mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Support CTC decoding on CPU using OpenFst and kaldi decoders. (#1244)
This commit is contained in:
parent
1b565dd251
commit
2318c3fbd0
1
.flake8
1
.flake8
@ -24,6 +24,7 @@ exclude =
|
||||
**/data/**,
|
||||
icefall/shared/make_kn_lm.py,
|
||||
icefall/__init__.py
|
||||
icefall/ctc/__init__.py
|
||||
|
||||
ignore =
|
||||
# E203 white space before ":"
|
||||
|
43
.github/scripts/run-pre-trained-conformer-ctc.sh
vendored
43
.github/scripts/run-pre-trained-conformer-ctc.sh
vendored
@ -44,3 +44,46 @@ log "HLG decoding"
|
||||
$repo/test_wavs/1089-134686-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0002.flac
|
||||
|
||||
log "CTC decoding on CPU with kaldi decoders using OpenFst"
|
||||
|
||||
log "Exporting model with torchscript"
|
||||
|
||||
pushd $repo/exp
|
||||
ln -s pretrained.pt epoch-99.pt
|
||||
popd
|
||||
|
||||
./conformer_ctc/export.py \
|
||||
--epoch 99 \
|
||||
--avg 1 \
|
||||
--exp-dir $repo/exp \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
--jit 1
|
||||
|
||||
ls -lh $repo/exp
|
||||
|
||||
|
||||
log "Generating H.fst, HL.fst"
|
||||
|
||||
./local/prepare_lang_fst.py --lang-dir $repo/data/lang_bpe_500
|
||||
ls -lh $repo/data/lang_bpe_500
|
||||
|
||||
log "Decoding with H on CPU with OpenFst"
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_H.py \
|
||||
--nn-model $repo/exp/cpu_jit.pt \
|
||||
--H $repo/data/lang_bpe_500/H.fst \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
$repo/test_wavs/1089-134686-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0002.flac
|
||||
|
||||
log "Decoding with HL on CPU with OpenFst"
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_HL.py \
|
||||
--nn-model $repo/exp/cpu_jit.pt \
|
||||
--HL $repo/data/lang_bpe_500/HL.fst \
|
||||
--words $repo/data/lang_bpe_500/words.txt \
|
||||
$repo/test_wavs/1089-134686-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0002.flac
|
||||
|
@ -29,7 +29,7 @@ concurrency:
|
||||
|
||||
jobs:
|
||||
run_pre_trained_conformer_ctc:
|
||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||
if: github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'ctc'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
|
37
.github/workflows/run-yesno-recipe.yml
vendored
37
.github/workflows/run-yesno-recipe.yml
vendored
@ -140,9 +140,46 @@ jobs:
|
||||
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
|
||||
download/waves_yesno/0_0_1_0_0_0_1_0.wav
|
||||
|
||||
- name: Test decoding with H
|
||||
shell: bash
|
||||
working-directory: ${{github.workspace}}
|
||||
run: |
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
echo $PYTHONPATH
|
||||
|
||||
cd egs/yesno/ASR
|
||||
python3 ./tdnn/export.py --epoch 14 --avg 2 --jit 1
|
||||
|
||||
python3 ./tdnn/jit_pretrained_decode_with_H.py \
|
||||
--nn-model ./tdnn/exp/cpu_jit.pt \
|
||||
--H ./data/lang_phone/H.fst \
|
||||
--tokens ./data/lang_phone/tokens.txt \
|
||||
./download/waves_yesno/0_0_0_1_0_0_0_1.wav \
|
||||
./download/waves_yesno/0_0_1_0_0_0_1_0.wav \
|
||||
./download/waves_yesno/0_0_1_0_0_1_1_1.wav
|
||||
|
||||
- name: Test decoding with HL
|
||||
shell: bash
|
||||
working-directory: ${{github.workspace}}
|
||||
run: |
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
echo $PYTHONPATH
|
||||
|
||||
cd egs/yesno/ASR
|
||||
python3 ./tdnn/export.py --epoch 14 --avg 2 --jit 1
|
||||
|
||||
python3 ./tdnn/jit_pretrained_decode_with_HL.py \
|
||||
--nn-model ./tdnn/exp/cpu_jit.pt \
|
||||
--HL ./data/lang_phone/HL.fst \
|
||||
--words ./data/lang_phone/words.txt \
|
||||
./download/waves_yesno/0_0_0_1_0_0_0_1.wav \
|
||||
./download/waves_yesno/0_0_1_0_0_0_1_0.wav \
|
||||
./download/waves_yesno/0_0_1_0_0_1_1_1.wav
|
||||
|
||||
- name: Show generated files
|
||||
shell: bash
|
||||
working-directory: ${{github.workspace}}
|
||||
run: |
|
||||
cd egs/yesno/ASR
|
||||
ls -lh tdnn/exp
|
||||
ls -lh data/lang_phone
|
||||
|
2
.gitignore
vendored
2
.gitignore
vendored
@ -34,3 +34,5 @@ node_modules
|
||||
*.param
|
||||
*.bin
|
||||
.DS_Store
|
||||
*.fst
|
||||
*.arpa
|
||||
|
@ -1,3 +1,5 @@
|
||||
.. _icefall_export_to_ncnn:
|
||||
|
||||
Export to ncnn
|
||||
==============
|
||||
|
||||
|
235
egs/librispeech/ASR/conformer_ctc/jit_pretrained_decode_with_H.py
Executable file
235
egs/librispeech/ASR/conformer_ctc/jit_pretrained_decode_with_H.py
Executable file
@ -0,0 +1,235 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This file shows how to use a torchscript model for decoding with H
|
||||
on CPU using OpenFST and decoders from kaldi.
|
||||
|
||||
Usage:
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_H.py \
|
||||
--nn-model ./conformer_ctc/exp/cpu_jit.pt \
|
||||
--H ./data/lang_bpe_500/H.fst \
|
||||
--tokens ./data/lang_bpe_500/tokens.txt \
|
||||
./download/LibriSpeech/test-clean/1089/134686/1089-134686-0002.flac \
|
||||
./download/LibriSpeech/test-clean/1221/135766/1221-135766-0001.flac
|
||||
|
||||
Note that to generate ./conformer_ctc/exp/cpu_jit.pt,
|
||||
you can use ./export.py --jit 1
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import Dict, List
|
||||
|
||||
import kaldi_hmm_gmm
|
||||
import kaldifeat
|
||||
import kaldifst
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldi_hmm_gmm import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nn-model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""Path to the torchscript model.
