test rknn on CPU

This commit is contained in:
Fangjun Kuang 2025-02-25 23:17:54 +08:00
parent 59431e0eb3
commit 1de33ee63a
4 changed files with 522 additions and 51 deletions

View File

@ -2,6 +2,8 @@
set -ex
python3 -m pip install kaldi-native-fbank soundfile librosa
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
@ -12,6 +14,7 @@ cd egs/librispeech/ASR
# https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed
# sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20
function export_bilingual_zh_en() {
d=exp_zh_en
@ -25,7 +28,10 @@ function export_bilingual_zh_en() {
curl -SL -O https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed/resolve/main/data/lang_char_bpe/bpe.model
curl -SL -O https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed/resolve/main/test_wavs/0.wav
curl -SL -O https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed/resolve/main/test_wavs/BAC009S0764W0164.wav
curl -SL -O https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed/resolve/main/test_wavs/1.wav
curl -SL -O https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed/resolve/main/test_wavs/2.wav
curl -SL -O https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed/resolve/main/test_wavs/3.wav
curl -SL -O https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed/resolve/main/test_wavs/4.wav
ls -lh
popd
@ -37,7 +43,7 @@ function export_bilingual_zh_en() {
--epoch 99 \
--avg 1 \
--exp-dir $d/ \
--decode-chunk-len 32 \
--decode-chunk-len 64 \
--num-encoder-layers "2,4,3,2,4" \
--feedforward-dims "1024,1024,1536,1536,1024" \
--nhead "8,8,8,8,8" \
@ -63,8 +69,7 @@ function export_bilingual_zh_en() {
--decoder-model-filename $d/decoder-epoch-99-avg-1.onnx \
--joiner-model-filename $d/joiner-epoch-99-avg-1.onnx \
--tokens $d/tokens.txt \
$d/BAC009S0764W0164.wav
$d/1.wav
mkdir -p /icefall/rknn-models
@ -78,9 +83,19 @@ function export_bilingual_zh_en() {
--out-encoder $platform/encoder.rknn \
--out-decoder $platform/decoder.rknn \
--out-joiner $platform/joiner.rknn \
--target-platform $platform
--target-platform $platform 2>/dev/null
ls -lh $platform/
./pruned_transducer_stateless7_streaming/test_rknn_on_cpu_simulator.py \
--encoder $d/encoder-epoch-99-avg-1.onnx \
--decoder $d/decoder-epoch-99-avg-1.onnx \
--joiner $d/joiner-epoch-99-avg-1.onnx \
--tokens $d/tokens.txt \
--wav $d/0.wav
cp $d/tokens.txt $platform
cp $d/*.wav $platform
cp -av $platform /icefall/rknn-models
done

View File

@ -90,27 +90,70 @@ jobs:
run: |
ls -lh rknn-models/*
- uses: actions/upload-artifact@v4
with:
name: rk3562
path: ./rknn-models/rk3562/*
- name: Collect results
shell: bash
run: |
for platform in rk3562 rk3566 rk3568 rk3576 rk3588; do
dst=sherpa-onnx-$platform-streaming-zipformer-bilingual-zh-en-2023-02-20
mkdir $dst
mkdir $dst/test_wavs
src=rknn-models/$platform
- uses: actions/upload-artifact@v4
with:
name: rk3566
path: ./rknn-models/rk3566/*
cp -v $src/*.rknn $dst/
cp -v $src/tokens.txt $dst/
cp -v $src/*.wav $dst/test_wavs/
ls -lh $dst
tar cjfv $dst.tar.bz2 $dst
rm -rf $dst
done
- uses: actions/upload-artifact@v4
with:
name: rk3568
path: ./rknn-models/rk3568/*
- name: Display results
shell: bash
run: |
ls -lh *rk*.tar.bz2
- uses: actions/upload-artifact@v4
- name: Release to GitHub
uses: svenstaro/upload-release-action@v2
with:
name: rk3576
path: ./rknn-models/rk3576/*
file_glob: true
overwrite: true
file: sherpa-onnx-*.tar.bz2
repo_name: k2-fsa/sherpa-onnx
repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
tag: asr-models
- uses: actions/upload-artifact@v4
- name: Upload model to huggingface
if: github.event_name == 'push'
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
uses: nick-fields/retry@v3
with:
name: rk3588
path: ./rknn-models/rk3588/*
max_attempts: 20
timeout_seconds: 200
shell: bash
command: |
git config --global user.email "csukuangfj@gmail.com"
git config --global user.name "Fangjun Kuang"
rm -rf huggingface
export GIT_LFS_SKIP_SMUDGE=1
git clone https://huggingface.co/csukuangfj/sherpa-onnx-rknn-models huggingface
cd huggingface
git fetch
git pull
git merge -m "merge remote" --ff origin main
dst=streaming-asr
mkdir -p $dst
rm -fv $dst/*
cp ../*rk*.tar.bz2 $dst/
ls -lh $dst
git add .
git status
git commit -m "update models"
git status
git push https://csukuangfj:$HF_TOKEN@huggingface.co/csukuangfj/sherpa-onnx-rknn-models main || true
rm -rf huggingface

