add onnx export for stateless2 (#1086)

This commit is contained in:
Fangjun Kuang 2023-05-23 16:11:00 +08:00 committed by GitHub
parent ea8b15309f
commit 1df71a6b38
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 520 additions and 649 deletions

View File

@ -0,0 +1,517 @@
#!/usr/bin/env python3
#
# Copyright 2023 Xiaomi Corporation (Author: Fangjun Kuang)
"""
This script exports a transducer model from PyTorch to ONNX.
We use the pre-trained model from
https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2
as an example to show how to use this file.
1. Download the pre-trained model
cd egs/wenetspeech/ASR
repo_url=icefall_asr_wenetspeech_pruned_transducer_stateless2
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_char/Linv.pt"
git lfs pull --include "exp/pretrained_epoch_10_avg_2.pt"
cd exp
ln -s pretrained_epoch_10_avg_2.pt epoch-99.pt
popd
2. Export the model to ONNX
./pruned_transducer_stateless2/export-onnx.py \
--lang-dir $repo/data/lang_char \
--epoch 99 \
--avg 1 \
--exp-dir $repo/exp
It will generate the following 3 files inside $repo/exp:
- encoder-epoch-99-avg-1.onnx
- decoder-epoch-99-avg-1.onnx
- joiner-epoch-99-avg-1.onnx
See ./onnx_pretrained.py for how to
use the exported ONNX models.
"""
import argparse
import logging
from pathlib import Path
from typing import Dict, Tuple
import onnx
import torch
import torch.nn as nn
from conformer import Conformer
from decoder import Decoder
from onnxruntime.quantization import QuantType, quantize_dynamic
from scaling_converter import convert_scaled_to_non_scaled
from train import get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import setup_logger, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for averaging.
Note: Epoch counts from 0.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless5/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="The lang dir",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
return parser
def add_meta_data(filename: str, meta_data: Dict[str, str]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = value
onnx.save(model, filename)
class OnnxEncoder(nn.Module):
"""A wrapper for Conformer and the encoder_proj from the joiner"""
def __init__(self, encoder: Conformer, encoder_proj: nn.Linear):
"""
Args:
encoder:
A Conformer encoder.
encoder_proj:
The projection layer for encoder from the joiner.
"""
super().__init__()
self.encoder = encoder
self.encoder_proj = encoder_proj
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Please see the help information of Conformer.forward
Args:
x:
A 3-D tensor of shape (N, T, C)
x_lens:
A 1-D tensor of shape (N,). Its dtype is torch.int64
Returns:
Return a tuple containing:
- encoder_out, A 3-D tensor of shape (N, T', joiner_dim)
- encoder_out_lens, A 1-D tensor of shape (N,)
"""
encoder_out, encoder_out_lens = self.encoder(x, x_lens)
encoder_out = self.encoder_proj(encoder_out)
# Now encoder_out is of shape (N, T, joiner_dim)
return encoder_out, encoder_out_lens
class OnnxDecoder(nn.Module):
"""A wrapper for Decoder and the decoder_proj from the joiner"""
def __init__(self, decoder: Decoder, decoder_proj: nn.Linear):
super().__init__()
self.decoder = decoder
self.decoder_proj = decoder_proj
def forward(self, y: torch.Tensor) -> torch.Tensor:
"""
Args:
y:
A 2-D tensor of shape (N, context_size).
Returns
Return a 2-D tensor of shape (N, joiner_dim)
"""
need_pad = False
decoder_output = self.decoder(y, need_pad=need_pad)
decoder_output = decoder_output.squeeze(1)
output = self.decoder_proj(decoder_output)
return output
class OnnxJoiner(nn.Module):
"""A wrapper for the joiner"""
def __init__(self, output_linear: nn.Linear):
super().__init__()
self.output_linear = output_linear
def forward(
self,
encoder_out: torch.Tensor,
decoder_out: torch.Tensor,
) -> torch.Tensor:
"""
Args:
encoder_out:
A 2-D tensor of shape (N, joiner_dim)
decoder_out:
A 2-D tensor of shape (N, joiner_dim)
Returns:
Return a 2-D tensor of shape (N, vocab_size)
"""
logit = encoder_out + decoder_out
logit = self.output_linear(torch.tanh(logit))
return logit
def export_encoder_model_onnx(
encoder_model: OnnxEncoder,
encoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the given encoder model to ONNX format.
