Bug fixes to LinearWithAuxLoss

This commit is contained in:
Daniel Povey 2022-11-25 16:20:28 +08:00
parent 0a997d64c4
commit 1ebc3dd158

View File

@ -404,8 +404,15 @@ class LinearWithAuxLossFunction(torch.autograd.Function):
@staticmethod
def backward(ctx, ans_grad: Tensor) -> Tuple[Tensor, Tensor, Tensor, None]:
x, weight, alpha = ctx.saved_tensors
x_grad = torch.matmul(ans_grad, weight.to(ans_grad.dtype))
weight_grad = torch.matmul(ans_grad.reshape(-1, ans_grad.shape[-1]).t(),
x.reshape(-1, x.shape[-1]).to(ans_grad.dtype))
with torch.cuda.amp.autocast(enabled=False):
with torch.enable_grad():
x = x.to(weight.dtype)
x, weight, alpha = x.detach(), weight.detach(), alpha.detach()
weight.requires_grad = True
alpha.requires_grad = True
@ -423,9 +430,6 @@ class LinearWithAuxLossFunction(torch.autograd.Function):
weight_aux_grad = weight.grad
alpha_grad = alpha.grad
x_grad = torch.matmul(ans_grad, weight.to(ans_grad.dtype))
weight_grad = torch.matmul(ans_grad.reshape(-1, ans_grad.shape[-1]).t(),
x.reshape(-1, x.shape[-1]).to(ans_grad.dtype))
with torch.cuda.amp.autocast(enabled=False):
weight_grad_norm = weight_grad.to(torch.float32).norm()