/GigaSpeech
|
||||||
|
#
|
||||||
|
if [ ! -d $dl_dir/GigaSpeech/audio ] && [ ! -f $dl_dir/GigaSpeech.json ]; then
|
||||||
|
# Check credentials.
|
||||||
|
if [ ! -f $dl_dir/password ]; then
|
||||||
|
echo -n "$0: Please apply for the download credentials by following"
|
||||||
|
echo -n "https://github.com/SpeechColab/GigaSpeech#dataset-download"
|
||||||
|
echo " and save it to $dl_dir/password."
|
||||||
|
exit 1;
|
||||||
|
fi
|
||||||
|
PASSWORD=`cat $dl_dir/password 2>/dev/null`
|
||||||
|
if [ -z "$PASSWORD" ]; then
|
||||||
|
echo "$0: Error, $dl_dir/password is empty."
|
||||||
|
exit 1;
|
||||||
|
fi
|
||||||
|
PASSWORD_MD5=`echo $PASSWORD | md5sum | cut -d ' ' -f 1`
|
||||||
|
if [[ $PASSWORD_MD5 != "dfbf0cde1a3ce23749d8d81e492741b8" ]]; then
|
||||||
|
echo "$0: Error, invalid $dl_dir/password."
|
||||||
|
exit 1;
|
||||||
|
fi
|
||||||
|
# Download XL, DEV and TEST sets by default.
|
||||||
|
lhotse download gigaspeech \
|
||||||
|
--subset XL \
|
||||||
|
--subset L \
|
||||||
|
--subset M \
|
||||||
|
--subset S \
|
||||||
|
--subset XS \
|
||||||
|
--subset DEV \
|
||||||
|
--subset TEST \
|
||||||
|
--host tsinghua \
|
||||||
|
$dl_dir/password $dl_dir/GigaSpeech
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
|
log "Stage 1: Prepare GigaSpeech manifest (may take 30 minutes)"
|
||||||
|
# We assume that you have downloaded the GigaSpeech corpus
|
||||||
|
# to $dl_dir/GigaSpeech
|
||||||
|
mkdir -p data/manifests
|
||||||
|
lhotse prepare gigaspeech \
|
||||||
|
--subset XL \
|
||||||
|
--subset L \
|
||||||
|
--subset M \
|
||||||
|
--subset S \
|
||||||
|
--subset XS \
|
||||||
|
--subset DEV \
|
||||||
|
--subset TEST \
|
||||||
|
-j $nj \
|
||||||
|
$dl_dir/GigaSpeech data/manifests
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
|
log "Stage 2: Preprocess GigaSpeech manifest"
|
||||||
|
if [ ! -f data/fbank/.preprocess_complete ]; then
|
||||||
|
log "It may take 2 hours for this stage"
|
||||||
|
python3 ./local/preprocess_gigaspeech.py
|
||||||
|
touch data/fbank/.preprocess_complete
|
||||||
|
fi
|
||||||
|
fi
|
@ -0,0 +1,27 @@
|
|||||||
|
## Introduction
|
||||||
|
|
||||||
|
The decoder, i.e., the prediction network, is from
|
||||||
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
|
||||||
|
(Rnn-Transducer with Stateless Prediction Network)
|
||||||
|
|
||||||
|
You can use the following command to start the training:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
./prepare.sh
|
||||||
|
./prepare_giga_speech.sh
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1"
|
||||||
|
|
||||||
|
./transducer_stateless_multi_datasets/train.py \
|
||||||
|
--world-size 2 \
|
||||||
|
--num-epochs 60 \
|
||||||
|
--start-epoch 0 \
|
||||||
|
--exp-dir transducer_stateless_multi_datasets/exp-100 \
|
||||||
|
--full-libri 0 \
|
||||||
|
--max-duration 300 \
|
||||||
|
--lr-factor 1 \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--modified-transducer-prob 0.25
|
||||||
|
--giga-prob 0.2
|
||||||
|
```
|
@ -0,0 +1,304 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig
|
||||||
|
from lhotse.dataset import (
|
||||||
|
BucketingSampler,
|
||||||
|
CutMix,
|
||||||
|
DynamicBucketingSampler,
|
||||||
|
K2SpeechRecognitionDataset,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import (
|
||||||
|
OnTheFlyFeatures,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
)
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class AsrDataModule:
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=200.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the BucketingSampler "
|
||||||
|
"and DynamicBucketingSampler."
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-spec-aug",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--spec-aug-time-warp-factor",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="Used only when --enable-spec-aug is True. "
|
||||||
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
|
"Larger values mean more warping. "
|
||||||
|
"A value less than 1 means to disable time warp.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-musan",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--manifest-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/valid/test cuts.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available. Used only in dev/test CutSet",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(
|
||||||
|
self,
|
||||||
|
cuts_train: CutSet,
|
||||||
|
dynamic_bucketing: bool,
|
||||||
|
on_the_fly_feats: bool,
|
||||||
|
cuts_musan: Optional[CutSet] = None,
|
||||||
|
) -> DataLoader:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cuts_train:
|
||||||
|
Cuts for training.
|
||||||
|
cuts_musan:
|
||||||
|
If not None, it is the cuts for mixing.
|
||||||
|
dynamic_bucketing:
|
||||||
|
True to use DynamicBucketingSampler;
|
||||||
|
False to use BucketingSampler.
|
||||||
|
on_the_fly_feats:
|
||||||
|
True to use OnTheFlyFeatures;
|
||||||
|
False to use PrecomputedFeatures.
|
||||||
|
"""
|
||||||
|
transforms = []
|
||||||
|
if cuts_musan is not None:
|
||||||
|
logging.info("Enable MUSAN")
|
||||||
|
transforms.append(
|
||||||
|
CutMix(
|
||||||
|
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
|
input_transforms = []
|
||||||
|
|
||||||
|
if self.args.enable_spec_aug:
|
||||||
|
logging.info("Enable SpecAugment")
|
||||||
|
logging.info(
|
||||||
|
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
||||||
|
)
|
||||||
|
input_transforms.append(
|
||||||
|
SpecAugment(
|
||||||
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
|
num_frame_masks=2,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable SpecAugment")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=(
|
||||||
|
OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
|
if on_the_fly_feats
|
||||||
|
else PrecomputedFeatures()
|
||||||
|
),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if dynamic_bucketing:
|
||||||
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
drop_last=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using BucketingSampler.")
|
||||||
|
train_sampler = BucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
bucket_method="equal_duration",
|
||||||
|
drop_last=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
|
transforms = []
|
||||||
|
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
|
),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
valid_sampler = BucketingSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
|
logging.debug("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else PrecomputedFeatures(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = BucketingSampler(
|
||||||
|
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||||
|
)
|
||||||
|
logging.debug("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test,
|
||||||
|
batch_size=None,
|
||||||
|
sampler=sampler,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
)
|
||||||
|
return test_dl
|
@ -0,0 +1,541 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Dict, List, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from model import Transducer
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(
|
||||||
|
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
||||||
|
) -> List[int]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||||
|
max_sym_per_frame:
|
||||||
|
Maximum number of symbols per frame. If it is set to 0, the WER
|
||||||
|
would be 100%.
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
# support only batch_size == 1 for now
|
||||||
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[blank_id] * context_size, device=device, dtype=torch.int64
|
||||||
|
).reshape(1, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
t = 0
|
||||||
|
hyp = [blank_id] * context_size
|
||||||
|
|
||||||
|
# Maximum symbols per utterance.
|
||||||
|
max_sym_per_utt = 1000
|
||||||
|
|
||||||
|
# symbols per frame
|
||||||
|
sym_per_frame = 0
|
||||||
|
|
||||||
|
# symbols per utterance decoded so far
|
||||||
|
sym_per_utt = 0
|
||||||
|
|
||||||
|
encoder_out_len = torch.tensor([1])
|
||||||
|
decoder_out_len = torch.tensor([1])
|
||||||
|
|
||||||
|
while t < T and sym_per_utt < max_sym_per_utt:
|
||||||
|
if sym_per_frame >= max_sym_per_frame:
|
||||||
|
sym_per_frame = 0
|
||||||
|
t += 1
|
||||||
|
continue
|
||||||
|
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = encoder_out[:, t:t+1, :]
|
||||||
|
# fmt: on
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out, decoder_out, encoder_out_len, decoder_out_len
|
||||||
|
)
|
||||||
|
# logits is (1, 1, 1, vocab_size)
|
||||||
|
|
||||||
|
y = logits.argmax().item()
|
||||||
|
if y != blank_id:
|
||||||
|
hyp.append(y)
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[hyp[-context_size:]], device=device
|
||||||
|
).reshape(1, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
|
||||||
|
sym_per_utt += 1
|
||||||
|
sym_per_frame += 1
|
||||||
|
else:
|
||||||
|
sym_per_frame = 0
|
||||||
|
t += 1
|
||||||
|
hyp = hyp[context_size:] # remove blanks
|
||||||
|
|
||||||
|
return hyp
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Hypothesis:
|
||||||
|
# The predicted tokens so far.
|
||||||
|
# Newly predicted tokens are appended to `ys`.
|
||||||
|
ys: List[int]
|
||||||
|
|
||||||
|
# The log prob of ys.
|
||||||
|
# It contains only one entry.
|
||||||
|
log_prob: torch.Tensor
|
||||||
|
|
||||||
|
@property
|
||||||
|
def key(self) -> str:
|
||||||
|
"""Return a string representation of self.ys"""
|
||||||
|
return "_".join(map(str, self.ys))
|
||||||
|
|
||||||
|
|
||||||
|
class HypothesisList(object):
|
||||||
|
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
data:
|
||||||
|
A dict of Hypotheses. Its key is its `value.key`.
|
||||||
|
"""
|
||||||
|
if data is None:
|
||||||
|
self._data = {}
|
||||||
|
else:
|
||||||
|
self._data = data
|
||||||
|
|
||||||
|
@property
|
||||||
|
def data(self) -> Dict[str, Hypothesis]:
|
||||||
|
return self._data
|
||||||
|
|
||||||
|
def add(self, hyp: Hypothesis) -> None:
|
||||||
|
"""Add a Hypothesis to `self`.
|
||||||
|
|
||||||
|
If `hyp` already exists in `self`, its probability is updated using
|
||||||
|
`log-sum-exp` with the existed one.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hyp:
|
||||||
|
The hypothesis to be added.
|
||||||
|
"""
|
||||||
|
key = hyp.key
|
||||||
|
if key in self:
|
||||||
|
old_hyp = self._data[key] # shallow copy
|
||||||
|
torch.logaddexp(
|
||||||
|
old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self._data[key] = hyp
|
||||||
|
|
||||||
|
def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
|
||||||
|
"""Get the most probable hypothesis, i.e., the one with
|
||||||
|
the largest `log_prob`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
length_norm:
|
||||||
|
If True, the `log_prob` of a hypothesis is normalized by the
|
||||||
|
number of tokens in it.
|
||||||
|
Returns:
|
||||||
|
Return the hypothesis that has the largest `log_prob`.
|
||||||
|
"""
|
||||||
|
if length_norm:
|
||||||
|
return max(
|
||||||
|
self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
|
||||||
|
|
||||||
|
def remove(self, hyp: Hypothesis) -> None:
|
||||||
|
"""Remove a given hypothesis.
|
||||||
|
|
||||||
|
Caution:
|
||||||
|
`self` is modified **in-place**.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hyp:
|
||||||
|
The hypothesis to be removed from `self`.
|
||||||
|
Note: It must be contained in `self`. Otherwise,
|
||||||
|
an exception is raised.
|
||||||
|
"""
|
||||||
|
key = hyp.key
|
||||||
|
assert key in self, f"{key} does not exist"
|
||||||
|
del self._data[key]
|
||||||
|
|
||||||
|
def filter(self, threshold: torch.Tensor) -> "HypothesisList":
|
||||||
|
"""Remove all Hypotheses whose log_prob is less than threshold.
|
||||||
|
|
||||||
|
Caution:
|
||||||
|
`self` is not modified. Instead, a new HypothesisList is returned.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a new HypothesisList containing all hypotheses from `self`
|
||||||
|
with `log_prob` being greater than the given `threshold`.
|
||||||
|
"""
|
||||||
|
ans = HypothesisList()
|
||||||
|
for _, hyp in self._data.items():
|
||||||
|
if hyp.log_prob > threshold:
|
||||||
|
ans.add(hyp) # shallow copy
|
||||||
|
return ans
|
||||||
|
|
||||||
|
def topk(self, k: int) -> "HypothesisList":
|
||||||
|
"""Return the top-k hypothesis."""
|
||||||
|
hyps = list(self._data.items())
|
||||||
|
|
||||||
|
hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
|
||||||
|
|
||||||
|
ans = HypothesisList(dict(hyps))
|
||||||
|
return ans
|
||||||
|
|
||||||
|
def __contains__(self, key: str):
|
||||||
|
return key in self._data
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return iter(self._data.values())
|
||||||
|
|
||||||
|
def __len__(self) -> int:
|
||||||
|
return len(self._data)
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
s = []
|
||||||
|
for key in self:
|
||||||
|
s.append(key)
|
||||||
|
return ", ".join(s)
|
||||||
|
|
||||||
|
|
||||||
|
def run_decoder(
|
||||||
|
ys: List[int],
|
||||||
|
model: Transducer,
|
||||||
|
decoder_cache: Dict[str, torch.Tensor],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""Run the neural decoder model for a given hypothesis.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
ys:
|
||||||
|
The current hypothesis.
|
||||||
|
model:
|
||||||
|
The transducer model.
|
||||||
|
decoder_cache:
|
||||||
|
Cache to save computations.
|
||||||
|
Returns:
|
||||||
|
Return a 1-D tensor of shape (decoder_out_dim,) containing
|
||||||
|
output of `model.decoder`.
|
||||||
|
"""
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
key = "_".join(map(str, ys[-context_size:]))
|
||||||
|
if key in decoder_cache:
|
||||||
|
return decoder_cache[key]
|
||||||
|
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
decoder_input = torch.tensor([ys[-context_size:]], device=device).reshape(
|
||||||
|
1, context_size
|
||||||
|
)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
decoder_cache[key] = decoder_out
|
||||||
|
|
||||||
|
return decoder_out
|
||||||
|
|
||||||
|
|
||||||
|
def run_joiner(
|
||||||
|
key: str,
|
||||||
|
model: Transducer,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
decoder_out: torch.Tensor,
|
||||||
|
encoder_out_len: torch.Tensor,
|
||||||
|
decoder_out_len: torch.Tensor,
|
||||||
|
joint_cache: Dict[str, torch.Tensor],
|
||||||
|
):
|
||||||
|
"""Run the joint network given outputs from the encoder and decoder.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
key:
|
||||||
|
A key into the `joint_cache`.
|
||||||
|
model:
|
||||||
|
The transducer model.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (1, 1, encoder_out_dim).
|
||||||
|
decoder_out:
|
||||||
|
A tensor of shape (1, 1, decoder_out_dim).
|
||||||
|
encoder_out_len:
|
||||||
|
A tensor with value [1].
|
||||||
|
decoder_out_len:
|
||||||
|
A tensor with value [1].
|
||||||
|
joint_cache:
|
||||||
|
A dict to save computations.
|
||||||
|
Returns:
|
||||||
|
Return a tensor from the output of log-softmax.
|
||||||
|
Its shape is (vocab_size,).
|
||||||
|
"""
|
||||||
|
if key in joint_cache:
|
||||||
|
return joint_cache[key]
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
encoder_out,
|
||||||
|
decoder_out,
|
||||||
|
encoder_out_len,
|
||||||
|
decoder_out_len,
|
||||||
|
)
|
||||||
|
|
||||||
|
# TODO(fangjun): Scale the blank posterior
|
||||||
|
log_prob = logits.log_softmax(dim=-1)
|
||||||
|
# log_prob is (1, 1, 1, vocab_size)
|
||||||
|
|
||||||
|
log_prob = log_prob.squeeze()
|
||||||
|
# Now log_prob is (vocab_size,)
|
||||||
|
|
||||||
|
joint_cache[key] = log_prob
|
||||||
|
|
||||||
|
return log_prob
|
||||||
|
|
||||||
|
|
||||||
|
def modified_beam_search(
|
||||||
|
model: Transducer,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
beam: int = 4,
|
||||||
|
) -> List[int]:
|
||||||
|
"""It limits the maximum number of symbols per frame to 1.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||||
|
beam:
|
||||||
|
Beam size.