The exported model has two inputs:
- x, a tensor of shape (N, T, C); dtype is torch.float32
- x_lens, a tensor of shape (N,); dtype is torch.int64
and it has two outputs:
- encoder_out, a tensor of shape (N, T', joiner_dim)
- encoder_out_lens, a tensor of shape (N,)
Args:
encoder_model:
The input encoder model
encoder_filename:
The filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
x = torch.zeros(1, 100, 80, dtype=torch.float32)
x_lens = torch.tensor([100], dtype=torch.int64)
torch.onnx.export(
encoder_model,
(x, x_lens),
encoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["x", "x_lens"],
output_names=["encoder_out", "encoder_out_lens"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"x_lens": {0: "N"},
"encoder_out": {0: "N", 1: "T"},
"encoder_out_lens": {0: "N"},
},
)
meta_data = {
"model_type": "conformer",
"version": "1",
"model_author": "k2-fsa",
"comment": "stateless5",
}
logging.info(f"meta_data: {meta_data}")
add_meta_data(filename=encoder_filename, meta_data=meta_data)
def export_decoder_model_onnx(
decoder_model: OnnxDecoder,
decoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the decoder model to ONNX format.
The exported model has one input:
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
and has one output:
- decoder_out: a torch.float32 tensor of shape (N, joiner_dim)
Args:
decoder_model:
The decoder model to be exported.
decoder_filename:
Filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
context_size = decoder_model.decoder.context_size
vocab_size = decoder_model.decoder.vocab_size
y = torch.zeros(10, context_size, dtype=torch.int64)
torch.onnx.export(
decoder_model,
y,
decoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["y"],
output_names=["decoder_out"],
dynamic_axes={
"y": {0: "N"},
"decoder_out": {0: "N"},
},
)
meta_data = {
"context_size": str(context_size),
"vocab_size": str(vocab_size),
}
add_meta_data(filename=decoder_filename, meta_data=meta_data)
def export_joiner_model_onnx(
joiner_model: nn.Module,
joiner_filename: str,
opset_version: int = 11,
) -> None:
"""Export the joiner model to ONNX format.
The exported joiner model has two inputs:
- encoder_out: a tensor of shape (N, joiner_dim)
- decoder_out: a tensor of shape (N, joiner_dim)
and produces one output:
- logit: a tensor of shape (N, vocab_size)
"""
joiner_dim = joiner_model.output_linear.weight.shape[1]
logging.info(f"joiner dim: {joiner_dim}")
projected_encoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
projected_decoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
torch.onnx.export(
joiner_model,
(projected_encoder_out, projected_decoder_out),
joiner_filename,
verbose=False,
opset_version=opset_version,
input_names=[
"encoder_out",
"decoder_out",
],
output_names=["logit"],
dynamic_axes={
"encoder_out": {0: "N"},
"decoder_out": {0: "N"},
"logit": {0: "N"},
},
)
meta_data = {
"joiner_dim": str(joiner_dim),
}
add_meta_data(filename=joiner_filename, meta_data=meta_data)
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
setup_logger(f"{params.exp_dir}/log-export/log-export-onnx")
logging.info(f"device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = 0
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
model.to(device)
if params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
model.to("cpu")
model.eval()
convert_scaled_to_non_scaled(model, inplace=True)
encoder = OnnxEncoder(
encoder=model.encoder,
encoder_proj=model.joiner.encoder_proj,
)
decoder = OnnxDecoder(
decoder=model.decoder,
decoder_proj=model.joiner.decoder_proj,
)
joiner = OnnxJoiner(output_linear=model.joiner.output_linear)