|
||||
You can use ./conformer_ctc/export.py --jit 1
|
||||
to obtain it
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to tokens.txt",
|
||||
)
|
||||
|
||||
parser.add_argument("--H", type=str, required=True, help="Path to H.fst")
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. ",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def read_tokens(tokens_txt: str) -> Dict[int, str]:
|
||||
id2token = dict()
|
||||
with open(tokens_txt, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
token, idx = line.strip().split()
|
||||
id2token[int(idx)] = token
|
||||
|
||||
return id2token
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
if sample_rate != expected_sample_rate:
|
||||
wave = torchaudio.functional.resample(
|
||||
wave,
|
||||
orig_freq=sample_rate,
|
||||
new_freq=expected_sample_rate,
|
||||
)
|
||||
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
def decode(
|
||||
filename: str,
|
||||
nnet_output: torch.Tensor,
|
||||
H: kaldifst,
|
||||
id2token: Dict[int, str],
|
||||
) -> List[str]:
|
||||
"""
|
||||
Args:
|
||||
filename:
|
||||
Path to the filename for decoding. Used for debugging.
|
||||
nnet_output:
|
||||
A 2-D float32 tensor of shape (num_frames, vocab_size). It
|
||||
contains output from log_softmax.
|
||||
H:
|
||||
The H graph.
|
||||
id2token:
|
||||
A map mapping token ID to token string.
|
||||
Returns:
|
||||
Return a list of decoded tokens.
|
||||
"""
|
||||
logging.info(f"{filename}, {nnet_output.shape}")
|
||||
decodable = DecodableCtc(nnet_output.cpu())
|
||||
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(H, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
print(f"failed to decode {filename}")
|
||||
return [""]
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
|
||||
(
|
||||
ok,
|
||||
isymbols_out,
|
||||
osymbols_out,
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
print(f"failed to get linear symbol sequence for {filename}")
|
||||
return [""]
|
||||
|
||||
# tokens are incremented during graph construction
|
||||
# so they need to be decremented
|
||||
hyps = [id2token[i - 1] for i in osymbols_out]
|
||||
# hyps = "".join(hyps).split("▁")
|
||||
hyps = "".join(hyps).split("\u2581") # unicode codepoint of ▁
|
||||
|
||||
return hyps
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
device = torch.device("cpu")
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Loading torchscript model")
|
||||
model = torch.jit.load(args.nn_model)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
logging.info(f"Loading H from {args.H}")
|
||||
H = kaldifst.StdVectorFst.read(args.H)
|
||||
|
||||
sample_rate = 16000
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = sample_rate
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {args.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=args.sound_files, expected_sample_rate=sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.shape[0] for f in features]
|
||||
feature_lengths = torch.tensor(feature_lengths)
|
||||
|
||||
supervisions = dict()
|
||||
supervisions["sequence_idx"] = torch.arange(len(features))
|
||||
supervisions["start_frame"] = torch.zeros(len(features))
|
||||
supervisions["num_frames"] = feature_lengths
|
||||
|
||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||
|
||||
nnet_output, _, _ = model(features, supervisions)
|
||||
feature_lengths = ((feature_lengths - 1) // 2 - 1) // 2
|
||||
|
||||
id2token = read_tokens(args.tokens)
|
||||
|
||||
hyps = []
|
||||
for i in range(nnet_output.shape[0]):
|
||||
hyp = decode(
|
||||
filename=args.sound_files[i],
|
||||
nnet_output=nnet_output[i, : feature_lengths[i]],
|
||||
H=H,
|
||||
id2token=id2token,
|
||||
)
|
||||
hyps.append(hyp)
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(args.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
232
egs/librispeech/ASR/conformer_ctc/jit_pretrained_decode_with_HL.py
Executable file
232
egs/librispeech/ASR/conformer_ctc/jit_pretrained_decode_with_HL.py
Executable file
@ -0,0 +1,232 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This file shows how to use a torchscript model for decoding with H
|
||||
on CPU using OpenFST and decoders from kaldi.
|
||||
|
||||
Usage:
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_H.py \
|
||||
--nn-model ./conformer_ctc/exp/cpu_jit.pt \
|
||||
--HL ./data/lang_bpe_500/HL.fst \
|
||||
--words ./data/lang_bpe_500/words.txt \
|
||||
./download/LibriSpeech/test-clean/1089/134686/1089-134686-0002.flac \
|
||||
./download/LibriSpeech/test-clean/1221/135766/1221-135766-0001.flac
|
||||
|
||||
Note that to generate ./conformer_ctc/exp/cpu_jit.pt,
|
||||
you can use ./export.py --jit 1
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import Dict, List
|
||||
|
||||
import kaldi_hmm_gmm
|
||||
import kaldifeat
|
||||
import kaldifst
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldi_hmm_gmm import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nn-model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""Path to the torchscript model.
|
||||
You can use ./conformer_ctc/export.py --jit 1
|
||||
to obtain it
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--words",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to words.txt",
|
||||
)
|
||||
|
||||
parser.add_argument("--HL", type=str, required=True, help="Path to HL.fst")
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. ",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def read_words(words_txt: str) -> Dict[int, str]:
|
||||
id2word = dict()
|
||||
with open(words_txt, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
word, idx = line.strip().split()
|
||||
id2word[int(idx)] = word
|
||||
|
||||
return id2word
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
if sample_rate != expected_sample_rate:
|
||||
wave = torchaudio.functional.resample(
|
||||
wave,
|
||||
orig_freq=sample_rate,
|
||||
new_freq=expected_sample_rate,
|
||||
)
|
||||
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
def decode(
|
||||
filename: str,
|
||||
nnet_output: torch.Tensor,
|
||||
HL: kaldifst,
|
||||
id2word: Dict[int, str],
|
||||
) -> List[str]:
|
||||
"""
|
||||
Args:
|
||||
filename:
|
||||
Path to the filename for decoding. Used for debugging.
|
||||
nnet_output:
|
||||
A 2-D float32 tensor of shape (num_frames, vocab_size). It
|
||||
contains output from log_softmax.
|
||||
HL:
|
||||
The HL graph.
|
||||
word2token:
|
||||
A map mapping token ID to word string.
|
||||
Returns:
|
||||
Return a list of decoded words.
