mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
test rknn on CPU
This commit is contained in:
parent
59431e0eb3
commit
1de33ee63a
25
.github/scripts/librispeech/ASR/run_rknn.sh
vendored
25
.github/scripts/librispeech/ASR/run_rknn.sh
vendored
@ -2,6 +2,8 @@
|
||||
|
||||
set -ex
|
||||
|
||||
python3 -m pip install kaldi-native-fbank soundfile librosa
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
@ -12,6 +14,7 @@ cd egs/librispeech/ASR
|
||||
|
||||
|
||||
# https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed
|
||||
# sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20
|
||||
function export_bilingual_zh_en() {
|
||||
d=exp_zh_en
|
||||
|
||||
@ -25,7 +28,10 @@ function export_bilingual_zh_en() {
|
||||
curl -SL -O https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed/resolve/main/data/lang_char_bpe/bpe.model
|
||||
|
||||
curl -SL -O https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed/resolve/main/test_wavs/0.wav
|
||||
curl -SL -O https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed/resolve/main/test_wavs/BAC009S0764W0164.wav
|
||||
curl -SL -O https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed/resolve/main/test_wavs/1.wav
|
||||
curl -SL -O https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed/resolve/main/test_wavs/2.wav
|
||||
curl -SL -O https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed/resolve/main/test_wavs/3.wav
|
||||
curl -SL -O https://huggingface.co/csukuangfj/k2fsa-zipformer-chinese-english-mixed/resolve/main/test_wavs/4.wav
|
||||
ls -lh
|
||||
popd
|
||||
|
||||
@ -37,7 +43,7 @@ function export_bilingual_zh_en() {
|
||||
--epoch 99 \
|
||||
--avg 1 \
|
||||
--exp-dir $d/ \
|
||||
--decode-chunk-len 32 \
|
||||
--decode-chunk-len 64 \
|
||||
--num-encoder-layers "2,4,3,2,4" \
|
||||
--feedforward-dims "1024,1024,1536,1536,1024" \
|
||||
--nhead "8,8,8,8,8" \
|
||||
@ -63,8 +69,7 @@ function export_bilingual_zh_en() {
|
||||
--decoder-model-filename $d/decoder-epoch-99-avg-1.onnx \
|
||||
--joiner-model-filename $d/joiner-epoch-99-avg-1.onnx \
|
||||
--tokens $d/tokens.txt \
|
||||
$d/BAC009S0764W0164.wav
|
||||
|
||||
$d/1.wav
|
||||
|
||||
mkdir -p /icefall/rknn-models
|
||||
|
||||
@ -78,9 +83,19 @@ function export_bilingual_zh_en() {
|
||||
--out-encoder $platform/encoder.rknn \
|
||||
--out-decoder $platform/decoder.rknn \
|
||||
--out-joiner $platform/joiner.rknn \
|
||||
--target-platform $platform
|
||||
--target-platform $platform 2>/dev/null
|
||||
|
||||
ls -lh $platform/
|
||||
|
||||
./pruned_transducer_stateless7_streaming/test_rknn_on_cpu_simulator.py \
|
||||
--encoder $d/encoder-epoch-99-avg-1.onnx \
|
||||
--decoder $d/decoder-epoch-99-avg-1.onnx \
|
||||
--joiner $d/joiner-epoch-99-avg-1.onnx \
|
||||
--tokens $d/tokens.txt \
|
||||
--wav $d/0.wav
|
||||
|
||||
cp $d/tokens.txt $platform
|
||||
cp $d/*.wav $platform
|
||||
|
||||
cp -av $platform /icefall/rknn-models
|
||||
done
|
||||
|
79
.github/workflows/rknn.yml
vendored
79
.github/workflows/rknn.yml
vendored
@ -90,27 +90,70 @@ jobs:
|
||||
run: |
|
||||
ls -lh rknn-models/*
|
||||
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: rk3562
|
||||
path: ./rknn-models/rk3562/*
|
||||
- name: Collect results
|
||||
shell: bash
|
||||
run: |
|
||||
for platform in rk3562 rk3566 rk3568 rk3576 rk3588; do
|
||||
dst=sherpa-onnx-$platform-streaming-zipformer-bilingual-zh-en-2023-02-20
|
||||
mkdir $dst
|
||||
mkdir $dst/test_wavs
|
||||
src=rknn-models/$platform
|
||||
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: rk3566
|
||||
path: ./rknn-models/rk3566/*
|
||||
cp -v $src/*.rknn $dst/
|
||||
cp -v $src/tokens.txt $dst/
|
||||
cp -v $src/*.wav $dst/test_wavs/
|
||||
ls -lh $dst
|
||||
tar cjfv $dst.tar.bz2 $dst
|
||||
rm -rf $dst
|
||||
done
|
||||
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: rk3568
|
||||
path: ./rknn-models/rk3568/*
|
||||
- name: Display results
|
||||
shell: bash
|
||||
run: |
|
||||
ls -lh *rk*.tar.bz2
|
||||
|
||||
- uses: actions/upload-artifact@v4
|
||||
- name: Release to GitHub
|
||||
uses: svenstaro/upload-release-action@v2
|
||||
with:
|
||||
name: rk3576
|
||||
path: ./rknn-models/rk3576/*
|
||||
file_glob: true
|
||||
overwrite: true
|
||||
file: sherpa-onnx-*.tar.bz2
|
||||
repo_name: k2-fsa/sherpa-onnx
|
||||
repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
|
||||
tag: asr-models
|
||||
|
||||
- uses: actions/upload-artifact@v4
|
||||
- name: Upload model to huggingface
|
||||
if: github.event_name == 'push'
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||
uses: nick-fields/retry@v3
|
||||
with:
|
||||
name: rk3588
|
||||
path: ./rknn-models/rk3588/*
|
||||
max_attempts: 20
|
||||
timeout_seconds: 200
|
||||
shell: bash
|
||||
command: |
|
||||
git config --global user.email "csukuangfj@gmail.com"
|
||||
git config --global user.name "Fangjun Kuang"
|
||||
|
||||
rm -rf huggingface
|
||||
export GIT_LFS_SKIP_SMUDGE=1
|
||||
|
||||
git clone https://huggingface.co/csukuangfj/sherpa-onnx-rknn-models huggingface
|
||||
cd huggingface
|
||||
|
||||
git fetch
|
||||
git pull
|
||||
git merge -m "merge remote" --ff origin main
|
||||
dst=streaming-asr
|
||||
mkdir -p $dst
|
||||
rm -fv $dst/*
|
||||
cp ../*rk*.tar.bz2 $dst/
|
||||
|
||||
ls -lh $dst
|
||||
git add .