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
# support only batch_size == 1 for now
|
||||||
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[blank_id] * context_size, device=device
|
||||||
|
).reshape(1, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
B = HypothesisList()
|
||||||
|
B.add(
|
||||||
|
Hypothesis(
|
||||||
|
ys=[blank_id] * context_size,
|
||||||
|
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out_len = torch.tensor([1])
|
||||||
|
decoder_out_len = torch.tensor([1])
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = encoder_out[:, t:t+1, :]
|
||||||
|
# current_encoder_out is of shape (1, 1, encoder_out_dim)
|
||||||
|
# fmt: on
|
||||||
|
A = list(B)
|
||||||
|
B = HypothesisList()
|
||||||
|
|
||||||
|
ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A])
|
||||||
|
# ys_log_probs is of shape (num_hyps, 1)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[hyp.ys[-context_size:] for hyp in A],
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
# decoder_input is of shape (num_hyps, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
# decoder_output is of shape (num_hyps, 1, decoder_output_dim)
|
||||||
|
|
||||||
|
current_encoder_out = current_encoder_out.expand(
|
||||||
|
decoder_out.size(0), 1, -1
|
||||||
|
)
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out,
|
||||||
|
decoder_out,
|
||||||
|
encoder_out_len.expand(decoder_out.size(0)),
|
||||||
|
decoder_out_len.expand(decoder_out.size(0)),
|
||||||
|
)
|
||||||
|
# logits is of shape (num_hyps, vocab_size)
|
||||||
|
log_probs = logits.log_softmax(dim=-1)
|
||||||
|
|
||||||
|
log_probs.add_(ys_log_probs)
|
||||||
|
|
||||||
|
log_probs = log_probs.reshape(-1)
|
||||||
|
topk_log_probs, topk_indexes = log_probs.topk(beam)
|
||||||
|
|
||||||
|
# topk_hyp_indexes are indexes into `A`
|
||||||
|
topk_hyp_indexes = topk_indexes // logits.size(-1)
|
||||||
|
topk_token_indexes = topk_indexes % logits.size(-1)
|
||||||
|
|
||||||
|
topk_hyp_indexes = topk_hyp_indexes.tolist()
|
||||||
|
topk_token_indexes = topk_token_indexes.tolist()
|
||||||
|
|
||||||
|
for i in range(len(topk_hyp_indexes)):
|
||||||
|
hyp = A[topk_hyp_indexes[i]]
|
||||||
|
new_ys = hyp.ys[:]
|
||||||
|
new_token = topk_token_indexes[i]
|
||||||
|
if new_token != blank_id:
|
||||||
|
new_ys.append(new_token)
|
||||||
|
new_log_prob = topk_log_probs[i]
|
||||||
|
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||||
|
B.add(new_hyp)
|
||||||
|
|
||||||
|
best_hyp = B.get_most_probable(length_norm=True)
|
||||||
|
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
||||||
|
|
||||||
|
return ys
|
||||||
|
|
||||||
|
|
||||||
|
def beam_search(
|
||||||
|
model: Transducer,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
beam: int = 4,
|
||||||
|
) -> List[int]:
|
||||||
|
"""
|
||||||
|
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
|
||||||
|
|
||||||
|
espnet/nets/beam_search_transducer.py#L247 is used as a reference.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||||
|
beam:
|
||||||
|
Beam size.
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
# support only batch_size == 1 for now
|
||||||
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[blank_id] * context_size, device=device
|
||||||
|
).reshape(1, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
t = 0
|
||||||
|
|
||||||
|
B = HypothesisList()
|
||||||
|
B.add(
|
||||||
|
Hypothesis(
|
||||||
|
ys=[blank_id] * context_size,
|
||||||
|
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
max_sym_per_utt = 20000
|
||||||
|
|
||||||
|
sym_per_utt = 0
|
||||||
|
|
||||||
|
encoder_out_len = torch.tensor([1])
|
||||||
|
decoder_out_len = torch.tensor([1])
|
||||||
|
|
||||||
|
decoder_cache: Dict[str, torch.Tensor] = {}
|
||||||
|
|
||||||
|
while t < T and sym_per_utt < max_sym_per_utt:
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = encoder_out[:, t:t+1, :]
|
||||||
|
# fmt: on
|
||||||
|
A = B
|
||||||
|
B = HypothesisList()
|
||||||
|
|
||||||
|
joint_cache: Dict[str, torch.Tensor] = {}
|
||||||
|
|
||||||
|
while True:
|
||||||
|
y_star = A.get_most_probable()
|
||||||
|
A.remove(y_star)
|
||||||
|
|
||||||
|
decoder_out = run_decoder(
|
||||||
|
ys=y_star.ys, model=model, decoder_cache=decoder_cache
|
||||||
|
)
|
||||||
|
|
||||||
|
key = "_".join(map(str, y_star.ys[-context_size:]))
|
||||||
|
key += f"-t-{t}"
|
||||||
|
log_prob = run_joiner(
|
||||||
|
key=key,
|
||||||
|
model=model,
|
||||||
|
encoder_out=current_encoder_out,
|
||||||
|
decoder_out=decoder_out,
|
||||||
|
encoder_out_len=encoder_out_len,
|
||||||
|
decoder_out_len=decoder_out_len,
|
||||||
|
joint_cache=joint_cache,
|
||||||
|
)
|
||||||
|
|
||||||
|
# First, process the blank symbol
|
||||||
|
skip_log_prob = log_prob[blank_id]
|
||||||
|
new_y_star_log_prob = y_star.log_prob + skip_log_prob
|
||||||
|
|
||||||
|
# ys[:] returns a copy of ys
|
||||||
|
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
|
||||||
|
|
||||||
|
# Second, process other non-blank labels
|
||||||
|
values, indices = log_prob.topk(beam + 1)
|
||||||
|
for idx in range(values.size(0)):
|
||||||
|
i = indices[idx].item()
|
||||||
|
if i == blank_id:
|
||||||
|
continue
|
||||||
|
|
||||||
|
new_ys = y_star.ys + [i]
|
||||||
|
|
||||||
|
new_log_prob = y_star.log_prob + values[idx]
|
||||||
|
A.add(Hypothesis(ys=new_ys, log_prob=new_log_prob))
|
||||||
|
|
||||||
|
# Check whether B contains more than "beam" elements more probable
|
||||||
|
# than the most probable in A
|
||||||
|
A_most_probable = A.get_most_probable()
|
||||||
|
|
||||||
|
kept_B = B.filter(A_most_probable.log_prob)
|
||||||
|
|
||||||
|
if len(kept_B) >= beam:
|
||||||
|
B = kept_B.topk(beam)
|
||||||
|
break
|
||||||
|
|
||||||
|
t += 1
|
||||||
|
|
||||||
|
best_hyp = B.get_most_probable(length_norm=True)
|
||||||
|
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
||||||
|
return ys
|
@ -0,0 +1,920 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import math
|
||||||
|
import warnings
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import Tensor, nn
|
||||||
|
from transformer import Transformer
|
||||||
|
|
||||||
|
from icefall.utils import make_pad_mask
|
||||||
|
|
||||||
|
|
||||||
|
class Conformer(Transformer):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
num_features (int): Number of input features
|
||||||
|
output_dim (int): Number of output dimension
|
||||||
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||||
|
d_model (int): attention dimension
|
||||||
|
nhead (int): number of head
|
||||||
|
dim_feedforward (int): feedforward dimention
|
||||||
|
num_encoder_layers (int): number of encoder layers
|
||||||
|
dropout (float): dropout rate
|
||||||
|
cnn_module_kernel (int): Kernel size of convolution module
|
||||||
|
normalize_before (bool): whether to use layer_norm before the first block.
|
||||||
|
vgg_frontend (bool): whether to use vgg frontend.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_features: int,
|
||||||
|
output_dim: int,
|
||||||
|
subsampling_factor: int = 4,
|
||||||
|
d_model: int = 256,
|
||||||
|
nhead: int = 4,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
num_encoder_layers: int = 12,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
cnn_module_kernel: int = 31,
|
||||||
|
normalize_before: bool = True,
|
||||||
|
vgg_frontend: bool = False,
|
||||||
|
) -> None:
|
||||||
|
super(Conformer, self).__init__(
|
||||||
|
num_features=num_features,
|
||||||
|
output_dim=output_dim,
|
||||||
|
subsampling_factor=subsampling_factor,
|
||||||
|
d_model=d_model,
|
||||||
|
nhead=nhead,
|
||||||
|
dim_feedforward=dim_feedforward,
|
||||||
|
num_encoder_layers=num_encoder_layers,
|
||||||
|
dropout=dropout,
|
||||||
|
normalize_before=normalize_before,
|
||||||
|
vgg_frontend=vgg_frontend,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
|
||||||
|
|
||||||
|
encoder_layer = ConformerEncoderLayer(
|
||||||
|
d_model,
|
||||||
|
nhead,
|
||||||
|
dim_feedforward,
|
||||||
|
dropout,
|
||||||
|
cnn_module_kernel,
|
||||||
|
normalize_before,
|
||||||
|
)
|
||||||
|
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
if self.normalize_before:
|
||||||
|
self.after_norm = nn.LayerNorm(d_model)
|
||||||
|
else:
|
||||||
|
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
||||||
|
# and throws an error without this change.
|
||||||
|
self.after_norm = identity
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
|
||||||
|
x_lens:
|
||||||
|
A tensor of shape (batch_size,) containing the number of frames in
|
||||||
|
`x` before padding.
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing 2 tensors:
|
||||||
|
- logits, its shape is (batch_size, output_seq_len, output_dim)
|
||||||
|
- logit_lens, a tensor of shape (batch_size,) containing the number
|
||||||
|
of frames in `logits` before padding.
|
||||||
|
"""
|
||||||
|
x = self.encoder_embed(x)
|
||||||
|
x, pos_emb = self.encoder_pos(x)
|
||||||
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
|
||||||
|
# Caution: We assume the subsampling factor is 4!
|
||||||
|
lengths = ((x_lens - 1) // 2 - 1) // 2
|
||||||
|
assert x.size(0) == lengths.max().item()
|
||||||
|
mask = make_pad_mask(lengths)
|
||||||
|
|
||||||
|
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, N, C)
|
||||||
|
|
||||||
|
if self.normalize_before:
|
||||||
|
x = self.after_norm(x)
|
||||||
|
|
||||||
|
logits = self.encoder_output_layer(x)
|
||||||
|
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
|
||||||
|
return logits, lengths
|
||||||
|
|
||||||
|
|
||||||
|
class ConformerEncoderLayer(nn.Module):
|
||||||
|
"""
|
||||||
|
ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
|
||||||
|
See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model: the number of expected features in the input (required).
|
||||||
|
nhead: the number of heads in the multiheadattention models (required).
|
||||||
|
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
||||||
|
dropout: the dropout value (default=0.1).
|
||||||
|
cnn_module_kernel (int): Kernel size of convolution module.
|
||||||
|
normalize_before: whether to use layer_norm before the first block.
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||||
|
>>> src = torch.rand(10, 32, 512)
|
||||||
|
>>> pos_emb = torch.rand(32, 19, 512)
|
||||||
|
>>> out = encoder_layer(src, pos_emb)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
d_model: int,
|
||||||
|
nhead: int,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
cnn_module_kernel: int = 31,
|
||||||
|
normalize_before: bool = True,
|
||||||
|
) -> None:
|
||||||
|
super(ConformerEncoderLayer, self).__init__()
|
||||||
|
self.self_attn = RelPositionMultiheadAttention(
|
||||||
|
d_model, nhead, dropout=0.0
|
||||||
|
)
|
||||||
|
|
||||||
|
self.feed_forward = nn.Sequential(
|
||||||
|
nn.Linear(d_model, dim_feedforward),
|
||||||
|
Swish(),
|
||||||
|
nn.Dropout(dropout),
|
||||||
|
nn.Linear(dim_feedforward, d_model),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.feed_forward_macaron = nn.Sequential(
|
||||||
|
nn.Linear(d_model, dim_feedforward),
|
||||||
|
Swish(),
|
||||||
|
nn.Dropout(dropout),
|
||||||
|
nn.Linear(dim_feedforward, d_model),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
||||||
|
|
||||||
|
self.norm_ff_macaron = nn.LayerNorm(
|
||||||
|
d_model
|
||||||
|
) # for the macaron style FNN module
|
||||||
|
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
||||||
|
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
||||||
|
|
||||||
|
self.ff_scale = 0.5
|
||||||
|
|
||||||
|
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
||||||
|
self.norm_final = nn.LayerNorm(
|
||||||
|
d_model
|
||||||
|
) # for the final output of the block
|
||||||
|
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
src_mask: Optional[Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tensor:
|
||||||
|
"""
|
||||||
|
Pass the input through the encoder layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
src: the sequence to the encoder layer (required).
|
||||||
|
pos_emb: Positional embedding tensor (required).
|
||||||
|
src_mask: the mask for the src sequence (optional).
|
||||||
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
src: (S, N, E).
|
||||||
|
pos_emb: (N, 2*S-1, E)
|
||||||
|
src_mask: (S, S).
|
||||||
|
src_key_padding_mask: (N, S).
|
||||||
|
S is the source sequence length, N is the batch size, E is the feature number
|
||||||
|
"""
|
||||||
|
|
||||||
|
# macaron style feed forward module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_ff_macaron(src)
|
||||||
|
src = residual + self.ff_scale * self.dropout(
|
||||||
|
self.feed_forward_macaron(src)
|
||||||
|
)
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_ff_macaron(src)
|
||||||
|
|
||||||
|
# multi-headed self-attention module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_mha(src)
|
||||||
|
src_att = self.self_attn(
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
pos_emb=pos_emb,
|
||||||
|
attn_mask=src_mask,
|
||||||
|
key_padding_mask=src_key_padding_mask,
|
||||||
|
)[0]
|
||||||
|
src = residual + self.dropout(src_att)
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_mha(src)
|
||||||
|
|
||||||
|
# convolution module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_conv(src)
|
||||||
|
src = residual + self.dropout(self.conv_module(src))
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_conv(src)
|
||||||
|
|
||||||
|
# feed forward module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_ff(src)
|
||||||
|
src = residual + self.ff_scale * self.dropout(self.feed_forward(src))
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_ff(src)
|
||||||
|
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_final(src)
|
||||||
|
|
||||||
|
return src
|
||||||
|
|
||||||
|
|
||||||
|
class ConformerEncoder(nn.TransformerEncoder):
|
||||||
|
r"""ConformerEncoder is a stack of N encoder layers
|
||||||
|
|
||||||
|
Args:
|
||||||
|
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
|
||||||
|
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||||
|
norm: the layer normalization component (optional).