View File

@ -2,11 +2,14 @@
# Copyright (c) 2025 Xiaomi Corporation (authors: Fangjun Kuang)
import argparse
import logging
from pathlib import Path
from typing import List
from rknn.api import RKNN
logging.basicConfig(level=logging.WARNING)
g_platforms = [
# "rv1103",
# "rv1103b",
@ -20,33 +23,6 @@ g_platforms = [
]
def export_rknn(rknn, filename):
ret = rknn.export_rknn(filename)
if ret != 0:
exit("Export rknn model to {filename} failed!")
def init_model(filename: str, target_platform: str, custom_string=None):
rknn = RKNN(verbose=False)
rknn.config(target_platform=target_platform, custom_string=custom_string)
if not Path(filename).is_file():
exit(f"{filename} does not exist")
ret = rknn.load_onnx(model=filename)
if ret != 0:
exit(f"Load model {filename} failed!")
ret = rknn.build(do_quantization=False)
if ret != 0:
exit("Build model {filename} failed!")
ret = rknn.init_runtime()
if ret != 0:
exit(f"Failed to init rknn runtime for {filename}")
return rknn
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
@ -104,6 +80,30 @@ def get_parser():
return parser
def export_rknn(rknn, filename):
ret = rknn.export_rknn(filename)
if ret != 0:
exit("Export rknn model to {filename} failed!")
def init_model(filename: str, target_platform: str, custom_string=None):
rknn = RKNN(verbose=False)
rknn.config(target_platform=target_platform, custom_string=custom_string)
if not Path(filename).is_file():
exit(f"{filename} does not exist")
ret = rknn.load_onnx(model=filename)
if ret != 0:
exit(f"Load model {filename} failed!")
ret = rknn.build(do_quantization=False)
if ret != 0:
exit("Build model {filename} failed!")
return rknn
class MetaData:
def __init__(
self,
@ -193,7 +193,7 @@ def get_meta_data(encoder: str, decoder: str):
decode_chunk_len = int(encoder_meta["decode_chunk_len"])
cnn_module_kernels = to_int_list(encoder_meta["cnn_module_kernels"])
num_encoder_layers = to_int_list(encoder_meta["num_encoder_layers"])
context_size = to_int_list(decoder_meta["context_size"])
context_size = int(decoder_meta["context_size"])
return MetaData(
model_type=model_type,