|
||||
"""
|
||||
logging.info(f"{filename}, {nnet_output.shape}")
|
||||
decodable = DecodableCtc(nnet_output.cpu())
|
||||
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(HL, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
print(f"failed to decode {filename}")
|
||||
return [""]
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
|
||||
(
|
||||
ok,
|
||||
isymbols_out,
|
||||
osymbols_out,
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
print(f"failed to get linear symbol sequence for {filename}")
|
||||
return [""]
|
||||
|
||||
# are shifted by 1 during graph construction
|
||||
hyps = [id2word[i] for i in osymbols_out]
|
||||
|
||||
return hyps
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
device = torch.device("cpu")
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Loading torchscript model")
|
||||
model = torch.jit.load(args.nn_model)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
logging.info(f"Loading HL from {args.HL}")
|
||||
HL = kaldifst.StdVectorFst.read(args.HL)
|
||||
|
||||
sample_rate = 16000
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = sample_rate
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {args.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=args.sound_files, expected_sample_rate=sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.shape[0] for f in features]
|
||||
feature_lengths = torch.tensor(feature_lengths)
|
||||
|
||||
supervisions = dict()
|
||||
supervisions["sequence_idx"] = torch.arange(len(features))
|
||||
supervisions["start_frame"] = torch.zeros(len(features))
|
||||
supervisions["num_frames"] = feature_lengths
|
||||
|
||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||
|
||||
nnet_output, _, _ = model(features, supervisions)
|
||||
feature_lengths = ((feature_lengths - 1) // 2 - 1) // 2
|
||||
|
||||
id2word = read_words(args.words)
|
||||
|
||||
hyps = []
|
||||
for i in range(nnet_output.shape[0]):
|
||||
hyp = decode(
|
||||
filename=args.sound_files[i],
|
||||
nnet_output=nnet_output[i, : feature_lengths[i]],
|
||||
HL=HL,
|
||||
id2word=id2word,
|
||||
)
|
||||
hyps.append(hyp)
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(args.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
127
egs/librispeech/ASR/local/prepare_lang_fst.py
Executable file
127
egs/librispeech/ASR/local/prepare_lang_fst.py
Executable file
@ -0,0 +1,127 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2023 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This script takes as input lang_dir containing lexicon_disambig.txt,
|
||||
tokens.txt, and words.txt and generates the following files:
|
||||
|
||||
- H.fst
|
||||
- HL.fst
|
||||
|
||||
Note that saved files are in OpenFst binary format.
|
||||
|
||||
Usage:
|
||||
|
||||
./local/prepare_lang_fst.py \
|
||||
--lang-dir ./data/lang_phone \
|
||||
--has-silence 1
|
||||
|
||||
Or
|
||||
|
||||
./local/prepare_lang_fst.py \
|
||||
--lang-dir ./data/lang_bpe_500
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import kaldifst
|
||||
|
||||
from icefall.ctc import (
|
||||
Lexicon,
|
||||
add_disambig_self_loops,
|
||||
add_one,
|
||||
build_standard_ctc_topo,
|
||||
make_lexicon_fst_no_silence,
|
||||
make_lexicon_fst_with_silence,
|
||||
)
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--has-silence",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="True if the lexicon has silence.",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = args.lang_dir
|
||||
|
||||
lexicon = Lexicon(lang_dir)
|
||||
|
||||
logging.info("Building standard CTC topology")
|
||||
max_token_id = max(lexicon.tokens)
|
||||
H = build_standard_ctc_topo(max_token_id=max_token_id)
|
||||
|
||||
# We need to add one to all tokens since we want to use ID 0
|
||||
# for epsilon
|
||||
add_one(H, treat_ilabel_zero_specially=False, update_olabel=True)
|
||||
H.write(f"{lang_dir}/H.fst")
|
||||
|
||||
logging.info("Building L")
|
||||
# Now for HL
|
||||
|
||||
if args.has_silence:
|
||||
L = make_lexicon_fst_with_silence(lexicon, attach_symbol_table=False)
|
||||
else:
|
||||
L = make_lexicon_fst_no_silence(lexicon, attach_symbol_table=False)
|
||||
|
||||
if args.has_silence:
|
||||
# We also need to change the input labels of L
|
||||
add_one(L, treat_ilabel_zero_specially=True, update_olabel=False)
|
||||
else:
|
||||
add_one(L, treat_ilabel_zero_specially=False, update_olabel=False)
|
||||
|
||||
# Invoke add_disambig_self_loops() so that it eats the disambig symbols
|
||||
# from L after composition
|
||||
add_disambig_self_loops(
|
||||
H,
|
||||
start=lexicon.token2id["#0"] + 1,
|
||||
end=lexicon.max_disambig_id + 1,
|
||||
)
|
||||
with open("H_1.fst.txt", "w") as f:
|
||||
print(H, file=f)
|
||||
|
||||
kaldifst.arcsort(H, sort_type="olabel")
|
||||
kaldifst.arcsort(L, sort_type="ilabel")
|
||||
|
||||
logging.info("Building HL")
|
||||
HL = kaldifst.compose(H, L)
|
||||
kaldifst.determinize_star(HL)
|
||||
|
||||
disambig0 = lexicon.token2id["#0"] + 1
|
||||
max_disambig = lexicon.max_disambig_id + 1
|
||||
for state in kaldifst.StateIterator(HL):
|
||||
for arc in kaldifst.ArcIterator(HL, state):
|
||||
# If treat_ilabel_zero_specially is False, we always change it
|
||||
# Otherwise, we only change non-zero input labels
|
||||
if disambig0 <= arc.ilabel <= max_disambig:
|
||||
arc.ilabel = 0
|
||||
|
||||
# Note: We are not composing L with G, so there is no need to add
|
||||
# self-loops to L to handle #0
|
||||
|
||||
HL.write(f"{lang_dir}/HL.fst")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -57,8 +57,7 @@ def test_model():
|
||||
|
||||
convert_scaled_to_non_scaled(model, inplace=True)
|
||||
|
||||
if not os.path.exists(params.exp_dir):
|
||||
os.path.mkdir(params.exp_dir)
|
||||
params.exp_dir.mkdir(exist_ok=True)
|
||||
|
||||
encoder_filename = params.exp_dir / "encoder_jit_trace.pt"
|
||||
export_encoder_model_jit_trace(model.encoder, encoder_filename)
|
||||
|
@ -242,6 +242,10 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
$lang_dir/L_disambig.pt \
|
||||
$lang_dir/L_disambig.fst
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/HL.fst ]; then
|
||||
./local/prepare_lang_fst.py --lang-dir $lang_dir
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
|
1
egs/yesno/ASR/local/prepare_lang_fst.py
Symbolic link
1
egs/yesno/ASR/local/prepare_lang_fst.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/prepare_lang_fst.py
|
@ -60,6 +60,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
) > $lang_dir/lexicon.txt
|
||||
|
||||
./local/prepare_lang.py
|
||||
./local/prepare_lang_fst.py --lang-dir ./data/lang_phone --has-silence 1
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
|
@ -156,7 +156,6 @@ def main():
|
||||
|
||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||
|
||||
# Note: We don't use key padding mask for attention during decoding
|
||||
nnet_output = model(features)
|
||||
|
||||
batch_size = nnet_output.shape[0]
|
||||
|
208
egs/yesno/ASR/tdnn/jit_pretrained_decode_with_H.py
Executable file
208
egs/yesno/ASR/tdnn/jit_pretrained_decode_with_H.py
Executable file
@ -0,0 +1,208 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This file shows how to use a torchscript model for decoding with H
|
||||
on CPU using OpenFST and decoders from kaldi.