encoder_num_param = sum([p.numel() for p in encoder.parameters()])
decoder_num_param = sum([p.numel() for p in decoder.parameters()])
joiner_num_param = sum([p.numel() for p in joiner.parameters()])
total_num_param = encoder_num_param + decoder_num_param + joiner_num_param
logging.info(f"encoder parameters: {encoder_num_param}")
logging.info(f"decoder parameters: {decoder_num_param}")
logging.info(f"joiner parameters: {joiner_num_param}")
logging.info(f"total parameters: {total_num_param}")
if params.iter > 0:
suffix = f"iter-{params.iter}"
else:
suffix = f"epoch-{params.epoch}"
suffix += f"-avg-{params.avg}"
opset_version = 13
logging.info("Exporting encoder")
encoder_filename = params.exp_dir / f"encoder-{suffix}.onnx"
export_encoder_model_onnx(
encoder,
encoder_filename,
opset_version=opset_version,
)
logging.info(f"Exported encoder to {encoder_filename}")
logging.info("Exporting decoder")
decoder_filename = params.exp_dir / f"decoder-{suffix}.onnx"
export_decoder_model_onnx(
decoder,
decoder_filename,
opset_version=opset_version,
)
logging.info(f"Exported decoder to {decoder_filename}")
logging.info("Exporting joiner")
joiner_filename = params.exp_dir / f"joiner-{suffix}.onnx"
export_joiner_model_onnx(
joiner,
joiner_filename,
opset_version=opset_version,
)
logging.info(f"Exported joiner to {joiner_filename}")
# Generate int8 quantization models
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
logging.info("Generate int8 quantization models")
encoder_filename_int8 = params.exp_dir / f"encoder-{suffix}.int8.onnx"
quantize_dynamic(
model_input=encoder_filename,
model_output=encoder_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
decoder_filename_int8 = params.exp_dir / f"decoder-{suffix}.int8.onnx"
quantize_dynamic(
model_input=decoder_filename,
model_output=decoder_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
joiner_filename_int8 = params.exp_dir / f"joiner-{suffix}.int8.onnx"
quantize_dynamic(
model_input=joiner_filename,
model_output=joiner_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
main()

View File

@ -59,23 +59,7 @@ It will generate the following files:
Check ./jit_pretrained.py for usage.
(3) Export to ONNX format
./pruned_transducer_stateless2/export.py \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--epoch 10 \
--avg 2 \
--onnx 1
Refer to ./onnx_check.py and ./onnx_pretrained.py
for usage.
Check
https://github.com/k2-fsa/sherpa-onnx
for how to use the exported models outside of icefall.
(4) Export `model.state_dict()`
(3) Export `model.state_dict()`
./pruned_transducer_stateless2/export.py \
--exp-dir ./pruned_transducer_stateless2/exp \
@ -184,23 +168,6 @@ def get_parser():
""",
)
parser.add_argument(
"--onnx",
type=str2bool,
default=False,
help="""If True, --jit is ignored and it exports the model
to onnx format. It will generate the following files:
- encoder.onnx
- decoder.onnx
- joiner.onnx
- joiner_encoder_proj.onnx
- joiner_decoder_proj.onnx
Refer to ./onnx_check.py and ./onnx_pretrained.py for how to use them.
""",
)
parser.add_argument(
"--context-size",
type=int,
@ -333,206 +300,6 @@ def export_joiner_model_jit_trace(
logging.info(f"Saved to {joiner_filename}")
def export_encoder_model_onnx(
encoder_model: nn.Module,
encoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the given encoder model to ONNX format.
The exported model has two inputs:
- x, a tensor of shape (N, T, C); dtype is torch.float32
- x_lens, a tensor of shape (N,); dtype is torch.int64
and it has two outputs:
- encoder_out, a tensor of shape (N, T, C)
- encoder_out_lens, a tensor of shape (N,)
Note: The warmup argument is fixed to 1.