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||||
|
>>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
|
||||||
|
>>> src = torch.rand(10, 32, 512)
|
||||||
|
>>> pos_emb = torch.rand(32, 19, 512)
|
||||||
|
>>> out = conformer_encoder(src, pos_emb)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None
|
||||||
|
) -> None:
|
||||||
|
super(ConformerEncoder, self).__init__(
|
||||||
|
encoder_layer=encoder_layer, num_layers=num_layers, norm=norm
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
mask: Optional[Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tensor:
|
||||||
|
r"""Pass the input through the encoder layers in turn.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
src: the sequence to the encoder (required).
|
||||||
|
pos_emb: Positional embedding tensor (required).
|
||||||
|
mask: the mask for the src sequence (optional).
|
||||||
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
src: (S, N, E).
|
||||||
|
pos_emb: (N, 2*S-1, E)
|
||||||
|
mask: (S, S).
|
||||||
|
src_key_padding_mask: (N, S).
|
||||||
|
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
|
||||||
|
|
||||||
|
"""
|
||||||
|
output = src
|
||||||
|
|
||||||
|
for mod in self.layers:
|
||||||
|
output = mod(
|
||||||
|
output,
|
||||||
|
pos_emb,
|
||||||
|
src_mask=mask,
|
||||||
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.norm is not None:
|
||||||
|
output = self.norm(output)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class RelPositionalEncoding(torch.nn.Module):
|
||||||
|
"""Relative positional encoding module.
|
||||||
|
|
||||||
|
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model: Embedding dimension.
|
||||||
|
dropout_rate: Dropout rate.
|
||||||
|
max_len: Maximum input length.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, d_model: int, dropout_rate: float, max_len: int = 5000
|
||||||
|
) -> None:
|
||||||
|
"""Construct an PositionalEncoding object."""
|
||||||
|
super(RelPositionalEncoding, self).__init__()
|
||||||
|
self.d_model = d_model
|
||||||
|
self.xscale = math.sqrt(self.d_model)
|
||||||
|
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||||
|
self.pe = None
|
||||||
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||||
|
|
||||||
|
def extend_pe(self, x: Tensor) -> None:
|
||||||
|
"""Reset the positional encodings."""
|
||||||
|
if self.pe is not None:
|
||||||
|
# self.pe contains both positive and negative parts
|
||||||
|
# the length of self.pe is 2 * input_len - 1
|
||||||
|
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
||||||
|
# Note: TorchScript doesn't implement operator== for torch.Device
|
||||||
|
if self.pe.dtype != x.dtype or str(self.pe.device) != str(
|
||||||
|
x.device
|
||||||
|
):
|
||||||
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||||
|
return
|
||||||
|
# Suppose `i` means to the position of query vecotr and `j` means the
|
||||||
|
# position of key vector. We use position relative positions when keys
|
||||||
|
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
||||||
|
pe_positive = torch.zeros(x.size(1), self.d_model)
|
||||||
|
pe_negative = torch.zeros(x.size(1), self.d_model)
|
||||||
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||||
|
div_term = torch.exp(
|
||||||
|
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||||
|
* -(math.log(10000.0) / self.d_model)
|
||||||
|
)
|
||||||
|
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
||||||
|
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
||||||
|
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
||||||
|
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
||||||
|
|
||||||
|
# Reserve the order of positive indices and concat both positive and
|
||||||
|
# negative indices. This is used to support the shifting trick
|
||||||
|
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
||||||
|
pe_negative = pe_negative[1:].unsqueeze(0)
|
||||||
|
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||||||
|
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> Tuple[Tensor, Tensor]:
|
||||||
|
"""Add positional encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||||||
|
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
||||||
|
|
||||||
|
"""
|
||||||
|
self.extend_pe(x)
|
||||||
|
x = x * self.xscale
|
||||||
|
pos_emb = self.pe[
|
||||||
|
:,
|
||||||
|
self.pe.size(1) // 2
|
||||||
|
- x.size(1)
|
||||||
|
+ 1 : self.pe.size(1) // 2 # noqa E203
|
||||||
|
+ x.size(1),
|
||||||
|
]
|
||||||
|
return self.dropout(x), self.dropout(pos_emb)
|
||||||
|
|
||||||
|
|
||||||
|
class RelPositionMultiheadAttention(nn.Module):
|
||||||
|
r"""Multi-Head Attention layer with relative position encoding
|
||||||
|
|
||||||
|
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
|
||||||
|
Args:
|
||||||
|
embed_dim: total dimension of the model.
|
||||||
|
num_heads: parallel attention heads.
|
||||||
|
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
|
||||||
|
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
||||||
|
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embed_dim: int,
|
||||||
|
num_heads: int,
|
||||||
|
dropout: float = 0.0,
|
||||||
|
) -> None:
|
||||||
|
super(RelPositionMultiheadAttention, self).__init__()
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.dropout = dropout
|
||||||
|
self.head_dim = embed_dim // num_heads
|
||||||
|
assert (
|
||||||
|
self.head_dim * num_heads == self.embed_dim
|
||||||
|
), "embed_dim must be divisible by num_heads"
|
||||||
|
|
||||||
|
self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True)
|
||||||
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
||||||
|
|
||||||
|
# linear transformation for positional encoding.
|
||||||
|
self.linear_pos = nn.Linear(embed_dim, embed_dim, bias=False)
|
||||||
|
# these two learnable bias are used in matrix c and matrix d
|
||||||
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||||
|
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||||
|
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||||
|
|
||||||
|
self._reset_parameters()
|
||||||
|
|
||||||
|
def _reset_parameters(self) -> None:
|
||||||
|
nn.init.xavier_uniform_(self.in_proj.weight)
|
||||||
|
nn.init.constant_(self.in_proj.bias, 0.0)
|
||||||
|
nn.init.constant_(self.out_proj.bias, 0.0)
|
||||||
|
|
||||||
|
nn.init.xavier_uniform_(self.pos_bias_u)
|
||||||
|
nn.init.xavier_uniform_(self.pos_bias_v)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
query: Tensor,
|
||||||
|
key: Tensor,
|
||||||
|
value: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
key_padding_mask: Optional[Tensor] = None,
|
||||||
|
need_weights: bool = True,
|
||||||
|
attn_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||||
|
r"""
|
||||||
|
Args:
|
||||||
|
query, key, value: map a query and a set of key-value pairs to an output.
|
||||||
|
pos_emb: Positional embedding tensor
|
||||||
|
key_padding_mask: if provided, specified padding elements in the key will
|
||||||
|
be ignored by the attention. When given a binary mask and a value is True,
|
||||||
|
the corresponding value on the attention layer will be ignored. When given
|
||||||
|
a byte mask and a value is non-zero, the corresponding value on the attention
|
||||||
|
layer will be ignored
|
||||||
|
need_weights: output attn_output_weights.
|
||||||
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||||
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
- Inputs:
|
||||||
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||||
|
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
||||||
|
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
||||||
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||||
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||||
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||||
|
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
||||||
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||||
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||||
|
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||||
|
is provided, it will be added to the attention weight.
|
||||||
|
|
||||||
|
- Outputs:
|
||||||
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||||
|
E is the embedding dimension.
|
||||||
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||||
|
L is the target sequence length, S is the source sequence length.
|
||||||
|
"""
|
||||||
|
return self.multi_head_attention_forward(
|
||||||
|
query,
|
||||||
|
key,
|
||||||
|
value,
|
||||||
|
pos_emb,
|
||||||
|
self.embed_dim,
|
||||||
|
self.num_heads,
|
||||||
|
self.in_proj.weight,
|
||||||
|
self.in_proj.bias,
|
||||||
|
self.dropout,
|
||||||
|
self.out_proj.weight,
|
||||||
|
self.out_proj.bias,
|
||||||
|
training=self.training,
|
||||||
|
key_padding_mask=key_padding_mask,
|
||||||
|
need_weights=need_weights,
|
||||||
|
attn_mask=attn_mask,
|
||||||
|
)
|
||||||
|
|
||||||
|
def rel_shift(self, x: Tensor) -> Tensor:
|
||||||
|
"""Compute relative positional encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: Input tensor (batch, head, time1, 2*time1-1).
|
||||||
|
time1 means the length of query vector.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: tensor of shape (batch, head, time1, time2)
|
||||||
|
(note: time2 has the same value as time1, but it is for
|
||||||
|
the key, while time1 is for the query).
|
||||||
|
"""
|
||||||
|
(batch_size, num_heads, time1, n) = x.shape
|
||||||
|
assert n == 2 * time1 - 1
|
||||||
|
# Note: TorchScript requires explicit arg for stride()
|
||||||
|
batch_stride = x.stride(0)
|
||||||
|
head_stride = x.stride(1)
|
||||||
|
time1_stride = x.stride(2)
|
||||||
|
n_stride = x.stride(3)
|
||||||
|
return x.as_strided(
|
||||||
|
(batch_size, num_heads, time1, time1),
|
||||||
|
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
||||||
|
storage_offset=n_stride * (time1 - 1),
|
||||||
|
)
|
||||||
|
|
||||||
|
def multi_head_attention_forward(
|
||||||
|
self,
|
||||||
|
query: Tensor,
|
||||||
|
key: Tensor,
|
||||||
|
value: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
embed_dim_to_check: int,
|
||||||
|
num_heads: int,
|
||||||
|
in_proj_weight: Tensor,
|
||||||
|
in_proj_bias: Tensor,
|
||||||
|
dropout_p: float,
|
||||||
|
out_proj_weight: Tensor,
|
||||||
|
out_proj_bias: Tensor,
|
||||||
|
training: bool = True,
|
||||||
|
key_padding_mask: Optional[Tensor] = None,
|
||||||
|
need_weights: bool = True,
|
||||||
|
attn_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||||
|
r"""
|
||||||
|
Args:
|
||||||
|
query, key, value: map a query and a set of key-value pairs to an output.
|
||||||
|
pos_emb: Positional embedding tensor
|
||||||
|
embed_dim_to_check: total dimension of the model.
|
||||||
|
num_heads: parallel attention heads.
|
||||||
|
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||||||
|
dropout_p: probability of an element to be zeroed.
|
||||||
|
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||||||
|
training: apply dropout if is ``True``.
|
||||||
|
key_padding_mask: if provided, specified padding elements in the key will
|
||||||
|
be ignored by the attention. This is an binary mask. When the value is True,
|
||||||
|
the corresponding value on the attention layer will be filled with -inf.
|
||||||
|
need_weights: output attn_output_weights.
|
||||||
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||||
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
Inputs:
|
||||||
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
||||||
|
length, N is the batch size, E is the embedding dimension.
|
||||||
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||||
|
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
||||||
|
will be unchanged. If a BoolTensor is provided, the positions with the
|
||||||
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||||
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||||
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||||
|
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||||||
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||||
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||||
|
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||||
|
is provided, it will be added to the attention weight.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||||
|
E is the embedding dimension.
|
||||||
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||||
|
L is the target sequence length, S is the source sequence length.
|
||||||
|
"""
|
||||||
|
|
||||||
|
tgt_len, bsz, embed_dim = query.size()
|
||||||
|
assert embed_dim == embed_dim_to_check
|
||||||
|
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
||||||
|
|
||||||
|
head_dim = embed_dim // num_heads
|
||||||
|
assert (
|
||||||
|
head_dim * num_heads == embed_dim
|
||||||
|
), "embed_dim must be divisible by num_heads"
|
||||||
|
scaling = float(head_dim) ** -0.5
|
||||||
|
|
||||||
|
if torch.equal(query, key) and torch.equal(key, value):
|
||||||
|
# self-attention
|
||||||
|
q, k, v = nn.functional.linear(
|
||||||
|
query, in_proj_weight, in_proj_bias
|
||||||
|
).chunk(3, dim=-1)
|
||||||
|
|
||||||
|
elif torch.equal(key, value):
|
||||||
|
# encoder-decoder attention
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = 0
|
||||||
|
_end = embed_dim
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
q = nn.functional.linear(query, _w, _b)
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim
|
||||||
|
_end = None
|
||||||
|
_w = in_proj_weight[_start:, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:]
|
||||||
|
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = 0
|
||||||
|
_end = embed_dim
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
q = nn.functional.linear(query, _w, _b)
|
||||||
|
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim
|
||||||
|
_end = embed_dim * 2
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
k = nn.functional.linear(key, _w, _b)
|
||||||
|
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim * 2
|
||||||
|
_end = None
|
||||||
|
_w = in_proj_weight[_start:, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:]
|
||||||
|
v = nn.functional.linear(value, _w, _b)
|
||||||
|
|
||||||
|
if attn_mask is not None:
|
||||||
|
assert (
|
||||||
|
attn_mask.dtype == torch.float32
|
||||||
|
or attn_mask.dtype == torch.float64
|
||||||
|
or attn_mask.dtype == torch.float16
|
||||||
|
or attn_mask.dtype == torch.uint8
|
||||||
|
or attn_mask.dtype == torch.bool
|
||||||
|
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
||||||
|
attn_mask.dtype
|
||||||
|
)
|
||||||
|
if attn_mask.dtype == torch.uint8:
|
||||||
|
warnings.warn(
|
||||||
|
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
||||||
|
)
|
||||||
|
attn_mask = attn_mask.to(torch.bool)
|
||||||
|
|
||||||
|
if attn_mask.dim() == 2:
|
||||||
|
attn_mask = attn_mask.unsqueeze(0)
|
||||||
|
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
||||||
|
raise RuntimeError(
|
||||||
|
"The size of the 2D attn_mask is not correct."
|
||||||
|
)
|
||||||
|
elif attn_mask.dim() == 3:
|
||||||
|
if list(attn_mask.size()) != [
|
||||||
|
bsz * num_heads,
|
||||||
|
query.size(0),
|
||||||
|
key.size(0),
|
||||||
|
]:
|
||||||
|
raise RuntimeError(
|
||||||
|
"The size of the 3D attn_mask is not correct."