|
||||
|
||||
Usage:
|
||||
|
||||
./tdnn/jit_pretrained_decode_with_H.py \
|
||||
--nn-model ./tdnn/exp/cpu_jit.pt \
|
||||
--H ./data/lang_phone/H.fst \
|
||||
--tokens ./data/lang_phone/tokens.txt \
|
||||
./download/waves_yesno/0_0_0_1_0_0_0_1.wav \
|
||||
./download/waves_yesno/0_0_1_0_0_0_1_0.wav \
|
||||
./download/waves_yesno/0_0_1_0_0_1_1_1.wav
|
||||
|
||||
Note that to generate ./tdnn/exp/cpu_jit.pt,
|
||||
you can use ./export.py --jit 1
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import Dict, List
|
||||
|
||||
import kaldifeat
|
||||
import kaldifst
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldi_hmm_gmm import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nn-model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""Path to the torchscript model.
|
||||
You can use ./tdnn/export.py --jit 1
|
||||
to obtain it
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to tokens.txt",
|
||||
)
|
||||
|
||||
parser.add_argument("--H", type=str, required=True, help="Path to H.fst")
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. ",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def read_tokens(tokens_txt: str) -> Dict[int, str]:
|
||||
id2token = dict()
|
||||
with open(tokens_txt, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
token, idx = line.strip().split()
|
||||
id2token[int(idx)] = token
|
||||
|
||||
return id2token
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
if sample_rate != expected_sample_rate:
|
||||
wave = torchaudio.functional.resample(
|
||||
wave,
|
||||
orig_freq=sample_rate,
|
||||
new_freq=expected_sample_rate,
|
||||
)
|
||||
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
def decode(
|
||||
filename: str,
|
||||
nnet_output: torch.Tensor,
|
||||
H: kaldifst,
|
||||
id2token: Dict[int, str],
|
||||
) -> List[str]:
|
||||
decodable = DecodableCtc(nnet_output)
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(H, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
print(f"failed to decode {filename}")
|
||||
return [""]
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
|
||||
(
|
||||
ok,
|
||||
isymbols_out,
|
||||
osymbols_out,
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
print(f"failed to get linear symbol sequence for {filename}")
|
||||
return [""]
|
||||
|
||||
# are shifted by 1 during graph construction
|
||||
hyps = [id2token[i - 1] for i in osymbols_out if id2token[i - 1] != "SIL"]
|
||||
|
||||
return hyps
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
device = torch.device("cpu")
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Loading torchscript model")
|
||||
model = torch.jit.load(args.nn_model)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
logging.info(f"Loading H from {args.H}")
|
||||
H = kaldifst.StdVectorFst.read(args.H)
|
||||
|
||||
sample_rate = 8000
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = sample_rate
|
||||
opts.mel_opts.num_bins = 23
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {args.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=args.sound_files, expected_sample_rate=sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
|
||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||
|
||||
nnet_output = model(features)
|
||||
|
||||
id2token = read_tokens(args.tokens)
|
||||
|
||||
hyps = []
|
||||
for i in range(nnet_output.shape[0]):
|
||||
hyp = decode(
|
||||
filename=args.sound_files[0],
|
||||
nnet_output=nnet_output[i],
|
||||
H=H,
|
||||
id2token=id2token,
|
||||
)
|
||||
hyps.append(hyp)
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(args.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
207
egs/yesno/ASR/tdnn/jit_pretrained_decode_with_HL.py
Executable file
207
egs/yesno/ASR/tdnn/jit_pretrained_decode_with_HL.py
Executable file
@ -0,0 +1,207 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This file shows how to use a torchscript model for decoding with HL
|
||||
on CPU using OpenFST and decoders from kaldi.
|
||||
|
||||
Usage:
|
||||
|
||||
./tdnn/jit_pretrained_decode_with_HL.py \
|
||||
--nn-model ./tdnn/exp/cpu_jit.pt \
|
||||
--HL ./data/lang_phone/HL.fst \
|
||||
--words ./data/lang_phone/words.txt \
|
||||
./download/waves_yesno/0_0_0_1_0_0_0_1.wav \
|
||||
./download/waves_yesno/0_0_1_0_0_0_1_0.wav \
|
||||
./download/waves_yesno/0_0_1_0_0_1_1_1.wav
|
||||
|
||||
Note that to generate ./tdnn/exp/cpu_jit.pt,
|
||||
you can use ./export.py --jit 1
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import Dict, List
|
||||
|
||||
import kaldifeat
|
||||
import kaldifst
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldi_hmm_gmm import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nn-model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""Path to the torchscript model.
|
||||
You can use ./tdnn/export.py --jit 1
|
||||
to obtain it
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--words",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to words.txt",
|
||||
)
|
||||
|
||||
parser.add_argument("--HL", type=str, required=True, help="Path to HL.fst")
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. ",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def read_words(words_txt: str) -> Dict[int, str]:
|
||||
id2word = dict()
|
||||
with open(words_txt, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
word, idx = line.strip().split()
|
||||
id2word[int(idx)] = word
|
||||
|
||||
return id2word
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
if sample_rate != expected_sample_rate:
|
||||
wave = torchaudio.functional.resample(
|
||||
wave,
|
||||
orig_freq=sample_rate,
|
||||
new_freq=expected_sample_rate,
|
||||
)
|
||||
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
def decode(
|
||||
filename: str,
|
||||
nnet_output: torch.Tensor,
|
||||
HL: kaldifst,
|
||||
id2word: Dict[int, str],
|
||||
) -> List[str]:
|
||||
decodable = DecodableCtc(nnet_output)
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(HL, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
print(f"failed to decode {filename}")
|
||||
return [""]
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
|
||||
(
|
||||
ok,
|
||||
isymbols_out,
|
||||
osymbols_out,
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
print(f"failed to get linear symbol sequence for {filename}")
|
||||
return [""]
|
||||
|
||||
hyps = [id2word[i] for i in osymbols_out if id2word[i] != "<SIL>"]
|
||||
|
||||
return hyps
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
device = torch.device("cpu")
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Loading torchscript model")
|
||||
model = torch.jit.load(args.nn_model)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
logging.info(f"Loading HL from {args.HL}")
|
||||
HL = kaldifst.StdVectorFst.read(args.HL)
|
||||
|
||||
sample_rate = 8000
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = sample_rate
|
||||
opts.mel_opts.num_bins = 23
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {args.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=args.sound_files, expected_sample_rate=sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
|
||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||
|
||||
nnet_output = model(features)
|
||||
|
||||
id2word = read_words(args.words)
|
||||
|
||||
hyps = []
|
||||
for i in range(nnet_output.shape[0]):
|
||||
hyp = decode(
|
||||
filename=args.sound_files[0],
|
||||
nnet_output=nnet_output[i],
|
||||
HL=HL,
|
||||
id2word=id2word,
|
||||
)
|
||||
hyps.append(hyp)
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(args.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
2
icefall/ctc/.gitignore
vendored
Normal file
2
icefall/ctc/.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
*.pdf
|
||||
*.gv
|
17
icefall/ctc/README.md
Normal file
17
icefall/ctc/README.md
Normal file
@ -0,0 +1,17 @@
|
||||
# Introduction
|
||||
|
||||
This folder uses [kaldifst][kaldifst] for graph construction
|
||||
and decoders from [kaldi-hmm-gmm][kaldi-hmm-gmm] for CTC decoding.