View File

@ -0,0 +1,413 @@
#!/usr/bin/env python3
# Copyright (c) 2025 Xiaomi Corporation (authors: Fangjun Kuang)
import argparse
from pathlib import Path
from typing import List, Tuple
import kaldi_native_fbank as knf
import numpy as np
import soundfile as sf
from rknn.api import RKNN
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--encoder",
type=str,
required=True,
help="Path to the encoder onnx model",
)
parser.add_argument(
"--decoder",
type=str,
required=True,
help="Path to the decoder onnx model",
)
parser.add_argument(
"--joiner",
type=str,
required=True,
help="Path to the joiner onnx model",
)
parser.add_argument(
"--tokens",
type=str,
required=True,
help="Path to the tokens.txt",
)
parser.add_argument(
"--wav",
type=str,
required=True,
help="Path to test wave",
)
return parser
def load_audio(filename: str) -> Tuple[np.ndarray, int]:
data, sample_rate = sf.read(
filename,
always_2d=True,
dtype="float32",
)
data = data[:, 0] # use only the first channel
samples = np.ascontiguousarray(data)
return samples, sample_rate
def compute_features(filename: str, dim: int = 80) -> np.ndarray:
"""
Args:
filename:
Path to an audio file.
Returns:
Return a 1-D float32 tensor of shape (1, 80, 3000) containing the features.
"""
wave, sample_rate = load_audio(filename)
if sample_rate != 16000:
import librosa
wave = librosa.resample(wave, orig_sr=sample_rate, target_sr=16000)
sample_rate = 16000
features = []
opts = knf.FbankOptions()
opts.frame_opts.dither = 0
opts.mel_opts.num_bins = dim
opts.frame_opts.snip_edges = False
fbank = knf.OnlineFbank(opts)
fbank.accept_waveform(16000, wave)
tail_paddings = np.zeros(int(0.5 * 16000), dtype=np.float32)
fbank.accept_waveform(16000, tail_paddings)
fbank.input_finished()
for i in range(fbank.num_frames_ready):
f = fbank.get_frame(i)
features.append(f)
features = np.stack(features, axis=0)
return features
def load_tokens(filename):
tokens = dict()
with open(filename, "r") as f:
for line in f:
t, i = line.split()
tokens[int(i)] = t
return tokens
def init_model(filename, target_platform="rk3588", custom_string=None):
rknn = RKNN(verbose=False)
rknn.config(target_platform=target_platform, custom_string=custom_string)
if not Path(filename).is_file():
exit(f"{filename} does not exist")
ret = rknn.load_onnx(model=filename)
if ret != 0:
exit(f"Load model {filename} failed!")
ret = rknn.build(do_quantization=False)
if ret != 0:
exit("Build model {filename} failed!")
ret = rknn.init_runtime()
if ret != 0:
exit(f"Failed to init rknn runtime for {filename}")
return rknn
class MetaData:
def __init__(
self,
model_type: str,
attention_dims: List[int],
encoder_dims: List[int],
T: int,
left_context_len: List[int],
decode_chunk_len: int,
cnn_module_kernels: List[int],
num_encoder_layers: List[int],
):
self.model_type = model_type
self.attention_dims = attention_dims
self.encoder_dims = encoder_dims
self.T = T
self.left_context_len = left_context_len
self.decode_chunk_len = decode_chunk_len
self.cnn_module_kernels = cnn_module_kernels
self.num_encoder_layers = num_encoder_layers
def __str__(self) -> str:
return self.to_str()
def to_str(self) -> str:
def to_s(ll):
return ",".join(list(map(str, ll)))
s = f"model_type={self.model_type}"
s += ";attention_dims=" + to_s(self.attention_dims)
s += ";encoder_dims=" + to_s(self.encoder_dims)
s += ";T=" + str(self.T)
s += ";left_context_len=" + to_s(self.left_context_len)
s += ";decode_chunk_len=" + str(self.decode_chunk_len)
s += ";cnn_module_kernels=" + to_s(self.cnn_module_kernels)
s += ";num_encoder_layers=" + to_s(self.num_encoder_layers)
assert len(s) < 1024, (s, len(s))
return s
def get_meta_data(encoder: str):
import onnxruntime
session_opts = onnxruntime.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
m = onnxruntime.InferenceSession(
encoder,
sess_options=session_opts,
providers=["CPUExecutionProvider"],
)
meta = m.get_modelmeta().custom_metadata_map
print(meta)
# {'attention_dims': '192,192,192,192,192', 'version': '1',
# 'model_type': 'zipformer', 'encoder_dims': '256,256,256,256,256',
# 'model_author': 'k2-fsa', 'T': '103',
# 'left_context_len': '192,96,48,24,96',
# 'decode_chunk_len': '96',
# 'cnn_module_kernels': '31,31,31,31,31',
# 'num_encoder_layers': '2,2,2,2,2'}
def to_int_list(s):
return list(map(int, s.split(",")))
model_type = meta["model_type"]
attention_dims = to_int_list(meta["attention_dims"])