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise RuntimeError(
|
||||||
|
"attn_mask's dimension {} is not supported".format(
|
||||||
|
attn_mask.dim()
|
||||||
|
)
|
||||||
|
)
|
||||||
|
# attn_mask's dim is 3 now.
|
||||||
|
|
||||||
|
# convert ByteTensor key_padding_mask to bool
|
||||||
|
if (
|
||||||
|
key_padding_mask is not None
|
||||||
|
and key_padding_mask.dtype == torch.uint8
|
||||||
|
):
|
||||||
|
warnings.warn(
|
||||||
|
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
||||||
|
)
|
||||||
|
key_padding_mask = key_padding_mask.to(torch.bool)
|
||||||
|
|
||||||
|
q = q.contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
||||||
|
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
||||||
|
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
||||||
|
|
||||||
|
src_len = k.size(0)
|
||||||
|
|
||||||
|
if key_padding_mask is not None:
|
||||||
|
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
||||||
|
key_padding_mask.size(0), bsz
|
||||||
|
)
|
||||||
|
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
||||||
|
key_padding_mask.size(1), src_len
|
||||||
|
)
|
||||||
|
|
||||||
|
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
||||||
|
|
||||||
|
pos_emb_bsz = pos_emb.size(0)
|
||||||
|
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
||||||
|
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
||||||
|
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
|
||||||
|
|
||||||
|
q_with_bias_u = (q + self.pos_bias_u).transpose(
|
||||||
|
1, 2
|
||||||
|
) # (batch, head, time1, d_k)
|
||||||
|
|
||||||
|
q_with_bias_v = (q + self.pos_bias_v).transpose(
|
||||||
|
1, 2
|
||||||
|
) # (batch, head, time1, d_k)
|
||||||
|
|
||||||
|
# compute attention score
|
||||||
|
# first compute matrix a and matrix c
|
||||||
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||||
|
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
||||||
|
matrix_ac = torch.matmul(
|
||||||
|
q_with_bias_u, k
|
||||||
|
) # (batch, head, time1, time2)
|
||||||
|
|
||||||
|
# compute matrix b and matrix d
|
||||||
|
matrix_bd = torch.matmul(
|
||||||
|
q_with_bias_v, p.transpose(-2, -1)
|
||||||
|
) # (batch, head, time1, 2*time1-1)
|
||||||
|
matrix_bd = self.rel_shift(matrix_bd)
|
||||||
|
|
||||||
|
attn_output_weights = (
|
||||||
|
matrix_ac + matrix_bd
|
||||||
|
) * scaling # (batch, head, time1, time2)
|
||||||
|
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz * num_heads, tgt_len, -1
|
||||||
|
)
|
||||||
|
|
||||||
|
assert list(attn_output_weights.size()) == [
|
||||||
|
bsz * num_heads,
|
||||||
|
tgt_len,
|
||||||
|
src_len,
|
||||||
|
]
|
||||||
|
|
||||||
|
if attn_mask is not None:
|
||||||
|
if attn_mask.dtype == torch.bool:
|
||||||
|
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
||||||
|
else:
|
||||||
|
attn_output_weights += attn_mask
|
||||||
|
|
||||||
|
if key_padding_mask is not None:
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz, num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
attn_output_weights = attn_output_weights.masked_fill(
|
||||||
|
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
||||||
|
float("-inf"),
|
||||||
|
)
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz * num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
||||||
|
attn_output_weights = nn.functional.dropout(
|
||||||
|
attn_output_weights, p=dropout_p, training=training
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output = torch.bmm(attn_output_weights, v)
|
||||||
|
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
||||||
|
attn_output = (
|
||||||
|
attn_output.transpose(0, 1)
|
||||||
|
.contiguous()
|
||||||
|
.view(tgt_len, bsz, embed_dim)
|
||||||
|
)
|
||||||
|
attn_output = nn.functional.linear(
|
||||||
|
attn_output, out_proj_weight, out_proj_bias
|
||||||
|
)
|
||||||
|
|
||||||
|
if need_weights:
|
||||||
|
# average attention weights over heads
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz, num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
||||||
|
else:
|
||||||
|
return attn_output, None
|
||||||
|
|
||||||
|
|
||||||
|
class ConvolutionModule(nn.Module):
|
||||||
|
"""ConvolutionModule in Conformer model.
|
||||||
|
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
|
||||||
|
|
||||||
|
Args:
|
||||||
|
channels (int): The number of channels of conv layers.
|
||||||
|
kernel_size (int): Kernerl size of conv layers.
|
||||||
|
bias (bool): Whether to use bias in conv layers (default=True).
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, channels: int, kernel_size: int, bias: bool = True
|
||||||
|
) -> None:
|
||||||
|
"""Construct an ConvolutionModule object."""
|
||||||
|
super(ConvolutionModule, self).__init__()
|
||||||
|
# kernerl_size should be a odd number for 'SAME' padding
|
||||||
|
assert (kernel_size - 1) % 2 == 0
|
||||||
|
|
||||||
|
self.pointwise_conv1 = nn.Conv1d(
|
||||||
|
channels,
|
||||||
|
2 * channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0,
|
||||||
|
bias=bias,
|
||||||
|
)
|
||||||
|
self.depthwise_conv = nn.Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
stride=1,
|
||||||
|
padding=(kernel_size - 1) // 2,
|
||||||
|
groups=channels,
|
||||||
|
bias=bias,
|
||||||
|
)
|
||||||
|
self.norm = nn.LayerNorm(channels)
|
||||||
|
self.pointwise_conv2 = nn.Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0,
|
||||||
|
bias=bias,
|
||||||
|
)
|
||||||
|
self.activation = Swish()
|
||||||
|
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
"""Compute convolution module.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: Input tensor (#time, batch, channels).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: Output tensor (#time, batch, channels).
|
||||||
|
|
||||||
|
"""
|
||||||
|
# exchange the temporal dimension and the feature dimension
|
||||||
|
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
||||||
|
|
||||||
|
# GLU mechanism
|
||||||
|
x = self.pointwise_conv1(x) # (batch, 2*channels, time)
|
||||||
|
x = nn.functional.glu(x, dim=1) # (batch, channels, time)
|
||||||
|
|
||||||
|
# 1D Depthwise Conv
|
||||||
|
x = self.depthwise_conv(x)
|
||||||
|
# x is (batch, channels, time)
|
||||||
|
x = x.permute(0, 2, 1)
|
||||||
|
x = self.norm(x)
|
||||||
|
x = x.permute(0, 2, 1)
|
||||||
|
|
||||||
|
x = self.activation(x)
|
||||||
|
|
||||||
|
x = self.pointwise_conv2(x) # (batch, channel, time)
|
||||||
|
|
||||||
|
return x.permute(2, 0, 1)
|
||||||
|
|
||||||
|
|
||||||
|
class Swish(torch.nn.Module):
|
||||||
|
"""Construct an Swish object."""
|
||||||
|
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
"""Return Swich activation function."""
|
||||||
|
return x * torch.sigmoid(x)
|
||||||
|
|
||||||
|
|
||||||
|
def identity(x):
|
||||||
|
return x
|
490
egs/librispeech/ASR/transducer_stateless_multi_datasets/decode.py
Executable file
490
egs/librispeech/ASR/transducer_stateless_multi_datasets/decode.py
Executable file
@ -0,0 +1,490 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./transducer_stateless_multi_datasets/decode.py \
|
||||||
|
--epoch 14 \
|
||||||
|
--avg 7 \
|
||||||
|
--exp-dir ./transducer_stateless_multi_datasets/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
(2) beam search
|
||||||
|
./transducer_stateless_multi_datasets/decode.py \
|
||||||
|
--epoch 14 \
|
||||||
|
--avg 7 \
|
||||||
|
--exp-dir ./transducer_stateless_multi_datasets/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Tuple
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AsrDataModule
|
||||||
|
from beam_search import beam_search, greedy_search, modified_beam_search
|
||||||
|
from conformer import Conformer
|
||||||
|
from decoder import Decoder
|
||||||
|
from joiner import Joiner
|
||||||
|
from librispeech import LibriSpeech
|
||||||
|
from model import Transducer
|
||||||
|
|
||||||
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=29,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=13,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="transducer_stateless_multi_datasets/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
beam_search or modified_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=3,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
# parameters for conformer
|
||||||
|
"feature_dim": 80,
|
||||||
|
"encoder_out_dim": 512,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"nhead": 8,
|
||||||
|
"dim_feedforward": 2048,
|
||||||
|
"num_encoder_layers": 12,
|
||||||
|
"vgg_frontend": False,
|
||||||
|
"env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def get_encoder_model(params: AttributeDict):
|
||||||
|
# TODO: We can add an option to switch between Conformer and Transformer
|
||||||
|
encoder = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
output_dim=params.encoder_out_dim,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
d_model=params.attention_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
dim_feedforward=params.dim_feedforward,
|
||||||
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
|
vgg_frontend=params.vgg_frontend,
|
||||||
|
)
|
||||||
|
return encoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_decoder_model(params: AttributeDict):
|
||||||
|
decoder = Decoder(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
embedding_dim=params.encoder_out_dim,
|
||||||
|
blank_id=params.blank_id,
|
||||||
|
context_size=params.context_size,
|
||||||
|
)
|
||||||
|
return decoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_joiner_model(params: AttributeDict):
|
||||||
|
joiner = Joiner(
|
||||||
|
input_dim=params.encoder_out_dim,
|
||||||
|
output_dim=params.vocab_size,
|
||||||
|
)
|
||||||
|
return joiner
|
||||||
|
|
||||||
|
|
||||||
|
def get_transducer_model(params: AttributeDict):
|
||||||
|
encoder = get_encoder_model(params)
|
||||||
|
decoder = get_decoder_model(params)
|
||||||
|
joiner = get_joiner_model(params)
|
||||||
|
|
||||||
|
model = Transducer(
|
||||||
|
encoder=encoder,
|
||||||
|
decoder=decoder,
|
||||||
|
joiner=joiner,
|
||||||
|
)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
batch: dict,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=feature, x_lens=feature_lens
|
||||||
|
)
|
||||||
|
hyps = []
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp = modified_beam_search(
|
||||||
|
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search": hyps}
|
||||||
|
else:
|
||||||
|
return {f"beam_{params.beam_size}": hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
log_interval = 100
|
||||||
|
else:
|
||||||
|
log_interval = 2
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for hyp_words, ref_text in zip(hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir
|
||||||
|
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"modified_beam_search",
|
||||||
|
)
|
||||||
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
if "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam_size}"
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints(filenames, device=device), strict=False
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
asr_datamodule = AsrDataModule(args)
|
||||||
|
librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
|
||||||
|
|
||||||
|
test_clean_cuts = librispeech.test_clean_cuts()
|
||||||
|
test_other_cuts = librispeech.test_other_cuts()
|
||||||
|
|
||||||
|
test_clean_dl = asr_datamodule.test_dataloaders(test_clean_cuts)
|
||||||
|
test_other_dl = asr_datamodule.test_dataloaders(test_other_cuts)
|
||||||
|
|
||||||
|
test_sets = ["test-clean", "test-other"]
|
||||||
|
test_dl = [test_clean_dl, test_other_dl]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dl):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -0,0 +1,98 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(nn.Module):
|
||||||
|
"""This class modifies the stateless decoder from the following paper:
|
||||||
|
|
||||||
|
RNN-transducer with stateless prediction network
|
||||||
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
|
||||||
|
|
||||||
|
It removes the recurrent connection from the decoder, i.e., the prediction
|
||||||
|
network. Different from the above paper, it adds an extra Conv1d
|
||||||
|
right after the embedding layer.
|
||||||
|
|
||||||
|
TODO: Implement https://arxiv.org/pdf/2109.07513.pdf
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab_size: int,
|
||||||
|
embedding_dim: int,
|
||||||
|
blank_id: int,
|
||||||
|
context_size: int,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
vocab_size:
|
||||||
|
Number of tokens of the modeling unit including blank.
|
||||||
|
embedding_dim:
|
||||||
|
Dimension of the input embedding.
|
||||||
|
blank_id:
|
||||||
|
The ID of the blank symbol.
|
||||||
|
context_size:
|
||||||
|
Number of previous words to use to predict the next word.
|
||||||
|
1 means bigram; 2 means trigram. n means (n+1)-gram.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.embedding = nn.Embedding(
|
||||||
|
num_embeddings=vocab_size,
|
||||||
|
embedding_dim=embedding_dim,
|
||||||
|
padding_idx=blank_id,
|
||||||
|
)
|
||||||
|
self.blank_id = blank_id
|
||||||
|
|
||||||
|
assert context_size >= 1, context_size
|
||||||
|
self.context_size = context_size
|
||||||
|
if context_size > 1:
|
||||||
|
self.conv = nn.Conv1d(
|
||||||
|
in_channels=embedding_dim,
|
||||||
|
out_channels=embedding_dim,
|
||||||
|
kernel_size=context_size,
|
||||||
|
padding=0,
|
||||||
|
groups=embedding_dim,
|
||||||
|
bias=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
y:
|
||||||
|
A 2-D tensor of shape (N, U).
|
||||||
|
need_pad:
|
||||||
|
True to left pad the input. Should be True during training.
|
||||||
|
False to not pad the input. Should be False during inference.