|
||||
|
||||
It supports only `CPU`.
|
||||
|
||||
You can use
|
||||
|
||||
```bash
|
||||
pip install kaldifst kaldi-hmm-gmm
|
||||
```
|
||||
to install the dependencies.
|
||||
|
||||
[kaldi-hmm-gmm]: https://github.com/csukuangfj/kaldi-hmm-gmm
|
||||
[kaldifst]: https://github.com/k2-fsa/kaldifst
|
||||
[k2]: https://github.com/k2-fsa/k2
|
6
icefall/ctc/__init__.py
Normal file
6
icefall/ctc/__init__.py
Normal file
@ -0,0 +1,6 @@
|
||||
from .prepare_lang import (
|
||||
Lexicon,
|
||||
make_lexicon_fst_no_silence,
|
||||
make_lexicon_fst_with_silence,
|
||||
)
|
||||
from .topo import add_disambig_self_loops, add_one, build_standard_ctc_topo
|
334
icefall/ctc/prepare_lang.py
Normal file
334
icefall/ctc/prepare_lang.py
Normal file
@ -0,0 +1,334 @@
|
||||
# Copyright 2023 Xiaomi Corp. (author: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
The lang_dir should contain the following files:
|
||||
- "lexicon_disambig.txt"
|
||||
- "tokens.txt"
|
||||
- "words.txt"
|
||||
"""
|
||||
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
|
||||
import kaldifst
|
||||
import re
|
||||
|
||||
|
||||
class Lexicon:
|
||||
"""Once constructed it is immutable"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
lang_dir: str,
|
||||
disambig_pattern: str = re.compile(r"^#\d+$"),
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
lang_dir:
|
||||
The path to the lang directory. We expect that it contains the
|
||||
following files:
|
||||
- lexicon_disambig.txt
|
||||
- tokens.txt
|
||||
- words.txt
|
||||
|
||||
The format of the above files is described below.
|
||||
|
||||
(1) lexicon_disambig.txt
|
||||
|
||||
Each line in the lexicon_disambig.txt has the following format:
|
||||
|
||||
word token1 token2 ... tokenN
|
||||
|
||||
That is, the first field is the word, the remaining fields are
|
||||
pronunciations of this word. Fields are separated by space(s).
|
||||
|
||||
(2) tokens.txt
|
||||
|
||||
Each line in tokens.txt has two fields separated by space(s):
|
||||
|
||||
token ID
|
||||
|
||||
The first field is the token symbol and the second filed is the
|
||||
integer ID of the token.
|
||||
|
||||
(3) words.txt
|
||||
|
||||
Each line in words.txt has two fields separated by space(s):
|
||||
|
||||
word ID
|
||||
|
||||
The first field is the word symbol and the second filed is the
|
||||
integer ID of the word.
|
||||
disambig_pattern:
|
||||
It contains the pattern for disambiguation symbols.
|
||||
"""
|
||||
lang_dir = Path(lang_dir)
|
||||
|
||||
lexicon_txt = lang_dir / "lexicon_disambig.txt"
|
||||
tokens_txt = lang_dir / "tokens.txt"
|
||||
words_txt = lang_dir / "words.txt"
|
||||
|
||||
assert lexicon_txt.is_file(), lexicon_txt
|
||||
assert tokens_txt.is_file(), tokens_txt
|
||||
assert words_txt.is_file(), words_txt
|
||||
|
||||
self._read_lexicon(lexicon_txt)
|
||||
self._read_tokens(tokens_txt)
|
||||
self._read_words(words_txt)
|
||||
|
||||
self.disambig_pattern = disambig_pattern
|
||||
|
||||
max_disambig_id = -1
|
||||
for s, i in self.token2id.items():
|
||||
if self.disambig_pattern.match(s) and i > max_disambig_id:
|
||||
max_disambig_id = i
|
||||
|
||||
self.max_disambig_id = max_disambig_id
|
||||
|
||||
def _read_lexicon(self, lexicon_txt: str):
|
||||
word2phones = defaultdict(list)
|
||||
with open(lexicon_txt, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
word_phones = line.strip().split()
|
||||
assert len(word_phones) >= 2, (word_phones, line)
|
||||
word = word_phones[0]
|
||||
phones: str = " ".join(word_phones[1:])
|
||||
word2phones[word].append(phones)
|
||||
# We use a list here since a word may have multiple
|
||||
# pronunciations
|
||||
|
||||
self.word2phones = word2phones
|
||||
|
||||
def _read_tokens(self, tokens_txt):
|
||||
token2id = dict()
|
||||
id2token = dict()
|
||||
with open(tokens_txt, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
token_id = line.strip().split()
|
||||
assert len(token_id) == 2, token_id
|
||||
|
||||
token = token_id[0]
|
||||
idx = int(token_id[1])
|
||||
|
||||
assert token not in token2id, f"Duplicate token {line}"
|
||||
assert idx not in id2token, f"Duplicate ID {line}"
|
||||
|
||||
token2id[token] = idx
|
||||
id2token[idx] = token
|
||||
self.token2id = token2id
|
||||
self.id2token = id2token
|
||||
|
||||
def _read_words(self, words_txt):
|
||||
word2id = dict()
|
||||
id2word = dict()
|
||||
with open(words_txt, encoding="utf-8") as f:
|
||||
for line in f:
|
||||
word_id = line.strip().split()
|
||||
assert len(word_id) == 2, word_id
|
||||
|
||||
word = word_id[0]
|
||||
idx = int(word_id[1])
|
||||
|
||||
assert word not in word2id, f"Duplicate token {line}"
|
||||
assert idx not in id2word, f"Duplicate ID {line}"
|
||||
|
||||
word2id[word] = idx
|
||||
id2word[idx] = word
|
||||
|
||||
self.word2id = word2id
|
||||
self.id2word = id2word
|
||||
|
||||
def __iter__(self) -> Tuple[str, List[str]]:
|
||||
for word, phones_list in self.word2phones.items():
|
||||
for phones in phones_list:
|
||||
yield word, phones
|
||||
|
||||
def __str__(self):
|
||||
return str(self.word2phones)
|
||||
|
||||
@property
|
||||
def tokens(self) -> List[int]:
|
||||
"""Return a list of token IDs excluding those from
|
||||
disambiguation symbols.
|
||||
|
||||
Caution:
|
||||
0 is not a token ID so it is excluded from the return value.