Args:
encoder_model:
The input encoder model
encoder_filename:
The filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
x = torch.zeros(1, 100, 80, dtype=torch.float32)
x_lens = torch.tensor([100], dtype=torch.int64)
# encoder_model = torch.jit.script(encoder_model)
# It throws the following error for the above statement
#
# RuntimeError: Exporting the operator __is_ to ONNX opset version
# 11 is not supported. Please feel free to request support or
# submit a pull request on PyTorch GitHub.
#
# I cannot find which statement causes the above error.
# torch.onnx.export() will use torch.jit.trace() internally, which
# works well for the current reworked model
warmup = 1.0
torch.onnx.export(
encoder_model,
(x, x_lens, warmup),
encoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["x", "x_lens", "warmup"],
output_names=["encoder_out", "encoder_out_lens"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"x_lens": {0: "N"},
"encoder_out": {0: "N", 1: "T"},
"encoder_out_lens": {0: "N"},
},
)
logging.info(f"Saved to {encoder_filename}")
def export_decoder_model_onnx(
decoder_model: nn.Module,
decoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the decoder model to ONNX format.
The exported model has one input:
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
and has one output:
- decoder_out: a torch.float32 tensor of shape (N, 1, C)
Note: The argument need_pad is fixed to False.
Args:
decoder_model:
The decoder model to be exported.
decoder_filename:
Filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
need_pad = False # Always False, so we can use torch.jit.trace() here
# Note(fangjun): torch.jit.trace() is more efficient than torch.jit.script()
# in this case
torch.onnx.export(
decoder_model,
(y, need_pad),
decoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["y", "need_pad"],
output_names=["decoder_out"],
dynamic_axes={
"y": {0: "N"},
"decoder_out": {0: "N"},
},
)
logging.info(f"Saved to {decoder_filename}")
def export_joiner_model_onnx(
joiner_model: nn.Module,
joiner_filename: str,
opset_version: int = 11,
) -> None:
"""Export the joiner model to ONNX format.
The exported joiner model has two inputs:
- projected_encoder_out: a tensor of shape (N, joiner_dim)
- projected_decoder_out: a tensor of shape (N, joiner_dim)
and produces one output:
- logit: a tensor of shape (N, vocab_size)
The exported encoder_proj model has one input:
- encoder_out: a tensor of shape (N, encoder_out_dim)
and produces one output:
- projected_encoder_out: a tensor of shape (N, joiner_dim)
The exported decoder_proj model has one input:
- decoder_out: a tensor of shape (N, decoder_out_dim)
and produces one output:
- projected_decoder_out: a tensor of shape (N, joiner_dim)
"""
encoder_proj_filename = str(joiner_filename).replace(".onnx", "_encoder_proj.onnx")
decoder_proj_filename = str(joiner_filename).replace(".onnx", "_decoder_proj.onnx")
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
joiner_dim = joiner_model.decoder_proj.weight.shape[0]
projected_encoder_out = torch.rand(1, joiner_dim, dtype=torch.float32)
projected_decoder_out = torch.rand(1, joiner_dim, dtype=torch.float32)
project_input = False
# Note: It uses torch.jit.trace() internally
torch.onnx.export(
joiner_model,
(projected_encoder_out, projected_decoder_out, project_input),
joiner_filename,
verbose=False,
opset_version=opset_version,
input_names=[
"projected_encoder_out",
"projected_decoder_out",
"project_input",
],
output_names=["logit"],
dynamic_axes={
"projected_encoder_out": {0: "N"},
"projected_decoder_out": {0: "N"},
"logit": {0: "N"},
},
)
logging.info(f"Saved to {joiner_filename}")
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
torch.onnx.export(
joiner_model.encoder_proj,
encoder_out,
encoder_proj_filename,
verbose=False,
opset_version=opset_version,
input_names=["encoder_out"],
output_names=["projected_encoder_out"],
dynamic_axes={
"encoder_out": {0: "N"},
"projected_encoder_out": {0: "N"},
},
)
logging.info(f"Saved to {encoder_proj_filename}")
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
torch.onnx.export(
joiner_model.decoder_proj,
decoder_out,
decoder_proj_filename,
verbose=False,
opset_version=opset_version,
input_names=["decoder_out"],
output_names=["projected_decoder_out"],
dynamic_axes={
"decoder_out": {0: "N"},
"projected_decoder_out": {0: "N"},
},
)
logging.info(f"Saved to {decoder_proj_filename}")
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
@ -573,31 +340,7 @@ def main():
model.to("cpu")
model.eval()
if params.onnx is True:
convert_scaled_to_non_scaled(model, inplace=True)
opset_version = 11
logging.info("Exporting to onnx format")
encoder_filename = params.exp_dir / "encoder.onnx"
export_encoder_model_onnx(
model.encoder,
encoder_filename,
opset_version=opset_version,
)
decoder_filename = params.exp_dir / "decoder.onnx"
export_decoder_model_onnx(
model.decoder,
decoder_filename,
opset_version=opset_version,
)
joiner_filename = params.exp_dir / "joiner.onnx"
export_joiner_model_onnx(
model.joiner,
joiner_filename,
opset_version=opset_version,
)
elif params.jit:
if params.jit:
convert_scaled_to_non_scaled(model, inplace=True)
logging.info("Using torch.jit.script")
# We won't use the forward() method of the model in C++, so just ignore

View File

@ -1,390 +0,0 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads ONNX models and uses them to decode waves.
