Fix typo and reformatted zipformer

This commit is contained in:
Yifan Yang 2023-06-02 12:39:44 +08:00
parent 82f34a2388
commit 208839fb9b
12 changed files with 985 additions and 801 deletions

View File

@ -273,8 +273,7 @@ def get_parser():
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
@ -371,9 +370,7 @@ def decode_one_batch(
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens = model.encoder(
x, x_lens, src_key_padding_mask
)
encoder_out, encoder_out_lens = model.encoder(x, x_lens, src_key_padding_mask)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
hyps = []
@ -433,10 +430,7 @@ def decode_one_batch(
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif (
params.decoding_method == "greedy_search"
and params.max_sym_per_frame == 1
):
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
@ -567,9 +561,7 @@ def decode_dataset(
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(
f"batch {batch_str}, cuts processed until now is {num_cuts}"
)
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return results
@ -602,8 +594,7 @@ def save_results(
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = (
params.res_dir
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
@ -664,9 +655,7 @@ def main():
if "LG" in params.decoding_method:
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
elif "beam_search" in params.decoding_method:
params.suffix += (
f"-{params.decoding_method}-beam-size-{params.beam_size}"
)
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
else:
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
@ -698,9 +687,9 @@ def main():
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg]
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
@ -727,9 +716,9 @@ def main():
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg + 1]
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
@ -788,9 +777,7 @@ def main():
decoding_graph.scores *= params.ngram_lm_scale
else:
word_table = None
decoding_graph = k2.trivial_graph(
params.vocab_size - 1, device=device
)
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
else:
decoding_graph = None
word_table = None

View File

@ -62,10 +62,15 @@ class Decoder(nn.Module):
)
# the balancers are to avoid any drift in the magnitude of the
# embeddings, which would interact badly with parameter averaging.
self.balancer = Balancer(decoder_dim, channel_dim=-1,
min_positive=0.0, max_positive=1.0,
min_abs=0.5, max_abs=1.0,
prob=0.05)
self.balancer = Balancer(
decoder_dim,
channel_dim=-1,
min_positive=0.0,
max_positive=1.0,
min_abs=0.5,
max_abs=1.0,
prob=0.05,
)
self.blank_id = blank_id
@ -82,10 +87,15 @@ class Decoder(nn.Module):
groups=decoder_dim // 4, # group size == 4
bias=False,
)
self.balancer2 = Balancer(decoder_dim, channel_dim=-1,
min_positive=0.0, max_positive=1.0,
min_abs=0.5, max_abs=1.0,
prob=0.05)
self.balancer2 = Balancer(
decoder_dim,
channel_dim=-1,
min_positive=0.0,
max_positive=1.0,
min_abs=0.5,
max_abs=1.0,
prob=0.05,
)
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
"""
@ -108,9 +118,7 @@ class Decoder(nn.Module):
if self.context_size > 1:
embedding_out = embedding_out.permute(0, 2, 1)
if need_pad is True:
embedding_out = F.pad(
embedding_out, pad=(self.context_size - 1, 0)
)
embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0))
else:
# During inference time, there is no need to do extra padding
# as we only need one output

View File

@ -257,6 +257,7 @@ def get_parser():
class EncoderModel(nn.Module):
"""A wrapper for encoder and encoder_embed"""
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
super().__init__()
self.encoder = encoder
@ -275,9 +276,7 @@ class EncoderModel(nn.Module):
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens = self.encoder(
x, x_lens, src_key_padding_mask
)
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
return encoder_out, encoder_out_lens

View File

@ -52,12 +52,13 @@ class Joiner(nn.Module):
Returns:
Return a tensor of shape (N, T, s_range, C).
"""
assert encoder_out.ndim == decoder_out.ndim, (encoder_out.shape, decoder_out.shape)
assert encoder_out.ndim == decoder_out.ndim, (
encoder_out.shape,
decoder_out.shape,
)
if project_input:
logit = self.encoder_proj(encoder_out) + self.decoder_proj(
decoder_out
)
logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out)
else:
logit = encoder_out + decoder_out