|
||||
"""
|
||||
ans = []
|
||||
for s in self.token2id:
|
||||
if not self.disambig_pattern.match(s):
|
||||
ans.append(self.token2id[s])
|
||||
if 0 in ans:
|
||||
ans.remove(0)
|
||||
ans.sort()
|
||||
return ans
|
||||
|
||||
|
||||
# See also
|
||||
# http://vpanayotov.blogspot.com/2012/06/kaldi-decoding-graph-construction.html
|
||||
def make_lexicon_fst_with_silence(
|
||||
lexicon: Lexicon,
|
||||
sil_prob: float = 0.5,
|
||||
sil_phone: str = "SIL",
|
||||
attach_symbol_table: bool = True,
|
||||
) -> kaldifst.StdVectorFst:
|
||||
phone2id = lexicon.token2id
|
||||
word2id = lexicon.word2id
|
||||
|
||||
assert sil_phone in phone2id
|
||||
|
||||
assert sil_phone in phone2id, sil_phone
|
||||
|
||||
sil_cost = -1 * math.log(sil_prob)
|
||||
no_sil_cost = -1 * math.log(1.0 - sil_prob)
|
||||
|
||||
fst = kaldifst.StdVectorFst()
|
||||
|
||||
start_state = fst.add_state()
|
||||
loop_state = fst.add_state()
|
||||
sil_state = fst.add_state()
|
||||
|
||||
fst.start = start_state
|
||||
fst.set_final(state=loop_state, weight=0)
|
||||
|
||||
fst.add_arc(
|
||||
state=start_state,
|
||||
arc=kaldifst.StdArc(
|
||||
ilabel=0,
|
||||
olabel=0,
|
||||
weight=no_sil_cost,
|
||||
nextstate=loop_state,
|
||||
),
|
||||
)
|
||||
|
||||
fst.add_arc(
|
||||
state=start_state,
|
||||
arc=kaldifst.StdArc(
|
||||
ilabel=0,
|
||||
olabel=0,
|
||||
weight=sil_cost,
|
||||
nextstate=sil_state,
|
||||
),
|
||||
)
|
||||
|
||||
fst.add_arc(
|
||||
state=sil_state,
|
||||
arc=kaldifst.StdArc(
|
||||
ilabel=phone2id[sil_phone],
|
||||
olabel=0,
|
||||
weight=0,
|
||||
nextstate=loop_state,
|
||||
),
|
||||
)
|
||||
|
||||
for word, phones in lexicon:
|
||||
phoneseq = phones.split()
|
||||
pron_cost = 0
|
||||
cur_state = loop_state
|
||||
|
||||
for i in range(len(phoneseq) - 1):
|
||||
next_state = fst.add_state()
|
||||
fst.add_arc(
|
||||
state=cur_state,
|
||||
arc=kaldifst.StdArc(
|
||||
ilabel=phone2id[phoneseq[i]],
|
||||
olabel=word2id[word] if i == 0 else 0,
|
||||
weight=pron_cost if i == 0 else 0,
|
||||
nextstate=next_state,
|
||||
),
|
||||
)
|
||||
cur_state = next_state
|
||||
|
||||
i = len(phoneseq) - 1 # note: i == -1 if phoneseq is empty.
|
||||
|
||||
fst.add_arc(
|
||||
state=cur_state,
|
||||
arc=kaldifst.StdArc(
|
||||
ilabel=phone2id[phoneseq[i]] if i >= 0 else 0,
|
||||
olabel=word2id[word] if i <= 0 else 0,
|
||||
weight=no_sil_cost + (pron_cost if i <= 0 else 0),
|
||||
nextstate=loop_state,
|
||||
),
|
||||
)
|
||||
|
||||
fst.add_arc(
|
||||
state=cur_state,
|
||||
arc=kaldifst.StdArc(
|
||||
ilabel=phone2id[phoneseq[i]] if i >= 0 else 0,
|
||||
olabel=word2id[word] if i <= 0 else 0,
|
||||
weight=sil_cost + (pron_cost if i <= 0 else 0),
|
||||
nextstate=sil_state,
|
||||
),
|
||||
)
|
||||
|
||||
if attach_symbol_table:
|
||||
isym = kaldifst.SymbolTable()
|
||||
for p, i in phone2id.items():
|
||||
isym.add_symbol(symbol=p, key=i)
|
||||
fst.input_symbols = isym
|
||||
|
||||
osym = kaldifst.SymbolTable()
|
||||
for w, i in word2id.items():
|
||||
osym.add_symbol(symbol=w, key=i)
|
||||
fst.output_symbols = osym
|
||||
|
||||
return fst
|
||||
|
||||
|
||||
def make_lexicon_fst_no_silence(
|
||||
lexicon: Lexicon,
|
||||
attach_symbol_table: bool = True,
|
||||
) -> kaldifst.StdVectorFst:
|
||||
phone2id = lexicon.token2id
|
||||
word2id = lexicon.word2id
|
||||
|
||||
fst = kaldifst.StdVectorFst()
|
||||
|
||||
start_state = fst.add_state()
|
||||
fst.start = start_state
|
||||
fst.set_final(state=start_state, weight=0)
|
||||
|
||||
for word, phones in lexicon:
|
||||
phoneseq = phones.split()
|
||||
pron_cost = 0
|
||||
cur_state = start_state
|
||||
|
||||
for i in range(len(phoneseq) - 1):
|
||||
next_state = fst.add_state()
|
||||
fst.add_arc(
|
||||
state=cur_state,
|
||||
arc=kaldifst.StdArc(
|
||||
ilabel=phone2id[phoneseq[i]],
|
||||
olabel=word2id[word] if i == 0 else 0,
|
||||
weight=pron_cost if i == 0 else 0,
|
||||
nextstate=next_state,
|
||||
),
|
||||
)
|
||||
cur_state = next_state
|
||||
|
||||
i = len(phoneseq) - 1 # note: i == -1 if phoneseq is empty.