You can use the following command to get the exported models:
./pruned_transducer_stateless2/export.py \
--exp-dir ./pruned_transducer_stateless3/exp \
--lang-dir data/lang_char \
--epoch 20 \
--avg 10 \
--onnx 1
Usage of this script:
./pruned_transducer_stateless3/onnx_pretrained.py \
--encoder-model-filename ./pruned_transducer_stateless3/exp/encoder.onnx \
--decoder-model-filename ./pruned_transducer_stateless3/exp/decoder.onnx \
--joiner-model-filename ./pruned_transducer_stateless3/exp/joiner.onnx \
--joiner-encoder-proj-model-filename ./pruned_transducer_stateless3/exp/joiner_encoder_proj.onnx \
--joiner-decoder-proj-model-filename ./pruned_transducer_stateless3/exp/joiner_decoder_proj.onnx \
--tokens data/lang_char/tokens.txt \
/path/to/foo.wav \
/path/to/bar.wav
We provide pretrained models at:
https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2/tree/main/exp
"""
import argparse
import logging
import math
from typing import List
import k2
import kaldifeat
import numpy as np
from icefall import is_module_available
if not is_module_available("onnxruntime"):
raise ValueError("Please 'pip install onnxruntime' first.")
import onnxruntime as ort
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--encoder-model-filename",
type=str,
required=True,
help="Path to the encoder onnx model. ",
)
parser.add_argument(
"--decoder-model-filename",
type=str,
required=True,
help="Path to the decoder onnx model. ",
)
parser.add_argument(
"--joiner-model-filename",
type=str,
required=True,
help="Path to the joiner onnx model. ",
)
parser.add_argument(
"--joiner-encoder-proj-model-filename",
type=str,
required=True,
help="Path to the joiner encoder_proj onnx model. ",
)
parser.add_argument(
"--joiner-decoder-proj-model-filename",
type=str,
required=True,
help="Path to the joiner decoder_proj onnx model. ",
)
parser.add_argument(
"--tokens",
type=str,
help="""Path to tokens.txt""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="Context size of the decoder model",
)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
def greedy_search(
decoder: ort.InferenceSession,
joiner: ort.InferenceSession,
joiner_encoder_proj: ort.InferenceSession,
joiner_decoder_proj: ort.InferenceSession,
encoder_out: np.ndarray,
encoder_out_lens: np.ndarray,
context_size: int,
) -> List[List[int]]:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
Args:
decoder:
The decoder model.
joiner:
The joiner model.
joiner_encoder_proj:
The joiner encoder projection model.
joiner_decoder_proj:
The joiner decoder projection model.
encoder_out:
A 3-D tensor of shape (N, T, C)
encoder_out_lens:
A 1-D tensor of shape (N,).
context_size:
The context size of the decoder model.
Returns:
Return the decoded results for each utterance.