View File

@ -116,7 +116,7 @@ class BatchedOptimizer(Optimizer):
yield tuples # <-- calling code will do the actual optimization here!
for ((stacked_params, _state, _names), batch) in zip(tuples, batches):
for (stacked_params, _state, _names), batch in zip(tuples, batches):
for i, p in enumerate(batch): # batch is list of Parameter
p.copy_(stacked_params[i])
@ -181,7 +181,6 @@ class ScaledAdam(BatchedOptimizer):
size_update_period=4,
clipping_update_period=100,
):
defaults = dict(
lr=lr,
clipping_scale=clipping_scale,
@ -299,8 +298,8 @@ class ScaledAdam(BatchedOptimizer):
# the input is groups of parameter or named parameter.
for cur_group in iterable_or_groups:
assert "named_params" in cur_group
name_list = [ x[0] for x in cur_group["named_params"] ]
p_list = [ x[1] for x in cur_group["named_params"] ]
name_list = [x[0] for x in cur_group["named_params"]]
p_list = [x[1] for x in cur_group["named_params"]]
del cur_group["named_params"]
cur_group["params"] = p_list
param_groups.append(cur_group)
@ -327,9 +326,7 @@ class ScaledAdam(BatchedOptimizer):
batch = True
for group, group_params_names in zip(self.param_groups, self.parameters_names):
with self.batched_params(group["params"], group_params_names) as batches:
# batches is list of pairs (stacked_param, state). stacked_param is like
# a regular parameter, and will have a .grad, but the 1st dim corresponds to
# a stacking dim, it is not a real dim.
@ -428,7 +425,7 @@ class ScaledAdam(BatchedOptimizer):
clipping_update_period = group["clipping_update_period"]
tot_sumsq = torch.tensor(0.0, device=first_p.device)
for (p, state, param_names) in tuples:
for p, state, param_names in tuples:
grad = p.grad
if grad.is_sparse:
raise RuntimeError(
@ -513,7 +510,7 @@ class ScaledAdam(BatchedOptimizer):
from tuples, we still pass it to save some time.
"""
all_sumsq_orig = {}
for (p, state, batch_param_names) in tuples:
for p, state, batch_param_names in tuples:
# p is a stacked batch parameters.
batch_grad = p.grad
if p.numel() == p.shape[0]: # a batch of scalars
@ -529,7 +526,6 @@ class ScaledAdam(BatchedOptimizer):
for name, sumsq_orig, rms, grad in zip(
batch_param_names, batch_sumsq_orig, batch_rms_orig, batch_grad
):
proportion_orig = sumsq_orig / tot_sumsq
all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
@ -667,8 +663,7 @@ class ScaledAdam(BatchedOptimizer):
# We have to look at the trained model for parameters at or around the
# param_max_rms, because sometimes they can indicate a problem with the
# topology or settings.
scale_step = torch.minimum(scale_step,
(param_max_rms - param_rms) / param_rms)
scale_step = torch.minimum(scale_step, (param_max_rms - param_rms) / param_rms)
delta = state["delta"]
# the factor of (1-beta1) relates to momentum.
@ -879,7 +874,8 @@ class Eden(LRScheduler):
warmup_factor = (
1.0
if self.batch >= self.warmup_batches
else self.warmup_start + (1.0 - self.warmup_start) * (self.batch / self.warmup_batches)
else self.warmup_start
+ (1.0 - self.warmup_start) * (self.batch / self.warmup_batches)
# else 0.5 + 0.5 * (self.batch / self.warmup_batches)
)

View File

@ -323,9 +323,7 @@ def main():
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens = model.encoder(
x, x_lens, src_key_padding_mask
)
encoder_out, encoder_out_lens = model.encoder(x, x_lens, src_key_padding_mask)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
hyps = []

View File

@ -100,17 +100,13 @@ class Model(nn.Module):
self.encoder_embed = encoder_embed
self.encoder_proj = encoder_proj
def forward(
self, feature: Tensor, feature_lens: Tensor
) -> Tuple[Tensor, Tensor]:
def forward(self, feature: Tensor, feature_lens: Tensor) -> Tuple[Tensor, Tensor]:
x, x_lens = self.encoder_embed(feature, feature_lens)
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens = self.encoder(
x, x_lens, src_key_padding_mask
)
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
encoder_out = encoder_out.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
logits = self.encoder_proj(encoder_out)
@ -168,9 +164,7 @@ def main():
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