|
||||
|
||||
fst.add_arc(
|
||||
state=cur_state,
|
||||
arc=kaldifst.StdArc(
|
||||
ilabel=phone2id[phoneseq[i]] if i >= 0 else 0,
|
||||
olabel=word2id[word] if i <= 0 else 0,
|
||||
weight=pron_cost if i <= 0 else 0,
|
||||
nextstate=start_state,
|
||||
),
|
||||
)
|
||||
|
||||
if attach_symbol_table:
|
||||
isym = kaldifst.SymbolTable()
|
||||
for p, i in phone2id.items():
|
||||
isym.add_symbol(symbol=p, key=i)
|
||||
fst.input_symbols = isym
|
||||
|
||||
osym = kaldifst.SymbolTable()
|
||||
for w, i in word2id.items():
|
||||
osym.add_symbol(symbol=w, key=i)
|
||||
fst.output_symbols = osym
|
||||
|
||||
return fst
|
140
icefall/ctc/test_ctc_topo.py
Executable file
140
icefall/ctc/test_ctc_topo.py
Executable file
@ -0,0 +1,140 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import graphviz
|
||||
import kaldifst
|
||||
import sentencepiece as spm
|
||||
from prepare_lang import (
|
||||
Lexicon,
|
||||
make_lexicon_fst_no_silence,
|
||||
make_lexicon_fst_with_silence,
|
||||
)
|
||||
from topo import add_disambig_self_loops, add_one, build_standard_ctc_topo
|
||||
|
||||
|
||||
def test_yesno():
|
||||
lang_dir = "/Users/fangjun/open-source/icefall/egs/yesno/ASR/data/lang_phone"
|
||||
if not Path(lang_dir).is_dir():
|
||||
print(f"{lang_dir} does not exist! Skip testing")
|
||||
return
|
||||
lexicon = Lexicon(lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
|
||||
H = build_standard_ctc_topo(max_token_id=max_token_id)
|
||||
|
||||
isym = kaldifst.SymbolTable()
|
||||
isym.add_symbol(symbol="<blk>", key=0)
|
||||
for i in range(1, max_token_id + 1):
|
||||
isym.add_symbol(symbol=lexicon.id2token[i], key=i)
|
||||
|
||||
osym = kaldifst.SymbolTable()
|
||||
osym.add_symbol(symbol="<eps>", key=0)
|
||||
for i in range(1, max_token_id + 1):
|
||||
osym.add_symbol(symbol=lexicon.id2token[i], key=i)
|
||||
|
||||
H.input_symbols = isym
|
||||
H.output_symbols = osym
|
||||
|
||||
fst_dot = kaldifst.draw(H, acceptor=False, portrait=True)
|
||||
source = graphviz.Source(fst_dot)
|
||||
source.render(outfile="standard_ctc_topo_yesno.pdf")
|
||||
# See the link below to visualize the above PDF
|
||||
# https://t.ly/7uXZ9
|
||||
|
||||
# Now test HL
|
||||
|
||||
# We need to add one to all tokens since we want to use ID 0
|
||||
# for epsilon
|
||||
add_one(H, treat_ilabel_zero_specially=False, update_olabel=True)
|
||||
|
||||
add_disambig_self_loops(
|
||||
H,
|
||||
start=lexicon.token2id["#0"] + 1,
|
||||
end=lexicon.max_disambig_id,
|
||||
)
|
||||
|
||||
fst_dot = kaldifst.draw(H, acceptor=False, portrait=True)
|
||||
source = graphviz.Source(fst_dot)
|
||||
source.render(outfile="standard_ctc_topo_disambig_yesno.pdf")
|
||||
|
||||
L = make_lexicon_fst_with_silence(lexicon)
|
||||
|
||||
# We also need to change the input labels of L
|
||||
add_one(L, treat_ilabel_zero_specially=True, update_olabel=False)
|
||||
|
||||
H.output_symbols = None
|
||||
|
||||
kaldifst.arcsort(H, sort_type="olabel")
|
||||
kaldifst.arcsort(L, sort_type="ilabel")
|
||||
HL = kaldifst.compose(H, L)
|
||||
|
||||
lexicon.id2token[0] = "<blk>"
|
||||
lexicon.token2id["<blk>"] = 0
|
||||
|
||||
isym = kaldifst.SymbolTable()
|
||||
isym.add_symbol(symbol="<eps>", key=0)
|
||||
for i in range(0, lexicon.max_disambig_id + 1):
|
||||
isym.add_symbol(symbol=lexicon.id2token[i], key=i + 1)
|
||||
|
||||
osym = kaldifst.SymbolTable()
|
||||
for i, word in lexicon.id2word.items():
|
||||
osym.add_symbol(symbol=word, key=i)
|
||||
|
||||
HL.input_symbols = isym
|
||||
HL.output_symbols = osym
|
||||
|
||||
fst_dot = kaldifst.draw(HL, acceptor=False, portrait=True)
|
||||
source = graphviz.Source(fst_dot)
|
||||
source.render(outfile="HL_yesno.pdf")
|
||||
|
||||
|
||||
def test_librispeech():
|
||||
lang_dir = (
|
||||
"/star-fj/fangjun/open-source/icefall-2/egs/librispeech/ASR/data/lang_bpe_500"
|
||||
)
|
||||
|
||||
if not Path(lang_dir).is_dir():
|
||||
print(f"{lang_dir} does not exist! Skip testing")
|
||||
return
|
||||
|
||||
lexicon = Lexicon(lang_dir)
|
||||
HL = kaldifst.StdVectorFst.read(lang_dir + "/HL.fst")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(lang_dir + "/bpe.model")
|
||||
|
||||
i = lexicon.word2id["HELLOA"]
|
||||
k = lexicon.word2id["WORLD"]
|
||||
print(i, k)
|
||||
s = f"""
|
||||
0 1 {i} {i}
|
||||
1 2 {k} {k}
|
||||
2
|
||||
"""
|
||||
fst = kaldifst.compile(
|
||||
s=s,
|
||||
acceptor=False,
|
||||
)
|
||||
|
||||
L = make_lexicon_fst_no_silence(lexicon, attach_symbol_table=False)
|
||||
kaldifst.arcsort(L, sort_type="olabel")
|
||||
with open("L.fst.txt", "w") as f:
|
||||
print(L, file=f)
|
||||
|
||||
fst = kaldifst.compose(L, fst)
|
||||
print(fst)
|
||||
fst_dot = kaldifst.draw(fst, acceptor=False, portrait=True)
|
||||
source = graphviz.Source(fst_dot)
|
||||
source.render(outfile="a.pdf")
|
||||
print(sp.encode(["HELLOA", "WORLD"]))
|
||||
|
||||
|
||||
def main():
|
||||
test_yesno()
|
||||
test_librispeech()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
43
icefall/ctc/test_prepare_lang.py
Executable file
43
icefall/ctc/test_prepare_lang.py
Executable file
@ -0,0 +1,43 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import graphviz
|
||||
import kaldifst
|
||||
from prepare_lang import Lexicon, make_lexicon_fst_with_silence
|
||||
|
||||
|
||||
def test_yesno():
|
||||
lang_dir = "/Users/fangjun/open-source/icefall/egs/yesno/ASR/data/lang_phone"
|
||||
if not Path(lang_dir).is_dir():
|
||||
print(f"{lang_dir} does not exist! Skip testing")
|
||||
return
|
||||
|
||||
lexicon = Lexicon(lang_dir)
|
||||
|
||||
L = make_lexicon_fst_with_silence(lexicon)
|
||||
|
||||
isym = kaldifst.SymbolTable()
|
||||
for i, token in lexicon.id2token.items():
|
||||
isym.add_symbol(symbol=token, key=i)
|
||||
|
||||
osym = kaldifst.SymbolTable()
|
||||
for i, word in lexicon.id2word.items():
|
||||
osym.add_symbol(symbol=word, key=i)
|
||||
|
||||
L.input_symbols = isym
|
||||
L.output_symbols = osym
|
||||
fst_dot = kaldifst.draw(L, acceptor=False, portrait=True)
|
||||
source = graphviz.Source(fst_dot)
|
||||
source.render(outfile="L_yesno.pdf")
|
||||
# See the link below to visualize the above PDF
|
||||
# https://t.ly/jMfXW
|
||||
|
||||
|
||||
def main():
|
||||
test_yesno()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
137
icefall/ctc/topo.py
Normal file
137
icefall/ctc/topo.py
Normal file
@ -0,0 +1,137 @@
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
|
||||
import kaldifst
|
||||
|
||||
|
||||
# Note the name contains `standard`; it means there will be non-standard
|
||||
# topologies.
|
||||
def build_standard_ctc_topo(max_token_id: int) -> kaldifst.StdVectorFst:
|
||||
"""Build a standard CTC topology.