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape (N, U, embedding_dim).
|
||||||
|
"""
|
||||||
|
embedding_out = self.embedding(y)
|
||||||
|
if self.context_size > 1:
|
||||||
|
embedding_out = embedding_out.permute(0, 2, 1)
|
||||||
|
if need_pad is True:
|
||||||
|
embedding_out = F.pad(
|
||||||
|
embedding_out, pad=(self.context_size - 1, 0)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# During inference time, there is no need to do extra padding
|
||||||
|
# as we only need one output
|
||||||
|
assert embedding_out.size(-1) == self.context_size
|
||||||
|
embedding_out = self.conv(embedding_out)
|
||||||
|
embedding_out = embedding_out.permute(0, 2, 1)
|
||||||
|
return embedding_out
|
@ -0,0 +1,43 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class EncoderInterface(nn.Module):
|
||||||
|
def forward(
|
||||||
|
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A tensor of shape (batch_size, input_seq_len, num_features)
|
||||||
|
containing the input features.
|
||||||
|
x_lens:
|
||||||
|
A tensor of shape (batch_size,) containing the number of frames
|
||||||
|
in `x` before padding.
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing two tensors:
|
||||||
|
- encoder_out, a tensor of (batch_size, out_seq_len, output_dim)
|
||||||
|
containing unnormalized probabilities, i.e., the output of a
|
||||||
|
linear layer.
|
||||||
|
- encoder_out_lens, a tensor of shape (batch_size,) containing
|
||||||
|
the number of frames in `encoder_out` before padding.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError("Please implement it in a subclass")
|
252
egs/librispeech/ASR/transducer_stateless_multi_datasets/export.py
Executable file
252
egs/librispeech/ASR/transducer_stateless_multi_datasets/export.py
Executable file
@ -0,0 +1,252 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script converts several saved checkpoints
|
||||||
|
# to a single one using model averaging.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./transducer_stateless_multi_datasets/export.py \
|
||||||
|
--exp-dir ./transducer_stateless_multi_datasets/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 10
|
||||||
|
|
||||||
|
It will generate a file exp_dir/pretrained.pt
|
||||||
|
|
||||||
|
To use the generated file with `transducer_stateless_multi_datasets/decode.py`,
|
||||||
|
you can do::
|
||||||
|
|
||||||
|
cd /path/to/exp_dir
|
||||||
|
ln -s pretrained.pt epoch-9999.pt
|
||||||
|
|
||||||
|
cd /path/to/egs/librispeech/ASR
|
||||||
|
./transducer_stateless_multi_datasets/decode.py \
|
||||||
|
--exp-dir ./transducer_stateless_multi_datasets/exp \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--max-duration 1 \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from conformer import Conformer
|
||||||
|
from decoder import Decoder
|
||||||
|
from joiner import Joiner
|
||||||
|
from model import Transducer
|
||||||
|
|
||||||
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import AttributeDict, str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=20,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=10,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="transducer_stateless_multi_datasets/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--jit",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to save a model after applying torch.jit.script.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
# parameters for conformer
|
||||||
|
"feature_dim": 80,
|
||||||
|
"encoder_out_dim": 512,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"nhead": 8,
|
||||||
|
"dim_feedforward": 2048,
|
||||||
|
"num_encoder_layers": 12,
|
||||||
|
"vgg_frontend": False,
|
||||||
|
"env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||||
|
encoder = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
output_dim=params.encoder_out_dim,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
d_model=params.attention_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
dim_feedforward=params.dim_feedforward,
|
||||||
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
|
vgg_frontend=params.vgg_frontend,
|
||||||
|
)
|
||||||
|
return encoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
||||||
|
decoder = Decoder(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
embedding_dim=params.encoder_out_dim,
|
||||||
|
blank_id=params.blank_id,
|
||||||
|
context_size=params.context_size,
|
||||||
|
)
|
||||||
|
return decoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||||
|
joiner = Joiner(
|
||||||
|
input_dim=params.encoder_out_dim,
|
||||||
|
output_dim=params.vocab_size,
|
||||||
|
)
|
||||||
|
return joiner
|
||||||
|
|
||||||
|
|
||||||
|
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||||
|
encoder = get_encoder_model(params)
|
||||||
|
decoder = get_decoder_model(params)
|
||||||
|
joiner = get_joiner_model(params)
|
||||||
|
|
||||||
|
model = Transducer(
|
||||||
|
encoder=encoder,
|
||||||
|
decoder=decoder,
|
||||||
|
joiner=joiner,
|
||||||
|
)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
assert args.jit is False, "Support torchscript will be added later"
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
if params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints(filenames, device=device), strict=False
|
||||||
|
)
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
model.to("cpu")
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.jit:
|
||||||
|
logging.info("Using torch.jit.script")
|
||||||
|
model = torch.jit.script(model)
|
||||||
|
filename = params.exp_dir / "cpu_jit.pt"
|
||||||
|
model.save(str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
else:
|
||||||
|
logging.info("Not using torch.jit.script")
|
||||||
|
# Save it using a format so that it can be loaded
|
||||||
|
# by :func:`load_checkpoint`
|
||||||
|
filename = params.exp_dir / "pretrained.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
@ -0,0 +1,75 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from lhotse import CutSet, load_manifest
|
||||||
|
|
||||||
|
|
||||||
|
class GigaSpeech:
|
||||||
|
def __init__(self, manifest_dir: str):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
manifest_dir:
|
||||||
|
It is expected to contain the following files::
|
||||||
|
|
||||||
|
- cuts_XL_raw.jsonl.gz
|
||||||
|
- cuts_L_raw.jsonl.gz
|
||||||
|
- cuts_M_raw.jsonl.gz
|
||||||
|
- cuts_S_raw.jsonl.gz
|
||||||
|
- cuts_XS_raw.jsonl.gz
|
||||||
|
- cuts_DEV_raw.jsonl.gz
|
||||||
|
- cuts_TEST_raw.jsonl.gz
|
||||||
|
"""
|
||||||
|
self.manifest_dir = Path(manifest_dir)
|
||||||
|
|
||||||
|
def train_XL_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_XL_raw.jsonl.gz"
|
||||||
|
logging.info(f"About to get train-XL cuts from {f}")
|
||||||
|
return CutSet.from_jsonl_lazy(f)
|
||||||
|
|
||||||
|
def train_L_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_L_raw.jsonl.gz"
|
||||||
|
logging.info(f"About to get train-L cuts from {f}")
|
||||||
|
return CutSet.from_jsonl_lazy(f)
|
||||||
|
|
||||||
|
def train_M_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_M_raw.jsonl.gz"
|
||||||
|
logging.info(f"About to get train-M cuts from {f}")
|
||||||
|
return CutSet.from_jsonl_lazy(f)
|
||||||
|
|
||||||
|
def train_S_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_S_raw.jsonl.gz"
|
||||||
|
logging.info(f"About to get train-S cuts from {f}")
|
||||||
|
return CutSet.from_jsonl_lazy(f)
|
||||||
|
|
||||||
|
def train_XS_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_XS_raw.jsonl.gz"
|
||||||
|
logging.info(f"About to get train-XS cuts from {f}")
|
||||||
|
return CutSet.from_jsonl_lazy(f)
|
||||||
|
|
||||||
|
def test_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_TEST.jsonl.gz"
|
||||||
|
logging.info(f"About to get TEST cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def dev_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_DEV.jsonl.gz"
|
||||||
|
logging.info(f"About to get DEV cuts from {f}")
|
||||||
|
return load_manifest(f)
|
@ -0,0 +1,72 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class Joiner(nn.Module):
|
||||||
|
def __init__(self, input_dim: int, output_dim: int):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.input_dim = input_dim
|
||||||
|
self.output_dim = output_dim
|
||||||
|
self.output_linear = nn.Linear(input_dim, output_dim)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
decoder_out: torch.Tensor,
|
||||||
|
encoder_out_len: torch.Tensor,
|
||||||
|
decoder_out_len: torch.Tensor,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder_out:
|
||||||
|
Output from the encoder. Its shape is (N, T, self.input_dim).
|
||||||
|
decoder_out:
|
||||||
|
Output from the decoder. Its shape is (N, U, self.input_dim).
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape (sum_all_TU, self.output_dim).
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == decoder_out.ndim == 3
|
||||||
|
assert encoder_out.size(0) == decoder_out.size(0)
|
||||||
|
assert encoder_out.size(2) == self.input_dim
|
||||||
|
assert decoder_out.size(2) == self.input_dim
|
||||||
|
|
||||||
|
N = encoder_out.size(0)
|
||||||
|
|
||||||
|
encoder_out_list = [
|
||||||
|
encoder_out[i, : encoder_out_len[i], :] for i in range(N)
|
||||||
|
]
|
||||||
|
|
||||||
|
decoder_out_list = [
|
||||||
|
decoder_out[i, : decoder_out_len[i], :] for i in range(N)
|
||||||
|
]
|
||||||
|
|
||||||
|
x = [
|
||||||
|
e.unsqueeze(1) + d.unsqueeze(0)
|
||||||
|
for e, d in zip(encoder_out_list, decoder_out_list)
|
||||||
|
]
|
||||||
|
|
||||||
|
x = [p.reshape(-1, self.input_dim) for p in x]
|
||||||
|
x = torch.cat(x)
|
||||||
|
|
||||||
|
activations = torch.tanh(x)
|
||||||
|
|
||||||
|
logits = self.output_linear(activations)
|
||||||
|
|
||||||
|
return logits
|
@ -0,0 +1,74 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from lhotse import CutSet, load_manifest
|
||||||
|
|
||||||
|
|
||||||
|
class LibriSpeech:
|
||||||
|
def __init__(self, manifest_dir: str):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
manifest_dir:
|
||||||
|
It is expected to contain the following files::
|
||||||
|
|
||||||
|
- cuts_dev-clean.json.gz
|
||||||
|
- cuts_dev-other.json.gz
|
||||||
|
- cuts_test-clean.json.gz
|
||||||
|
- cuts_test-other.json.gz
|
||||||
|
- cuts_train-clean-100.json.gz
|
||||||
|
- cuts_train-clean-360.json.gz
|
||||||
|
- cuts_train-other-500.json.gz
|
||||||
|
"""
|
||||||
|
self.manifest_dir = Path(manifest_dir)
|
||||||
|
|
||||||
|
def train_clean_100_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_train-clean-100.json.gz"
|
||||||
|
logging.info(f"About to get train-clean-100 cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def train_clean_360_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_train-clean-360.json.gz"
|
||||||
|
logging.info(f"About to get train-clean-360 cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def train_other_500_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_train-other-500.json.gz"
|
||||||
|
logging.info(f"About to get train-other-500 cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def test_clean_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_test-clean.json.gz"
|
||||||
|
logging.info(f"About to get test-clean cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def test_other_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_test-other.json.gz"
|
||||||
|
logging.info(f"About to get test-other cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def dev_clean_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_dev-clean.json.gz"
|
||||||
|
logging.info(f"About to get dev-clean cuts from {f}")
|
||||||
|
return load_manifest(f)
|
||||||
|
|
||||||
|
def dev_other_cuts(self) -> CutSet:
|
||||||
|
f = self.manifest_dir / "cuts_dev-other.json.gz"
|
||||||
|
logging.info(f"About to get dev-other cuts from {f}")
|
||||||
|
return load_manifest(f)
|
168
egs/librispeech/ASR/transducer_stateless_multi_datasets/model.py
Normal file
168
egs/librispeech/ASR/transducer_stateless_multi_datasets/model.py
Normal file
@ -0,0 +1,168 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import random
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from encoder_interface import EncoderInterface
|
||||||
|
|
||||||
|
from icefall.utils import add_sos
|
||||||
|
|
||||||
|
|
||||||
|
class Transducer(nn.Module):
|
||||||
|
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||||
|
"Sequence Transduction with Recurrent Neural Networks"
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder: EncoderInterface,
|
||||||
|
decoder: nn.Module,
|
||||||
|
joiner: nn.Module,
|
||||||
|
decoder_giga: Optional[nn.Module] = None,
|
||||||
|
joiner_giga: Optional[nn.Module] = None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder:
|
||||||
|
It is the transcription network in the paper. Its accepts
|
||||||
|
two inputs: `x` of (N, T, C) and `x_lens` of shape (N,).
|
||||||
|
It returns two tensors: `logits` of shape (N, T, C) and
|
||||||
|
`logit_lens` of shape (N,).
|
||||||
|
decoder:
|
||||||
|
It is the prediction network in the paper. Its input shape
|
||||||
|
is (N, U) and its output shape is (N, U, C). It should contain
|
||||||
|
one attribute: `blank_id`.
|
||||||
|
joiner:
|
||||||
|
It has two inputs with shapes: (N, T, C) and (N, U, C). Its
|
||||||
|
output shape is (N, T, U, C). Note that its output contains
|
||||||
|
unnormalized probs, i.e., not processed by log-softmax.
|
||||||
|
decoder_giga:
|
||||||
|
The decoder for the GigaSpeech dataset.
|
||||||
|
joiner_giga:
|
||||||
|
The joiner for the GigaSpeech dataset.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||||
|
assert hasattr(decoder, "blank_id")
|
||||||
|
|
||||||
|
if decoder_giga is not None:
|
||||||
|
assert hasattr(decoder_giga, "blank_id")
|
||||||
|
|
||||||
|
self.encoder = encoder
|
||||||
|
|
||||||
|
self.decoder = decoder
|
||||||
|
self.joiner = joiner
|
||||||
|
|
||||||
|
self.decoder_giga = decoder_giga
|
||||||
|
self.joiner_giga = joiner_giga
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
x_lens: torch.Tensor,
|
||||||
|
y: k2.RaggedTensor,
|
||||||
|
libri: bool = True,
|
||||||
|
modified_transducer_prob: float = 0.0,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A 3-D tensor of shape (N, T, C).
|
||||||
|
x_lens:
|
||||||
|
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||||
|
before padding.
|
||||||
|
y:
|
||||||
|
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||||
|
utterance.
|
||||||
|
libri:
|
||||||
|
True to use the decoder and joiner for the LibriSpeech dataset.
|
||||||
|
False to use the decoder and joiner for the GigaSpeech dataset.
|
||||||
|
modified_transducer_prob:
|
||||||
|
The probability to use modified transducer loss.
|
||||||
|
Returns:
|
||||||
|
Return the transducer loss.