"""
encoder_out = torch.from_numpy(encoder_out)
encoder_out_lens = torch.from_numpy(encoder_out_lens)
assert encoder_out.ndim == 3
assert encoder_out.size(0) >= 1, encoder_out.size(0)
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
projected_encoder_out = joiner_encoder_proj.run(
[joiner_encoder_proj.get_outputs()[0].name],
{joiner_encoder_proj.get_inputs()[0].name: packed_encoder_out.data.numpy()},
)[0]
blank_id = 0 # hard-code to 0
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
hyps = [[blank_id] * context_size for _ in range(N)]
decoder_input_nodes = decoder.get_inputs()
decoder_output_nodes = decoder.get_outputs()
joiner_input_nodes = joiner.get_inputs()
joiner_output_nodes = joiner.get_outputs()
decoder_input = torch.tensor(
hyps,
dtype=torch.int64,
) # (N, context_size)
decoder_out = decoder.run(
[decoder_output_nodes[0].name],
{
decoder_input_nodes[0].name: decoder_input.numpy(),
},
)[0].squeeze(1)
projected_decoder_out = joiner_decoder_proj.run(
[joiner_decoder_proj.get_outputs()[0].name],
{joiner_decoder_proj.get_inputs()[0].name: decoder_out},
)[0]
projected_decoder_out = torch.from_numpy(projected_decoder_out)
offset = 0
for batch_size in batch_size_list:
start = offset
end = offset + batch_size
current_encoder_out = projected_encoder_out[start:end]
# current_encoder_out's shape: (batch_size, encoder_out_dim)
offset = end
projected_decoder_out = projected_decoder_out[:batch_size]
logits = joiner.run(
[joiner_output_nodes[0].name],
{
joiner_input_nodes[0].name: current_encoder_out,
joiner_input_nodes[1].name: projected_decoder_out.numpy(),
},
)[0]
logits = torch.from_numpy(logits).squeeze(1).squeeze(1)
# logits'shape (batch_size, vocab_size)
assert logits.ndim == 2, logits.shape
y = logits.argmax(dim=1).tolist()
emitted = False
for i, v in enumerate(y):
if v != blank_id:
hyps[i].append(v)
emitted = True
if emitted:
# update decoder output
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
decoder_input = torch.tensor(
decoder_input,
dtype=torch.int64,
)
decoder_out = decoder.run(
[decoder_output_nodes[0].name],
{
decoder_input_nodes[0].name: decoder_input.numpy(),
},
)[0].squeeze(1)
projected_decoder_out = joiner_decoder_proj.run(
[joiner_decoder_proj.get_outputs()[0].name],
{joiner_decoder_proj.get_inputs()[0].name: decoder_out},
)[0]
projected_decoder_out = torch.from_numpy(projected_decoder_out)
sorted_ans = [h[context_size:] for h in hyps]
ans = []
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
for i in range(N):
ans.append(sorted_ans[unsorted_indices[i]])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
encoder = ort.InferenceSession(
args.encoder_model_filename,
sess_options=session_opts,
)
decoder = ort.InferenceSession(
args.decoder_model_filename,
sess_options=session_opts,
)
joiner = ort.InferenceSession(
args.joiner_model_filename,
sess_options=session_opts,
)
joiner_encoder_proj = ort.InferenceSession(
args.joiner_encoder_proj_model_filename,
sess_options=session_opts,
)
joiner_decoder_proj = ort.InferenceSession(
args.joiner_decoder_proj_model_filename,
sess_options=session_opts,
)
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = "cpu"
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = args.sample_rate
opts.mel_opts.num_bins = 80
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {args.sound_files}")
waves = read_sound_files(
filenames=args.sound_files,
expected_sample_rate=args.sample_rate,
)
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(
features,
batch_first=True,
padding_value=math.log(1e-10),
)
feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64)
encoder_input_nodes = encoder.get_inputs()
encoder_out_nodes = encoder.get_outputs()
encoder_out, encoder_out_lens = encoder.run(
[encoder_out_nodes[0].name, encoder_out_nodes[1].name],
{
encoder_input_nodes[0].name: features.numpy(),
encoder_input_nodes[1].name: feature_lengths.numpy(),
},
)
hyps = greedy_search(
decoder=decoder,
joiner=joiner,
joiner_encoder_proj=joiner_encoder_proj,
joiner_decoder_proj=joiner_decoder_proj,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
context_size=args.context_size,
)
symbol_table = k2.SymbolTable.from_file(args.tokens)
s = "\n"
for filename, hyp in zip(args.sound_files, hyps):
words = "".join([symbol_table[i] for i in hyp])
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../pruned_transducer_stateless5/onnx_pretrained.py