Fix OOM handling when using DDP.

We have to disable batch norm layers. Otherwise,
the process will hang indefinitely.
This commit is contained in:
Fangjun Kuang 2021-08-15 18:49:12 +08:00
parent 14e0886559
commit 21292066ec
3 changed files with 59 additions and 76 deletions

View File

@ -1,6 +1,6 @@
repos:
- repo: https://github.com/psf/black
rev: 21.6b0
rev: 21.7b0
hooks:
- id: black
args: [--line-length=80]

View File

@ -869,7 +869,10 @@ class ConvolutionModule(nn.Module):
groups=channels,
bias=bias,
)
self.norm = nn.BatchNorm1d(channels)
# NOTE(fangjun): The process hangs when using DDP
# if we try to recover from CUDA OOM, so we disable
# batchnorm layer here.
# self.norm = nn.BatchNorm1d(channels)
self.pointwise_conv2 = nn.Conv1d(
channels,
channels,
@ -899,7 +902,8 @@ class ConvolutionModule(nn.Module):
# 1D Depthwise Conv
x = self.depthwise_conv(x)
x = self.activation(self.norm(x))
# x = self.activation(self.norm(x))
x = self.activation(x)
x = self.pointwise_conv2(x) # (batch, channel, time)

View File

@ -153,7 +153,7 @@ def get_params() -> AttributeDict:
"num_decoder_layers": 6,
"is_espnet_structure": True,
"mmi_loss": False,
"use_feat_batchnorm": True,
"use_feat_batchnorm": False,
"lr_factor": 2.0,
"warm_step": 30000,
}
@ -282,75 +282,59 @@ def compute_loss_impl(
assert feature.ndim == 3
feature = feature.to(device)
try:
supervisions = batch["supervisions"]
supervisions = batch["supervisions"]
with torch.set_grad_enabled(is_training):
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
# nnet_output is [N, T, C]
# NOTE: We need `encode_supervisions` to sort sequences with
# different duration in decreasing order, required by
# `k2.intersect_dense` called in `k2.ctc_loss`
supervision_segments, texts = encode_supervisions(
supervisions, subsampling_factor=params.subsampling_factor
)
token_ids = graph_compiler.texts_to_ids(texts)
decoding_graph = graph_compiler.compile(token_ids)
dense_fsa_vec = k2.DenseFsaVec(
nnet_output,
supervision_segments,
allow_truncate=params.subsampling_factor - 1,
)
ctc_loss = k2.ctc_loss(
decoding_graph=decoding_graph,
dense_fsa_vec=dense_fsa_vec,
output_beam=params.beam_size,
reduction=params.reduction,
use_double_scores=params.use_double_scores,
)
if params.att_rate != 0.0:
with torch.set_grad_enabled(is_training):
nnet_output, encoder_memory, memory_mask = model(
feature, supervisions
)
# nnet_output is [N, T, C]
# NOTE: We need `encode_supervisions` to sort sequences with
# different duration in decreasing order, required by
# `k2.intersect_dense` called in `k2.ctc_loss`
supervision_segments, texts = encode_supervisions(
supervisions, subsampling_factor=params.subsampling_factor
)
token_ids = graph_compiler.texts_to_ids(texts)
decoding_graph = graph_compiler.compile(token_ids)
dense_fsa_vec = k2.DenseFsaVec(
nnet_output,
supervision_segments,
allow_truncate=params.subsampling_factor - 1,
)
ctc_loss = k2.ctc_loss(
decoding_graph=decoding_graph,
dense_fsa_vec=dense_fsa_vec,
output_beam=params.beam_size,
reduction=params.reduction,
use_double_scores=params.use_double_scores,
)
if params.att_rate != 0.0:
with torch.set_grad_enabled(is_training):
if hasattr(model, "module"):
att_loss = model.module.decoder_forward(
encoder_memory,
memory_mask,
token_ids=token_ids,
sos_id=graph_compiler.sos_id,
eos_id=graph_compiler.eos_id,
)
else:
att_loss = model.decoder_forward(
encoder_memory,
memory_mask,
token_ids=token_ids,
sos_id=graph_compiler.sos_id,
eos_id=graph_compiler.eos_id,
)
loss = (
1.0 - params.att_rate
) * ctc_loss + params.att_rate * att_loss
else:
loss = ctc_loss
att_loss = torch.tensor([0])
except RuntimeError as ex:
try:
del nnet_output
del encoder_memory
del dense_fsa_vec
del ctc_loss
del att_loss
del loss
except NameError as ne:
pass
raise ex
if hasattr(model, "module"):
att_loss = model.module.decoder_forward(
encoder_memory,
memory_mask,
token_ids=token_ids,
sos_id=graph_compiler.sos_id,
eos_id=graph_compiler.eos_id,
)
else:
att_loss = model.decoder_forward(
encoder_memory,
memory_mask,
token_ids=token_ids,
sos_id=graph_compiler.sos_id,
eos_id=graph_compiler.eos_id,
)
loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss
else:
loss = ctc_loss
att_loss = torch.tensor([0])
# train_frames and valid_frames are used for printing.
if is_training:
@ -394,11 +378,6 @@ def compute_loss(
s += f" max duration: {max_cut_duration:.3f} s \n"
logging.info(s)
# see https://github.com/pytorch/fairseq/blob/50a671f78d0c8de0392f924180db72ac9b41b801/fairseq/trainer.py#L283
for p in model.parameters():
if p.grad is not None:
del p.grad # free some memory
torch.cuda.empty_cache()
gc.collect()