|
||||||
|
"""
|
||||||
|
assert x.ndim == 3, x.shape
|
||||||
|
assert x_lens.ndim == 1, x_lens.shape
|
||||||
|
assert y.num_axes == 2, y.num_axes
|
||||||
|
|
||||||
|
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||||
|
|
||||||
|
encoder_out, x_lens = self.encoder(x, x_lens)
|
||||||
|
assert torch.all(x_lens > 0)
|
||||||
|
|
||||||
|
# Now for the decoder, i.e., the prediction network
|
||||||
|
row_splits = y.shape.row_splits(1)
|
||||||
|
y_lens = row_splits[1:] - row_splits[:-1]
|
||||||
|
|
||||||
|
blank_id = self.decoder.blank_id
|
||||||
|
sos_y = add_sos(y, sos_id=blank_id)
|
||||||
|
|
||||||
|
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||||
|
sos_y_padded = sos_y_padded.to(torch.int64)
|
||||||
|
|
||||||
|
if libri:
|
||||||
|
decoder = self.decoder
|
||||||
|
joiner = self.joiner
|
||||||
|
else:
|
||||||
|
decoder = self.decoder_giga
|
||||||
|
joiner = self.joiner_giga
|
||||||
|
|
||||||
|
decoder_out = decoder(sos_y_padded)
|
||||||
|
|
||||||
|
# +1 here since a blank is prepended to each utterance.
|
||||||
|
logits = joiner(
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
decoder_out=decoder_out,
|
||||||
|
encoder_out_len=x_lens,
|
||||||
|
decoder_out_len=y_lens + 1,
|
||||||
|
)
|
||||||
|
|
||||||
|
# rnnt_loss requires 0 padded targets
|
||||||
|
# Note: y does not start with SOS
|
||||||
|
y_padded = y.pad(mode="constant", padding_value=0)
|
||||||
|
|
||||||
|
# We don't put this `import` at the beginning of the file
|
||||||
|
# as it is required only in the training, not during the
|
||||||
|
# reference stage
|
||||||
|
import optimized_transducer
|
||||||
|
|
||||||
|
assert 0 <= modified_transducer_prob <= 1
|
||||||
|
|
||||||
|
if modified_transducer_prob == 0:
|
||||||
|
one_sym_per_frame = False
|
||||||
|
elif random.random() < modified_transducer_prob:
|
||||||
|
# random.random() returns a float in the range [0, 1)
|
||||||
|
one_sym_per_frame = True
|
||||||
|
else:
|
||||||
|
one_sym_per_frame = False
|
||||||
|
|
||||||
|
loss = optimized_transducer.transducer_loss(
|
||||||
|
logits=logits,
|
||||||
|
targets=y_padded,
|
||||||
|
logit_lengths=x_lens,
|
||||||
|
target_lengths=y_lens,
|
||||||
|
blank=blank_id,
|
||||||
|
reduction="sum",
|
||||||
|
one_sym_per_frame=one_sym_per_frame,
|
||||||
|
from_log_softmax=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return loss
|
340
egs/librispeech/ASR/transducer_stateless_multi_datasets/pretrained.py
Executable file
340
egs/librispeech/ASR/transducer_stateless_multi_datasets/pretrained.py
Executable file
@ -0,0 +1,340 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
(1) greedy search
|
||||||
|
./transducer_stateless_multi_datasets/pretrained.py \
|
||||||
|
--checkpoint ./transducer_stateless_multi_datasets/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method greedy_search \
|
||||||
|
--max-sym-per-frame 1 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(2) beam search
|
||||||
|
./transducer_stateless_multi_datasets/pretrained.py \
|
||||||
|
--checkpoint ./transducer_stateless_multi_datasets/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method beam_search \
|
||||||
|
--beam-size 4 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./transducer_stateless_multi_datasets/pretrained.py \
|
||||||
|
--checkpoint ./transducer_stateless_multi_datasets/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method modified_beam_search \
|
||||||
|
--beam-size 4 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
You can also use `./transducer_stateless_multi_datasets/exp/epoch-xx.pt`.
|
||||||
|
|
||||||
|
Note: ./transducer_stateless_multi_datasets/exp/pretrained.pt is generated by
|
||||||
|
./transducer_stateless_multi_datasets/export.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import kaldifeat
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torchaudio
|
||||||
|
from beam_search import beam_search, greedy_search, modified_beam_search
|
||||||
|
from conformer import Conformer
|
||||||
|
from decoder import Decoder
|
||||||
|
from joiner import Joiner
|
||||||
|
from model import Transducer
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import AttributeDict
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpoint",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint. "
|
||||||
|
"The checkpoint is assumed to be saved by "
|
||||||
|
"icefall.checkpoint.save_checkpoint().",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
help="""Path to bpe.model.
|
||||||
|
Used only when method is ctc-decoding.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="Used only when --method is beam_search and modified_beam_search ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=3,
|
||||||
|
help="""Maximum number of symbols per frame. Used only when
|
||||||
|
--method is greedy_search.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"sample_rate": 16000,
|
||||||
|
# parameters for conformer
|
||||||
|
"feature_dim": 80,
|
||||||
|
"encoder_out_dim": 512,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"nhead": 8,
|
||||||
|
"dim_feedforward": 2048,
|
||||||
|
"num_encoder_layers": 12,
|
||||||
|
"vgg_frontend": False,
|
||||||
|
"env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||||
|
encoder = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
output_dim=params.encoder_out_dim,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
d_model=params.attention_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
dim_feedforward=params.dim_feedforward,
|
||||||
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
|
vgg_frontend=params.vgg_frontend,
|
||||||
|
)
|
||||||
|
return encoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
||||||
|
decoder = Decoder(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
embedding_dim=params.encoder_out_dim,
|
||||||
|
blank_id=params.blank_id,
|
||||||
|
context_size=params.context_size,
|
||||||
|
)
|
||||||
|
return decoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||||
|
joiner = Joiner(
|
||||||
|
input_dim=params.encoder_out_dim,
|
||||||
|
output_dim=params.vocab_size,
|
||||||
|
)
|
||||||
|
return joiner
|
||||||
|
|
||||||
|
|
||||||
|
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||||
|
encoder = get_encoder_model(params)
|
||||||
|
decoder = get_decoder_model(params)
|
||||||
|
joiner = get_joiner_model(params)
|
||||||
|
|
||||||
|
model = Transducer(
|
||||||
|
encoder=encoder,
|
||||||
|
decoder=decoder,
|
||||||
|
joiner=joiner,
|
||||||
|
)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert sample_rate == expected_sample_rate, (
|
||||||
|
f"expected sample rate: {expected_sample_rate}. "
|
||||||
|
f"Given: {sample_rate}"
|
||||||
|
)
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
logging.info("Creating model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
|
model.load_state_dict(checkpoint["model"], strict=False)
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
|
features = pad_sequence(
|
||||||
|
features, batch_first=True, padding_value=math.log(1e-10)
|
||||||
|
)
|
||||||
|
|
||||||
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=features, x_lens=feature_lengths
|
||||||
|
)
|
||||||
|
|
||||||
|
num_waves = encoder_out.size(0)
|
||||||
|
hyps = []
|
||||||
|
msg = f"Using {params.method}"
|
||||||
|
if params.method == "beam_search":
|
||||||
|
msg += f" with beam size {params.beam_size}"
|
||||||
|
logging.info(msg)
|
||||||
|
for i in range(num_waves):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||||
|
)
|
||||||
|
elif params.method == "modified_beam_search":
|
||||||
|
hyp = modified_beam_search(
|
||||||
|
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported method: {params.method}")
|
||||||
|
|
||||||
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
words = " ".join(hyp)
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
@ -0,0 +1 @@
|
|||||||
|
../transducer/subsampling.py
|
102
egs/librispeech/ASR/transducer_stateless_multi_datasets/test_asr_datamodule.py
Executable file
102
egs/librispeech/ASR/transducer_stateless_multi_datasets/test_asr_datamodule.py
Executable file
@ -0,0 +1,102 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
To run this file, do:
|
||||||
|
|
||||||
|
cd icefall/egs/librispeech/ASR
|
||||||
|
python ./transducer_stateless_multi_datasets/test_asr_datamodule.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import random
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from asr_datamodule import AsrDataModule
|
||||||
|
from gigaspeech import GigaSpeech
|
||||||
|
from lhotse import load_manifest
|
||||||
|
from librispeech import LibriSpeech
|
||||||
|
|
||||||
|
|
||||||
|
def test_dataset():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
AsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
print(args)
|
||||||
|
|
||||||
|
if args.enable_musan:
|
||||||
|
cuts_musan = load_manifest(
|
||||||
|
Path(args.manifest_dir) / "cuts_musan.json.gz"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
cuts_musan = None
|
||||||
|
|
||||||
|
librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
|
||||||
|
gigaspeech = GigaSpeech(manifest_dir=args.manifest_dir)
|
||||||
|
|
||||||
|
train_clean_100 = librispeech.train_clean_100_cuts()
|
||||||
|
train_S = gigaspeech.train_S_cuts()
|
||||||
|
|
||||||
|
asr_datamodule = AsrDataModule(args)
|
||||||
|
|
||||||
|
libri_train_dl = asr_datamodule.train_dataloaders(
|
||||||
|
train_clean_100,
|
||||||
|
dynamic_bucketing=False,
|
||||||
|
on_the_fly_feats=False,
|
||||||
|
cuts_musan=cuts_musan,
|
||||||
|
)
|
||||||
|
|
||||||
|
giga_train_dl = asr_datamodule.train_dataloaders(
|
||||||
|
train_S,
|
||||||
|
dynamic_bucketing=True,
|
||||||
|
on_the_fly_feats=True,
|
||||||
|
cuts_musan=cuts_musan,
|
||||||
|
)
|
||||||
|
|
||||||
|
seed = 20220216
|
||||||
|
rng = random.Random(seed)
|
||||||
|
|
||||||
|
for epoch in range(2):
|
||||||
|
print("epoch", epoch)
|
||||||
|
batch_idx = 0
|
||||||
|
libri_train_dl.sampler.set_epoch(epoch)
|
||||||
|
giga_train_dl.sampler.set_epoch(epoch)
|
||||||
|
|
||||||
|
iter_libri = iter(libri_train_dl)
|
||||||
|
iter_giga = iter(giga_train_dl)
|
||||||
|
while True:
|
||||||
|
idx = rng.choices((0, 1), weights=[0.8, 0.2], k=1)[0]
|
||||||
|
dl = iter_libri if idx == 0 else iter_giga
|
||||||
|
batch_idx += 1
|
||||||
|
|
||||||
|
print("dl idx", idx, "batch_idx", batch_idx)
|
||||||
|
try:
|
||||||
|
_ = next(dl)
|
||||||
|
except StopIteration:
|
||||||
|
print("dl idx", idx)
|
||||||
|
print("Go to the next epoch")
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
test_dataset()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
58
egs/librispeech/ASR/transducer_stateless_multi_datasets/test_decoder.py
Executable file
58
egs/librispeech/ASR/transducer_stateless_multi_datasets/test_decoder.py
Executable file
@ -0,0 +1,58 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
To run this file, do:
|
||||||
|
|
||||||
|
cd icefall/egs/librispeech/ASR
|
||||||
|
python ./transducer_stateless_multi_datasets/test_decoder.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from decoder import Decoder
|
||||||
|
|
||||||
|
|
||||||
|
def test_decoder():
|
||||||
|
vocab_size = 3
|
||||||
|
blank_id = 0
|
||||||
|
embedding_dim = 128
|
||||||
|
context_size = 4
|
||||||
|
|
||||||
|
decoder = Decoder(
|
||||||
|
vocab_size=vocab_size,
|
||||||
|
embedding_dim=embedding_dim,
|
||||||
|
blank_id=blank_id,
|
||||||
|
context_size=context_size,
|
||||||
|
)
|
||||||
|
N = 100
|
||||||
|
U = 20
|
||||||
|
x = torch.randint(low=0, high=vocab_size, size=(N, U))
|
||||||
|
y = decoder(x)
|
||||||
|
assert y.shape == (N, U, embedding_dim)
|
||||||
|
|
||||||
|
# for inference
|
||||||
|
x = torch.randint(low=0, high=vocab_size, size=(N, context_size))
|
||||||
|
y = decoder(x, need_pad=False)
|
||||||
|
assert y.shape == (N, 1, embedding_dim)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
test_decoder()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
890
egs/librispeech/ASR/transducer_stateless_multi_datasets/train.py
Executable file
890
egs/librispeech/ASR/transducer_stateless_multi_datasets/train.py
Executable file
@ -0,0 +1,890 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Wei Kang
|
||||||
|
# Mingshuang Luo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
|
||||||
|
./transducer_stateless_multi_datasets/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 0 \
|
||||||
|
--exp-dir transducer_stateless_multi_datasets/exp \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 250 \
|
||||||
|
--lr-factor 2.5
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import random
|
||||||
|
from pathlib import Path
|
||||||
|
from shutil import copyfile
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AsrDataModule
|
||||||
|
from conformer import Conformer
|
||||||
|
from decoder import Decoder
|
||||||
|
from gigaspeech import GigaSpeech
|
||||||
|
from joiner import Joiner
|
||||||
|
from lhotse import CutSet, load_manifest
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from librispeech import LibriSpeech
|
||||||
|
from model import Transducer
|
||||||
|
from torch import Tensor
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.nn.utils import clip_grad_norm_
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
from transformer import Noam
|
||||||
|
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||||
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--world-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of GPUs for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--master-port",
|
||||||
|
type=int,
|
||||||
|
default=12354,
|
||||||
|
help="Master port to use for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--full-libri",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use 960h LibriSpeech. "
|
||||||
|
"Otherwise, use 100h subset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""Resume training from from this epoch.
|
||||||
|
If it is positive, it will load checkpoint from
|
||||||
|
transducer_stateless/exp/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="transducer_stateless_multi_datasets/exp",
|
||||||
|
help="""The experiment dir.
|
||||||
|
It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lr-factor",
|
||||||
|
type=float,
|
||||||
|
default=5.0,
|
||||||
|
help="The lr_factor for Noam optimizer",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--modified-transducer-prob",
|
||||||
|
type=float,
|
||||||
|
default=0.25,
|
||||||
|
help="""The probability to use modified transducer loss.
|
||||||
|
In modified transduer, it limits the maximum number of symbols
|
||||||
|
per frame to 1. See also the option --max-sym-per-frame in
|
||||||
|
transducer_stateless/decode.py
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--giga-prob",
|
||||||
|
type=float,
|
||||||
|
default=0.2,
|
||||||
|
help="The probability to select a batch from the GigaSpeech dataset",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing training parameters.
|
||||||
|
|
||||||
|
All training related parameters that are not passed from the commandline
|
||||||
|
are saved in the variable `params`.
|
||||||
|
|
||||||
|
Commandline options are merged into `params` after they are parsed, so
|
||||||
|
you can also access them via `params`.
|
||||||
|
|
||||||
|
Explanation of options saved in `params`:
|
||||||
|
|
||||||
|
- best_train_loss: Best training loss so far. It is used to select
|
||||||
|
the model that has the lowest training loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_valid_loss: Best validation loss so far. It is used to select
|
||||||
|
the model that has the lowest validation loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_train_epoch: It is the epoch that has the best training loss.
|
||||||
|
|
||||||
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||||
|
|
||||||
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||||
|
contains number of batches trained so far across
|
||||||
|
epochs.
|
||||||
|
|
||||||
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||||
|
|
||||||
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||||
|
|
||||||
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||||
|
|
||||||
|
- feature_dim: The model input dim. It has to match the one used
|
||||||
|
in computing features.