File diff suppressed because it is too large Load Diff

View File

@ -81,7 +81,7 @@ def get_parser():
type=int,
default=28,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 0.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
@ -282,9 +282,7 @@ def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
)
batch_states.append(cached_embed_left_pad)
processed_lens = torch.cat(
[state_list[i][-1] for i in range(batch_size)], dim=0
)
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
batch_states.append(processed_lens)
return batch_states
@ -322,9 +320,7 @@ def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
for layer in range(tot_num_layers):
layer_offset = layer * 6
# cached_key: (left_context_len, batch_size, key_dim)
cached_key_list = batch_states[layer_offset].chunk(
chunks=batch_size, dim=1
)
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
chunks=batch_size, dim=1
@ -355,9 +351,7 @@ def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
cached_conv2_list[i],
]
cached_embed_left_pad_list = batch_states[-2].chunk(
chunks=batch_size, dim=0
)
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
for i in range(batch_size):
state_list[i].append(cached_embed_left_pad_list[i])
@ -404,9 +398,7 @@ def streaming_forward(
new_processed_lens = processed_lens + x_lens
# (batch, left_context_size + chunk_size)
src_key_padding_mask = torch.cat(
[processed_mask, src_key_padding_mask], dim=1
)
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_states = states[:-2]
@ -494,9 +486,7 @@ def decode_one_chunk(
encoder_out = model.joiner.encoder_proj(encoder_out)
if params.decoding_method == "greedy_search":
greedy_search(
model=model, encoder_out=encoder_out, streams=decode_streams
)
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
elif params.decoding_method == "fast_beam_search":
processed_lens = torch.tensor(processed_lens, device=device)
processed_lens = processed_lens + encoder_out_lens
@ -517,9 +507,7 @@ def decode_one_chunk(
num_active_paths=params.num_active_paths,
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
states = unstack_states(new_states)
@ -577,9 +565,7 @@ def decode_dataset(
decode_streams = []
for num, cut in enumerate(cuts):
# each utterance has a DecodeStream.
initial_states = get_init_states(
model=model, batch_size=1, device=device
)
initial_states = get_init_states(model=model, batch_size=1, device=device)
decode_stream = DecodeStream(
params=params,
cut_id=cut.id,
@ -649,9 +635,7 @@ def decode_dataset(
elif params.decoding_method == "modified_beam_search":
key = f"num_active_paths_{params.num_active_paths}"
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
return {key: decode_results}
@ -684,8 +668,7 @@ def save_results(
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = (
params.res_dir
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
@ -718,9 +701,7 @@ def main():
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
assert params.causal, params.causal
assert (
"," not in params.chunk_size
), "chunk_size should be one value in decoding."
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
assert (
"," not in params.left_context_frames
), "left_context_frames should be one value in decoding."
@ -760,9 +741,9 @@ def main():
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg]
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
@ -789,9 +770,9 @@ def main():
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg + 1]
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"

View File

@ -107,9 +107,7 @@ class ConvNeXt(nn.Module):
if layerdrop_rate != 0.0:
batch_size = x.shape[0]
mask = (
torch.rand(
(batch_size, 1, 1, 1), dtype=x.dtype, device=x.device
)
torch.rand((batch_size, 1, 1, 1), dtype=x.dtype, device=x.device)
> layerdrop_rate
)
else:
@ -275,9 +273,7 @@ class Conv2dSubsampling(nn.Module):
# many copies of this extra gradient term.
self.out_whiten = Whiten(
num_groups=1,
whitening_limit=ScheduledFloat(
(0.0, 4.0), (20000.0, 8.0), default=4.0
),
whitening_limit=ScheduledFloat((0.0, 4.0), (20000.0, 8.0), default=4.0),
prob=(0.025, 0.25),
grad_scale=0.02,
)
@ -400,8 +396,8 @@ class Conv2dSubsampling(nn.Module):
left_pad = self.convnext.padding[0]
freq = self.out_width
channels = self.layer3_channels
cached_embed_left_pad = torch.zeros(
batch_size, channels, left_pad, freq
).to(device)
cached_embed_left_pad = torch.zeros(batch_size, channels, left_pad, freq).to(
device
)
return cached_embed_left_pad

View File

@ -408,7 +408,7 @@ def get_parser():
params.batch_idx_train % save_every_n == 0. The checkpoint filename
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
end of each epoch where `xxx` is the epoch number counting from 0.
end of each epoch where `xxx` is the epoch number counting from 1.
""",
)

File diff suppressed because it is too large Load Diff