encoder_dims = to_int_list(meta["encoder_dims"])
T = int(meta["T"])
left_context_len = to_int_list(meta["left_context_len"])
decode_chunk_len = int(meta["decode_chunk_len"])
cnn_module_kernels = to_int_list(meta["cnn_module_kernels"])
num_encoder_layers = to_int_list(meta["num_encoder_layers"])
return MetaData(
model_type=model_type,
attention_dims=attention_dims,
encoder_dims=encoder_dims,
T=T,
left_context_len=left_context_len,
decode_chunk_len=decode_chunk_len,
cnn_module_kernels=cnn_module_kernels,
num_encoder_layers=num_encoder_layers,
)
class RKNNModel:
def __init__(
self, encoder: str, decoder: str, joiner: str, target_platform="rk3588"
):
self.meta = get_meta_data(encoder)
self.encoder = init_model(encoder, custom_string=self.meta.to_str())
self.decoder = init_model(decoder)
self.joiner = init_model(joiner)
def release(self):
self.encoder.release()
self.decoder.release()
self.joiner.release()
def get_init_states(
self,
) -> List[np.ndarray]:
cached_len = []
cached_avg = []
cached_key = []
cached_val = []
cached_val2 = []
cached_conv1 = []
cached_conv2 = []
num_encoder_layers = self.meta.num_encoder_layers
encoder_dims = self.meta.encoder_dims
left_context_len = self.meta.left_context_len
attention_dims = self.meta.attention_dims
cnn_module_kernels = self.meta.cnn_module_kernels
num_encoders = len(num_encoder_layers)
N = 1
for i in range(num_encoders):
cached_len.append(np.zeros((num_encoder_layers[i], N), dtype=np.int64))
cached_avg.append(
np.zeros((num_encoder_layers[i], N, encoder_dims[i]), dtype=np.float32)
)
cached_key.append(
np.zeros(
(num_encoder_layers[i], left_context_len[i], N, attention_dims[i]),
dtype=np.float32,
)
)
cached_val.append(
np.zeros(
(
num_encoder_layers[i],
left_context_len[i],
N,
attention_dims[i] // 2,
),
dtype=np.float32,
)
)
cached_val2.append(
np.zeros(
(
num_encoder_layers[i],
left_context_len[i],
N,
attention_dims[i] // 2,
),
dtype=np.float32,
)
)
cached_conv1.append(
np.zeros(
(
num_encoder_layers[i],
N,
encoder_dims[i],
cnn_module_kernels[i] - 1,
),
dtype=np.float32,
)
)
cached_conv2.append(
np.zeros(
(
num_encoder_layers[i],
N,
encoder_dims[i],
cnn_module_kernels[i] - 1,
),
dtype=np.float32,
)
)
ans = (
cached_len
+ cached_avg
+ cached_key
+ cached_val
+ cached_val2
+ cached_conv1
+ cached_conv2
)
# for i, s in enumerate(ans):
# if s.ndim == 4:
# ans[i] = np.transpose(s, (0, 2, 3, 1))
return ans
def run_encoder(self, x: np.ndarray, states: List[np.ndarray]):
"""
Args:
x: (T, C), np.float32
states: A list of states
"""
x = np.expand_dims(x, axis=0)
out = self.encoder.inference(inputs=[x] + states, data_format="nchw")
# out[0], encoder_out, shape (1, 24, 512)
return out[0], out[1:]
def run_decoder(self, x: np.ndarray):
"""
Args:
x: (1, context_size), np.int64
Returns:
Return decoder_out, (1, C), np.float32
"""
return self.decoder.inference(inputs=[x])[0]
def run_joiner(self, encoder_out: np.ndarray, decoder_out: np.ndarray):
"""
Args:
encoder_out: (1, encoder_out_dim), np.float32
decoder_out: (1, decoder_out_dim), np.float32
Returns:
joiner_out: (1, vocab_size), np.float32
"""
return self.joiner.inference(inputs=[encoder_out, decoder_out])[0]
def main():
args = get_parser().parse_args()
print(vars(args))
id2token = load_tokens(args.tokens)
features = compute_features(args.wav)
model = RKNNModel(
encoder=args.encoder,
decoder=args.decoder,
joiner=args.joiner,
)
print(model.meta)
states = model.get_init_states()
segment = model.meta.T
offset = model.meta.decode_chunk_len
context_size = 2
hyp = [0] * context_size
decoder_input = np.array([hyp], dtype=np.int64)
decoder_out = model.run_decoder(decoder_input)
i = 0
while True:
if i + segment > features.shape[0]:
break
x = features[i : i + segment]
i += offset
encoder_out, states = model.run_encoder(x, states)
encoder_out = encoder_out.squeeze(0) # (1, T, C) -> (T, C)
num_frames = encoder_out.shape[0]
for k in range(num_frames):
joiner_out = model.run_joiner(encoder_out[k : k + 1], decoder_out)
joiner_out = joiner_out.squeeze(0)
max_token_id = joiner_out.argmax()
# assume 0 is the blank id
if max_token_id != 0:
hyp.append(max_token_id)
decoder_input = np.array([hyp[-context_size:]], dtype=np.int64)
decoder_out = model.run_decoder(decoder_input)
print(hyp)
final_hyp = hyp[context_size:]
print(final_hyp)
text = "".join([id2token[i] for i in final_hyp])
text = text.replace("", " ")
print(text)
if __name__ == "__main__":
main()