|
||||||
|
|
||||||
|
- subsampling_factor: The subsampling factor for the model.
|
||||||
|
|
||||||
|
- attention_dim: Hidden dim for multi-head attention model.
|
||||||
|
|
||||||
|
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
||||||
|
|
||||||
|
- warm_step: The warm_step for Noam optimizer.
|
||||||
|
"""
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": 0,
|
||||||
|
"log_interval": 50,
|
||||||
|
"reset_interval": 200,
|
||||||
|
"valid_interval": 3000, # For the 100h subset, use 800
|
||||||
|
# parameters for conformer
|
||||||
|
"feature_dim": 80,
|
||||||
|
"encoder_out_dim": 512,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"nhead": 8,
|
||||||
|
"dim_feedforward": 2048,
|
||||||
|
"num_encoder_layers": 12,
|
||||||
|
"vgg_frontend": False,
|
||||||
|
# parameters for Noam
|
||||||
|
"warm_step": 80000, # For the 100h subset, use 8k
|
||||||
|
"env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||||
|
# TODO: We can add an option to switch between Conformer and Transformer
|
||||||
|
encoder = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
output_dim=params.encoder_out_dim,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
d_model=params.attention_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
dim_feedforward=params.dim_feedforward,
|
||||||
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
|
vgg_frontend=params.vgg_frontend,
|
||||||
|
)
|
||||||
|
return encoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
||||||
|
decoder = Decoder(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
embedding_dim=params.encoder_out_dim,
|
||||||
|
blank_id=params.blank_id,
|
||||||
|
context_size=params.context_size,
|
||||||
|
)
|
||||||
|
return decoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||||
|
joiner = Joiner(
|
||||||
|
input_dim=params.encoder_out_dim,
|
||||||
|
output_dim=params.vocab_size,
|
||||||
|
)
|
||||||
|
return joiner
|
||||||
|
|
||||||
|
|
||||||
|
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||||
|
encoder = get_encoder_model(params)
|
||||||
|
|
||||||
|
decoder = get_decoder_model(params)
|
||||||
|
joiner = get_joiner_model(params)
|
||||||
|
|
||||||
|
decoder_giga = get_decoder_model(params)
|
||||||
|
joiner_giga = get_joiner_model(params)
|
||||||
|
|
||||||
|
model = Transducer(
|
||||||
|
encoder=encoder,
|
||||||
|
decoder=decoder,
|
||||||
|
joiner=joiner,
|
||||||
|
decoder_giga=decoder_giga,
|
||||||
|
joiner_giga=joiner_giga,
|
||||||
|
)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def load_checkpoint_if_available(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
) -> None:
|
||||||
|
"""Load checkpoint from file.
|
||||||
|
|
||||||
|
If params.start_epoch is positive, it will load the checkpoint from
|
||||||
|
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||||
|
|
||||||
|
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||||
|
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||||
|
and `best_valid_loss` in `params`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
The return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
optimizer:
|
||||||
|
The optimizer that we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler we are using.
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
if params.start_epoch <= 0:
|
||||||
|
return
|
||||||
|
|
||||||
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||||
|
saved_params = load_checkpoint(
|
||||||
|
filename,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
)
|
||||||
|
|
||||||
|
keys = [
|
||||||
|
"best_train_epoch",
|
||||||
|
"best_valid_epoch",
|
||||||
|
"batch_idx_train",
|
||||||
|
"best_train_loss",
|
||||||
|
"best_valid_loss",
|
||||||
|
]
|
||||||
|
for k in keys:
|
||||||
|
params[k] = saved_params[k]
|
||||||
|
|
||||||
|
return saved_params
|
||||||
|
|
||||||
|
|
||||||
|
def save_checkpoint(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Save model, optimizer, scheduler and training stats to file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
"""
|
||||||
|
if rank != 0:
|
||||||
|
return
|
||||||
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||||
|
save_checkpoint_impl(
|
||||||
|
filename=filename,
|
||||||
|
model=model,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.best_train_epoch == params.cur_epoch:
|
||||||
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_train_filename)
|
||||||
|
|
||||||
|
if params.best_valid_epoch == params.cur_epoch:
|
||||||
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_valid_filename)
|
||||||
|
|
||||||
|
|
||||||
|
def is_libri(c: Cut) -> bool:
|
||||||
|
"""Return True if this cut is from the LibriSpeech dataset.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
During data preparation, we set the custom field in
|
||||||
|
the supervision segment of GigaSpeech to dict(origin='giga')
|
||||||
|
See ../local/preprocess_gigaspeech.py.
|
||||||
|
"""
|
||||||
|
return c.supervisions[0].custom is None
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
batch: dict,
|
||||||
|
is_training: bool,
|
||||||
|
) -> Tuple[Tensor, MetricsTracker]:
|
||||||
|
"""
|
||||||
|
Compute CTC loss given the model and its inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training. It is an instance of Conformer in our case.
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
is_training:
|
||||||
|
True for training. False for validation. When it is True, this
|
||||||
|
function enables autograd during computation; when it is False, it
|
||||||
|
disables autograd.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
libri = is_libri(supervisions["cut"][0])
|
||||||
|
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
y = sp.encode(texts, out_type=int)
|
||||||
|
y = k2.RaggedTensor(y).to(device)
|
||||||
|
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
loss = model(
|
||||||
|
x=feature,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
y=y,
|
||||||
|
libri=libri,
|
||||||
|
modified_transducer_prob=params.modified_transducer_prob,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
info = MetricsTracker()
|
||||||
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||||
|
|
||||||
|
# Note: We use reduction=sum while computing the loss.
|
||||||
|
info["loss"] = loss.detach().cpu().item()
|
||||||
|
|
||||||
|
return loss, info
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> MetricsTracker:
|
||||||
|
"""Run the validation process."""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
batch=batch,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
tot_loss = tot_loss + loss_info
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
tot_loss.reduce(loss.device)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
if loss_value < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = loss_value
|
||||||
|
|
||||||
|
return tot_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
giga_train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
rng: random.Random,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
rng:
|
||||||
|
For select which dataset to use.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
"""
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
libri_tot_loss = MetricsTracker()
|
||||||
|
giga_tot_loss = MetricsTracker()
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
# index 0: for LibriSpeech
|
||||||
|
# index 1: for GigaSpeech
|
||||||
|
# This sets the probabilities for choosing which datasets
|
||||||
|
dl_weights = [1 - params.giga_prob, params.giga_prob]
|
||||||
|
|
||||||
|
iter_libri = iter(train_dl)
|
||||||
|
iter_giga = iter(giga_train_dl)
|
||||||
|
|
||||||
|
batch_idx = 0
|
||||||
|
|
||||||
|
while True:
|
||||||
|
idx = rng.choices((0, 1), weights=dl_weights, k=1)[0]
|
||||||
|
dl = iter_libri if idx == 0 else iter_giga
|
||||||
|
|
||||||
|
try:
|
||||||
|
batch = next(dl)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
|
||||||
|
batch_idx += 1
|
||||||
|
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
libri = is_libri(batch["supervisions"]["cut"][0])
|
||||||
|
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
batch=batch,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
# summary stats
|
||||||
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||||
|
if libri:
|
||||||
|
libri_tot_loss = (
|
||||||
|
libri_tot_loss * (1 - 1 / params.reset_interval)
|
||||||
|
) + loss_info
|
||||||
|
prefix = "libri" # for logging only
|
||||||
|
else:
|
||||||
|
giga_tot_loss = (
|
||||||
|
giga_tot_loss * (1 - 1 / params.reset_interval)
|
||||||
|
) + loss_info
|
||||||
|
prefix = "giga"
|
||||||
|
|
||||||
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||||
|
# in the batch and there is no normalization to it so far.
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, "
|
||||||
|
f"batch {batch_idx}, {prefix}_loss[{loss_info}], "
|
||||||
|
f"tot_loss[{tot_loss}], "
|
||||||
|
f"libri_tot_loss[{libri_tot_loss}], "
|
||||||
|
f"giga_tot_loss[{giga_tot_loss}], "
|
||||||
|
f"batch size: {batch_size}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
if tb_writer is not None:
|
||||||
|
loss_info.write_summary(
|
||||||
|
tb_writer,
|
||||||
|
f"train/current_{prefix}_",
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tot_loss.write_summary(
|
||||||
|
tb_writer, "train/tot_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
libri_tot_loss.write_summary(
|
||||||
|
tb_writer, "train/libri_tot_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
giga_tot_loss.write_summary(
|
||||||
|
tb_writer, "train/giga_tot_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
|
logging.info("Computing validation loss")
|
||||||
|
valid_info = compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||||
|
if tb_writer is not None:
|
||||||
|
valid_info.write_summary(
|
||||||
|
tb_writer, "train/valid_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
params.train_loss = loss_value
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def filter_short_and_long_utterances(cuts: CutSet) -> CutSet:
|
||||||
|
def remove_short_and_long_utt(c: Cut):
|
||||||
|
# Keep only utterances with duration between 1 second and 20 seconds
|
||||||
|
return 1.0 <= c.duration <= 20.0
|
||||||
|
|
||||||
|
num_in_total = len(cuts)
|
||||||
|
cuts = cuts.filter(remove_short_and_long_utt)
|
||||||
|
|
||||||
|
num_left = len(cuts)
|
||||||
|
num_removed = num_in_total - num_left
|
||||||
|
removed_percent = num_removed / num_in_total * 100
|
||||||
|
|
||||||
|
logging.info(f"Before removing short and long utterances: {num_in_total}")
|
||||||
|
logging.info(f"After removing short and long utterances: {num_left}")
|
||||||
|
logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
|
||||||
|
|
||||||
|
return cuts
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
if params.full_libri is False:
|
||||||
|
params.valid_interval = 800
|
||||||
|
params.warm_step = 8000
|
||||||
|
|
||||||
|
seed = 42
|
||||||
|
fix_random_seed(seed)
|
||||||
|
rng = random.Random(seed)
|
||||||
|
if world_size > 1:
|
||||||
|
setup_dist(rank, world_size, params.master_port)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info("Training started")
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
if world_size > 1:
|
||||||
|
logging.info("Using DDP")
|
||||||
|
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
optimizer = Noam(
|
||||||
|
model.parameters(),
|
||||||
|
model_size=params.attention_dim,
|
||||||
|
factor=params.lr_factor,
|
||||||
|
warm_step=params.warm_step,
|
||||||
|
)
|
||||||
|
|
||||||
|
if checkpoints and "optimizer" in checkpoints:
|
||||||
|
logging.info("Loading optimizer state dict")
|
||||||
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||||
|
|
||||||
|
librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
|
||||||
|
|
||||||
|
train_cuts = librispeech.train_clean_100_cuts()
|
||||||
|
if params.full_libri:
|
||||||
|
train_cuts += librispeech.train_clean_360_cuts()
|
||||||
|
train_cuts += librispeech.train_other_500_cuts()
|
||||||
|
|
||||||
|
train_cuts = filter_short_and_long_utterances(train_cuts)
|
||||||
|
|
||||||
|
gigaspeech = GigaSpeech(manifest_dir=args.manifest_dir)
|
||||||
|
# XL 10k hours
|
||||||
|
# L 2.5k hours
|
||||||
|
# M 1k hours
|
||||||
|
# S 250 hours
|
||||||
|
# XS 10 hours
|
||||||
|
# DEV 12 hours
|
||||||
|
# Test 40 hours
|
||||||
|
if params.full_libri:
|
||||||
|
logging.info("Using the L subset of GigaSpeech (2.5k hours)")
|
||||||
|
train_giga_cuts = gigaspeech.train_L_cuts()
|
||||||
|
else:
|
||||||
|
logging.info("Using the S subset of GigaSpeech (250 hours)")
|
||||||
|
train_giga_cuts = gigaspeech.train_S_cuts()
|
||||||
|
|
||||||
|
train_giga_cuts = filter_short_and_long_utterances(train_giga_cuts)
|
||||||
|
|
||||||
|
if args.enable_musan:
|
||||||
|
cuts_musan = load_manifest(
|
||||||
|
Path(args.manifest_dir) / "cuts_musan.json.gz"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
cuts_musan = None
|
||||||
|
|
||||||
|
asr_datamodule = AsrDataModule(args)
|
||||||
|
|
||||||
|
train_dl = asr_datamodule.train_dataloaders(
|
||||||
|
train_cuts,
|
||||||
|
dynamic_bucketing=False,
|
||||||
|
on_the_fly_feats=False,
|
||||||
|
cuts_musan=cuts_musan,
|
||||||
|
)
|
||||||
|
|
||||||
|
giga_train_dl = asr_datamodule.train_dataloaders(
|
||||||
|
train_giga_cuts,
|
||||||
|
dynamic_bucketing=True,
|
||||||
|
on_the_fly_feats=True,
|
||||||
|
cuts_musan=cuts_musan,
|
||||||
|
)
|
||||||
|
|
||||||
|
valid_cuts = librispeech.dev_clean_cuts()
|
||||||
|
valid_cuts += librispeech.dev_other_cuts()
|
||||||
|
valid_dl = asr_datamodule.valid_dataloaders(valid_cuts)
|
||||||
|
|
||||||
|
# It's time consuming to include `giga_train_dl` here
|
||||||
|
# for dl in [train_dl, giga_train_dl]:
|
||||||
|
for dl in [train_dl]:
|
||||||
|
scan_pessimistic_batches_for_oom(
|
||||||
|
model=model,
|
||||||
|
train_dl=dl,
|
||||||
|
optimizer=optimizer,
|
||||||
|
sp=sp,
|
||||||
|
params=params,
|
||||||
|
)
|
||||||
|
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs):
|
||||||
|
train_dl.sampler.set_epoch(epoch)
|
||||||
|
giga_train_dl.sampler.set_epoch(epoch)
|
||||||
|
|
||||||
|
cur_lr = optimizer._rate
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
sp=sp,
|
||||||
|
train_dl=train_dl,
|
||||||
|
giga_train_dl=giga_train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
rng=rng,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_checkpoint(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
cleanup_dist()
|
||||||
|
|
||||||
|
|
||||||
|
def scan_pessimistic_batches_for_oom(
|
||||||
|
model: nn.Module,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
params: AttributeDict,
|
||||||
|
):
|
||||||
|
from lhotse.dataset import find_pessimistic_batches
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
"Sanity check -- see if any of the batches in epoch 0 would cause OOM."