|
||||
|
||||
Args:
|
||||
Maximum valid token ID. We assume token IDs are contiguous
|
||||
and starts from 0. In other words, the vocabulary size is
|
||||
``max_token_id + 1``. We assume the ID of the blank symbol is 0.
|
||||
"""
|
||||
# Token ID starts from 0 and there are as many states as the
|
||||
# number of tokens.
|
||||
#
|
||||
# Note that epsilon is not a token and the token with ID 0 in tokens.txt
|
||||
# is not an epsilon. It means input label 0 of the resulting FST does
|
||||
# not represent an epsilon.
|
||||
#
|
||||
# You can use the function `add_one()` to modify the input/output labels
|
||||
# of the resulting FST
|
||||
|
||||
num_states = max_token_id + 1
|
||||
|
||||
# Step 1: Create as many states as the number of tokens.
|
||||
# Each state is a final state
|
||||
fst = kaldifst.StdVectorFst()
|
||||
for i in range(num_states):
|
||||
s = fst.add_state()
|
||||
fst.set_final(state=s, weight=0)
|
||||
|
||||
# Step 2: Set state 0 as the start state.
|
||||
# We assume the ID of the blank symbol is 0.
|
||||
fst.start = 0
|
||||
|
||||
# Step 3: Build a fully connected graph.
|
||||
for i in range(num_states):
|
||||
for k in range(num_states):
|
||||
fst.add_arc(
|
||||
state=i,
|
||||
arc=kaldifst.StdArc(
|
||||
ilabel=k,
|
||||
olabel=k if i != k else 0, # if i==k, it is a self loop
|
||||
weight=0,
|
||||
nextstate=k,
|
||||
),
|
||||
)
|
||||
# Please see ./test_ctc_topo.py if you want to know what the resulting
|
||||
# FST looks like
|
||||
|
||||
return fst
|
||||
|
||||
|
||||
def add_one(
|
||||
fst: kaldifst.StdVectorFst,
|
||||
treat_ilabel_zero_specially: bool,
|
||||
update_olabel: bool,
|
||||
) -> None:
|
||||
"""Modify the input and output labels of the given FST in-place.
|
||||
|
||||
Args:
|
||||
fst:
|
||||
The FST to be modified. It is changed in-place.
|
||||
treat_ilabel_zero_specially:
|
||||
If True, then every non-zero input label is increased by one and the
|
||||
zero input label is not changed.
|
||||
If False, then every input label is increased by one.
|
||||
update_olabel:
|
||||
If False, the output label is not changed.
|
||||
If True, then every non-zero output label is increased by one.
|
||||
In either case, output label with 0 is not changed.
|
||||
"""
|
||||
for state in kaldifst.StateIterator(fst):
|
||||
for arc in kaldifst.ArcIterator(fst, state):
|
||||
# If treat_ilabel_zero_specially is False, we always change it
|
||||
# Otherwise, we only change non-zero input labels
|
||||
if treat_ilabel_zero_specially is False or arc.ilabel != 0:
|
||||
arc.ilabel += 1
|
||||
|
||||
if update_olabel and arc.olabel != 0:
|
||||
arc.olabel += 1
|
||||
|
||||
if fst.input_symbols is not None:
|
||||
input_symbols = kaldifst.SymbolTable()
|
||||
input_symbols.add_symbol(symbol="<eps>", key=0)
|
||||
|
||||
for i in range(0, fst.input_symbols.num_symbols()):
|
||||
s = fst.input_symbols.find(i)
|
||||
input_symbols.add_symbol(symbol=s, key=i + 1)
|
||||
|
||||
fst.input_symbols = input_symbols
|
||||
|
||||
if update_olabel and fst.output_symbols is not None:
|
||||
output_symbols = kaldifst.SymbolTable()
|
||||
output_symbols.add_symbol(symbol="<eps>", key=0)
|
||||
|
||||
for i in range(0, fst.output_symbols.num_symbols()):
|
||||
s = fst.output_symbols.find(i)
|
||||
output_symbols.add_symbol(symbol=s, key=i + 1)
|
||||
|
||||
fst.output_symbols = output_symbols
|
||||
|
||||
|
||||
def add_disambig_self_loops(fst: kaldifst.StdVectorFst, start: int, end: int):
|
||||
"""Add self-loops to each state.
|
||||
|
||||
For each disambig symbol, we add a self-loop with input label disambig_id
|
||||
and output label diambig_id of that disambig symbol.
|
||||
|
||||
Args:
|
||||
fst:
|
||||
It is changed in-place.
|
||||
start:
|
||||
The ID of #0
|
||||
end:
|
||||
The ID of the last disambig symbol. For instance if there are 3
|
||||
disambig symbols ``#0``, ``#1``, and ``#2``, then ``end`` is the ID
|
||||
of ``#2``.
|
||||
"""
|
||||
for state in kaldifst.StateIterator(fst):
|
||||
for i in range(start, end + 1):
|
||||
fst.add_arc(
|
||||
state=state,
|
||||
arc=kaldifst.StdArc(
|
||||
ilabel=i,
|
||||
olabel=i,
|
||||
weight=0,
|
||||
nextstate=state,
|
||||
),
|
||||
)
|
||||
|
||||
if fst.output_symbols:
|
||||
for i in range(start, end + 1):
|
||||
fst.output_symbols.add_symbol(symbol=f"#{i-start}", key=i)
|
@ -27,3 +27,4 @@ onnx
|
||||
onnxmltools
|
||||
onnxruntime
|
||||
kaldifst
|
||||
kaldi-hmm-gmm
|
||||
|
@ -1,6 +1,7 @@
|
||||
kaldifst
|
||||
kaldilm
|
||||
kaldialign
|
||||
kaldi-hmm-gmm
|
||||
sentencepiece>=0.1.96
|
||||
tensorboard
|
||||
typeguard
|
||||
|
Loading…
x
Reference in New Issue
Block a user