|
||||||
|
)
|
||||||
|
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
||||||
|
for criterion, cuts in batches.items():
|
||||||
|
batch = train_dl.dataset[cuts]
|
||||||
|
try:
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss, _ = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
batch=batch,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
loss.backward()
|
||||||
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||||
|
optimizer.step()
|
||||||
|
except RuntimeError as e:
|
||||||
|
if "CUDA out of memory" in str(e):
|
||||||
|
logging.error(
|
||||||
|
"Your GPU ran out of memory with the current "
|
||||||
|
"max_duration setting. We recommend decreasing "
|
||||||
|
"max_duration and trying again.\n"
|
||||||
|
f"Failing criterion: {criterion} "
|
||||||
|
f"(={crit_values[criterion]}) ..."
|
||||||
|
)
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
assert 0 <= args.giga_prob < 1, args.giga_prob
|
||||||
|
|
||||||
|
world_size = args.world_size
|
||||||
|
assert world_size >= 1
|
||||||
|
if world_size > 1:
|
||||||
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||||
|
else:
|
||||||
|
run(rank=0, world_size=1, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -0,0 +1,418 @@
|
|||||||
|
# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import math
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from encoder_interface import EncoderInterface
|
||||||
|
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||||
|
|
||||||
|
from icefall.utils import make_pad_mask
|
||||||
|
|
||||||
|
|
||||||
|
class Transformer(EncoderInterface):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_features: int,
|
||||||
|
output_dim: int,
|
||||||
|
subsampling_factor: int = 4,
|
||||||
|
d_model: int = 256,
|
||||||
|
nhead: int = 4,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
num_encoder_layers: int = 12,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
normalize_before: bool = True,
|
||||||
|
vgg_frontend: bool = False,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
num_features:
|
||||||
|
The input dimension of the model.
|
||||||
|
output_dim:
|
||||||
|
The output dimension of the model.
|
||||||
|
subsampling_factor:
|
||||||
|
Number of output frames is num_in_frames // subsampling_factor.
|
||||||
|
Currently, subsampling_factor MUST be 4.
|
||||||
|
d_model:
|
||||||
|
Attention dimension.
|
||||||
|
nhead:
|
||||||
|
Number of heads in multi-head attention.
|
||||||
|
Must satisfy d_model // nhead == 0.
|
||||||
|
dim_feedforward:
|
||||||
|
The output dimension of the feedforward layers in encoder.
|
||||||
|
num_encoder_layers:
|
||||||
|
Number of encoder layers.
|
||||||
|
dropout:
|
||||||
|
Dropout in encoder.
|
||||||
|
normalize_before:
|
||||||
|
If True, use pre-layer norm; False to use post-layer norm.
|
||||||
|
vgg_frontend:
|
||||||
|
True to use vgg style frontend for subsampling.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.num_features = num_features
|
||||||
|
self.output_dim = output_dim
|
||||||
|
self.subsampling_factor = subsampling_factor
|
||||||
|
if subsampling_factor != 4:
|
||||||
|
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
||||||
|
|
||||||
|
# self.encoder_embed converts the input of shape (N, T, num_features)
|
||||||
|
# to the shape (N, T//subsampling_factor, d_model).
|
||||||
|
# That is, it does two things simultaneously:
|
||||||
|
# (1) subsampling: T -> T//subsampling_factor
|
||||||
|
# (2) embedding: num_features -> d_model
|
||||||
|
if vgg_frontend:
|
||||||
|
self.encoder_embed = VggSubsampling(num_features, d_model)
|
||||||
|
else:
|
||||||
|
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
||||||
|
|
||||||
|
self.encoder_pos = PositionalEncoding(d_model, dropout)
|
||||||
|
|
||||||
|
encoder_layer = TransformerEncoderLayer(
|
||||||
|
d_model=d_model,
|
||||||
|
nhead=nhead,
|
||||||
|
dim_feedforward=dim_feedforward,
|
||||||
|
dropout=dropout,
|
||||||
|
normalize_before=normalize_before,
|
||||||
|
)
|
||||||
|
|
||||||
|
if normalize_before:
|
||||||
|
encoder_norm = nn.LayerNorm(d_model)
|
||||||
|
else:
|
||||||
|
encoder_norm = None
|
||||||
|
|
||||||
|
self.encoder = nn.TransformerEncoder(
|
||||||
|
encoder_layer=encoder_layer,
|
||||||
|
num_layers=num_encoder_layers,
|
||||||
|
norm=encoder_norm,
|
||||||
|
)
|
||||||
|
|
||||||
|
# TODO(fangjun): remove dropout
|
||||||
|
self.encoder_output_layer = nn.Sequential(
|
||||||
|
nn.Dropout(p=dropout), nn.Linear(d_model, output_dim)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
|
||||||
|
x_lens:
|
||||||
|
A tensor of shape (batch_size,) containing the number of frames in
|
||||||
|
`x` before padding.
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing 2 tensors:
|
||||||
|
- logits, its shape is (batch_size, output_seq_len, output_dim)
|
||||||
|
- logit_lens, a tensor of shape (batch_size,) containing the number
|
||||||
|
of frames in `logits` before padding.
|
||||||
|
"""
|
||||||
|
x = self.encoder_embed(x)
|
||||||
|
x = self.encoder_pos(x)
|
||||||
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
|
||||||
|
# Caution: We assume the subsampling factor is 4!
|
||||||
|
lengths = ((x_lens - 1) // 2 - 1) // 2
|
||||||
|
assert x.size(0) == lengths.max().item()
|
||||||
|
|
||||||
|
mask = make_pad_mask(lengths)
|
||||||
|
x = self.encoder(x, src_key_padding_mask=mask) # (T, N, C)
|
||||||
|
|
||||||
|
logits = self.encoder_output_layer(x)
|
||||||
|
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
|
||||||
|
return logits, lengths
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerEncoderLayer(nn.Module):
|
||||||
|
"""
|
||||||
|
Modified from torch.nn.TransformerEncoderLayer.
|
||||||
|
Add support of normalize_before,
|
||||||
|
i.e., use layer_norm before the first block.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model:
|
||||||
|
the number of expected features in the input (required).
|
||||||
|
nhead:
|
||||||
|
the number of heads in the multiheadattention models (required).
|
||||||
|
dim_feedforward:
|
||||||
|
the dimension of the feedforward network model (default=2048).
|
||||||
|
dropout:
|
||||||
|
the dropout value (default=0.1).
|
||||||
|
activation:
|
||||||
|
the activation function of intermediate layer, relu or
|
||||||
|
gelu (default=relu).
|
||||||
|
normalize_before:
|
||||||
|
whether to use layer_norm before the first block.
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
||||||
|
>>> src = torch.rand(10, 32, 512)
|
||||||
|
>>> out = encoder_layer(src)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
d_model: int,
|
||||||
|
nhead: int,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
activation: str = "relu",
|
||||||
|
normalize_before: bool = True,
|
||||||
|
) -> None:
|
||||||
|
super(TransformerEncoderLayer, self).__init__()
|
||||||
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
||||||
|
# Implementation of Feedforward model
|
||||||
|
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||||
|
|
||||||
|
self.norm1 = nn.LayerNorm(d_model)
|
||||||
|
self.norm2 = nn.LayerNorm(d_model)
|
||||||
|
self.dropout1 = nn.Dropout(dropout)
|
||||||
|
self.dropout2 = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
self.activation = _get_activation_fn(activation)
|
||||||
|
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
|
||||||
|
def __setstate__(self, state):
|
||||||
|
if "activation" not in state:
|
||||||
|
state["activation"] = nn.functional.relu
|
||||||
|
super(TransformerEncoderLayer, self).__setstate__(state)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src: torch.Tensor,
|
||||||
|
src_mask: Optional[torch.Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[torch.Tensor] = None,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Pass the input through the encoder layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
src: the sequence to the encoder layer (required).
|
||||||
|
src_mask: the mask for the src sequence (optional).
|
||||||
|
src_key_padding_mask: the mask for the src keys per batch (optional)
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
src: (S, N, E).
|
||||||
|
src_mask: (S, S).
|
||||||
|
src_key_padding_mask: (N, S).
|
||||||
|
S is the source sequence length, T is the target sequence length,
|
||||||
|
N is the batch size, E is the feature number
|
||||||
|
"""
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm1(src)
|
||||||
|
src2 = self.self_attn(
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
attn_mask=src_mask,
|
||||||
|
key_padding_mask=src_key_padding_mask,
|
||||||
|
)[0]
|
||||||
|
src = residual + self.dropout1(src2)
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm1(src)
|
||||||
|
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm2(src)
|
||||||
|
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
||||||
|
src = residual + self.dropout2(src2)
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm2(src)
|
||||||
|
return src
|
||||||
|
|
||||||
|
|
||||||
|
def _get_activation_fn(activation: str):
|
||||||
|
if activation == "relu":
|
||||||
|
return nn.functional.relu
|
||||||
|
elif activation == "gelu":
|
||||||
|
return nn.functional.gelu
|
||||||
|
|
||||||
|
raise RuntimeError(
|
||||||
|
"activation should be relu/gelu, not {}".format(activation)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class PositionalEncoding(nn.Module):
|
||||||
|
"""This class implements the positional encoding
|
||||||
|
proposed in the following paper:
|
||||||
|
|
||||||
|
- Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
|
||||||
|
|
||||||
|
PE(pos, 2i) = sin(pos / (10000^(2i/d_modle))
|
||||||
|
PE(pos, 2i+1) = cos(pos / (10000^(2i/d_modle))
|
||||||
|
|
||||||
|
Note::
|
||||||
|
|
||||||
|
1 / (10000^(2i/d_model)) = exp(-log(10000^(2i/d_model)))
|
||||||
|
= exp(-1* 2i / d_model * log(100000))
|
||||||
|
= exp(2i * -(log(10000) / d_model))
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, d_model: int, dropout: float = 0.1) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
d_model:
|
||||||
|
Embedding dimension.
|
||||||
|
dropout:
|
||||||
|
Dropout probability to be applied to the output of this module.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.d_model = d_model
|
||||||
|
self.xscale = math.sqrt(self.d_model)
|
||||||
|
self.dropout = nn.Dropout(p=dropout)
|
||||||
|
# not doing: self.pe = None because of errors thrown by torchscript
|
||||||
|
self.pe = torch.zeros(1, 0, self.d_model, dtype=torch.float32)
|
||||||
|
|
||||||
|
def extend_pe(self, x: torch.Tensor) -> None:
|
||||||
|
"""Extend the time t in the positional encoding if required.
|
||||||
|
|
||||||
|
The shape of `self.pe` is (1, T1, d_model). The shape of the input x
|
||||||
|
is (N, T, d_model). If T > T1, then we change the shape of self.pe
|
||||||
|
to (N, T, d_model). Otherwise, nothing is done.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
It is a tensor of shape (N, T, C).
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
if self.pe is not None:
|
||||||
|
if self.pe.size(1) >= x.size(1):
|
||||||
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||||
|
return
|
||||||
|
pe = torch.zeros(x.size(1), self.d_model, dtype=torch.float32)
|
||||||
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||||
|
div_term = torch.exp(
|
||||||
|
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||||
|
* -(math.log(10000.0) / self.d_model)
|
||||||
|
)
|
||||||
|
pe[:, 0::2] = torch.sin(position * div_term)
|
||||||
|
pe[:, 1::2] = torch.cos(position * div_term)
|
||||||
|
pe = pe.unsqueeze(0)
|
||||||
|
# Now pe is of shape (1, T, d_model), where T is x.size(1)
|
||||||
|
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Add positional encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
Its shape is (N, T, C)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape (N, T, C)
|
||||||
|
"""
|
||||||
|
self.extend_pe(x)
|
||||||
|
x = x * self.xscale + self.pe[:, : x.size(1), :]
|
||||||
|
return self.dropout(x)
|
||||||
|
|
||||||
|
|
||||||
|
class Noam(object):
|
||||||
|
"""
|
||||||
|
Implements Noam optimizer.
|
||||||
|
|
||||||
|
Proposed in
|
||||||
|
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
||||||
|
|
||||||
|
Modified from
|
||||||
|
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
iterable of parameters to optimize or dicts defining parameter groups
|
||||||
|
model_size:
|
||||||
|
attention dimension of the transformer model
|
||||||
|
factor:
|
||||||
|
learning rate factor
|
||||||
|
warm_step:
|
||||||
|
warmup steps
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
params,
|
||||||
|
model_size: int = 256,
|
||||||
|
factor: float = 10.0,
|
||||||
|
warm_step: int = 25000,
|
||||||
|
weight_decay=0,
|
||||||
|
) -> None:
|
||||||
|
"""Construct an Noam object."""
|
||||||
|
self.optimizer = torch.optim.Adam(
|
||||||
|
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
||||||
|
)
|
||||||
|
self._step = 0
|
||||||
|
self.warmup = warm_step
|
||||||
|
self.factor = factor
|
||||||
|
self.model_size = model_size
|
||||||
|
self._rate = 0
|
||||||
|
|
||||||
|
@property
|
||||||
|
def param_groups(self):
|
||||||
|
"""Return param_groups."""
|
||||||
|
return self.optimizer.param_groups
|
||||||
|
|
||||||
|
def step(self):
|
||||||
|
"""Update parameters and rate."""
|
||||||
|
self._step += 1
|
||||||
|
rate = self.rate()
|
||||||
|
for p in self.optimizer.param_groups:
|
||||||
|
p["lr"] = rate
|
||||||
|
self._rate = rate
|
||||||
|
self.optimizer.step()
|
||||||
|
|
||||||
|
def rate(self, step=None):
|
||||||
|
"""Implement `lrate` above."""
|
||||||
|
if step is None:
|
||||||
|
step = self._step
|
||||||
|
return (
|
||||||
|
self.factor
|
||||||
|
* self.model_size ** (-0.5)
|
||||||
|
* min(step ** (-0.5), step * self.warmup ** (-1.5))
|
||||||
|
)
|
||||||
|
|
||||||
|
def zero_grad(self):
|
||||||
|
"""Reset gradient."""
|
||||||
|
self.optimizer.zero_grad()
|
||||||
|
|
||||||
|
def state_dict(self):
|
||||||
|
"""Return state_dict."""
|
||||||
|
return {
|
||||||
|
"_step": self._step,
|
||||||
|
"warmup": self.warmup,
|
||||||
|
"factor": self.factor,
|
||||||
|
"model_size": self.model_size,
|
||||||
|
"_rate": self._rate,
|
||||||
|
"optimizer": self.optimizer.state_dict(),
|
||||||
|
}
|
||||||
|
|
||||||
|
def load_state_dict(self, state_dict):
|
||||||
|
"""Load state_dict."""
|
||||||
|
for key, value in state_dict.items():
|
||||||
|
if key == "optimizer":
|
||||||
|
self.optimizer.load_state_dict(state_dict["optimizer"])
|
||||||
|
else:
|
||||||
|
setattr(self, key, value)
|
Loading…
x
Reference in New Issue
Block a user