|
||||
git status
|
||||
git commit -m "update models"
|
||||
git status
|
||||
|
||||
git push https://csukuangfj:$HF_TOKEN@huggingface.co/csukuangfj/sherpa-onnx-rknn-models main || true
|
||||
rm -rf huggingface
|
||||
|
@ -2,11 +2,14 @@
|
||||
# Copyright (c) 2025 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
from rknn.api import RKNN
|
||||
|
||||
logging.basicConfig(level=logging.WARNING)
|
||||
|
||||
g_platforms = [
|
||||
# "rv1103",
|
||||
# "rv1103b",
|
||||
@ -20,33 +23,6 @@ g_platforms = [
|
||||
]
|
||||
|
||||
|
||||
def export_rknn(rknn, filename):
|
||||
ret = rknn.export_rknn(filename)
|
||||
if ret != 0:
|
||||
exit("Export rknn model to {filename} failed!")
|
||||
|
||||
|
||||
def init_model(filename: str, target_platform: str, custom_string=None):
|
||||
rknn = RKNN(verbose=False)
|
||||
|
||||
rknn.config(target_platform=target_platform, custom_string=custom_string)
|
||||
if not Path(filename).is_file():
|
||||
exit(f"{filename} does not exist")
|
||||
|
||||
ret = rknn.load_onnx(model=filename)
|
||||
if ret != 0:
|
||||
exit(f"Load model {filename} failed!")
|
||||
|
||||
ret = rknn.build(do_quantization=False)
|
||||
if ret != 0:
|
||||
exit("Build model {filename} failed!")
|
||||
|
||||
ret = rknn.init_runtime()
|
||||
if ret != 0:
|
||||
exit(f"Failed to init rknn runtime for {filename}")
|
||||
return rknn
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
@ -104,6 +80,30 @@ def get_parser():
|
||||
return parser
|
||||
|
||||
|
||||
def export_rknn(rknn, filename):
|
||||
ret = rknn.export_rknn(filename)
|
||||
if ret != 0:
|
||||
exit("Export rknn model to {filename} failed!")
|
||||
|
||||
|
||||
def init_model(filename: str, target_platform: str, custom_string=None):
|
||||
rknn = RKNN(verbose=False)
|
||||
|
||||
rknn.config(target_platform=target_platform, custom_string=custom_string)
|
||||
if not Path(filename).is_file():
|
||||
exit(f"{filename} does not exist")
|
||||
|
||||
ret = rknn.load_onnx(model=filename)
|
||||
if ret != 0:
|
||||
exit(f"Load model {filename} failed!")
|
||||
|
||||
ret = rknn.build(do_quantization=False)
|
||||
if ret != 0:
|
||||
exit("Build model {filename} failed!")
|
||||
|
||||
return rknn
|
||||
|
||||
|
||||
class MetaData:
|
||||
def __init__(
|
||||
self,
|
||||
@ -193,7 +193,7 @@ def get_meta_data(encoder: str, decoder: str):
|
||||
decode_chunk_len = int(encoder_meta["decode_chunk_len"])
|
||||
cnn_module_kernels = to_int_list(encoder_meta["cnn_module_kernels"])
|
||||
num_encoder_layers = to_int_list(encoder_meta["num_encoder_layers"])
|
||||
context_size = to_int_list(decoder_meta["context_size"])
|
||||
context_size = int(decoder_meta["context_size"])
|
||||
|
||||
return MetaData(
|
||||
model_type=model_type,
|
||||
|
@ -0,0 +1,413 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2025 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
|
||||
import kaldi_native_fbank as knf
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
from rknn.api import RKNN
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--encoder",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the encoder onnx model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoder",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the decoder onnx model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--joiner",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the joiner onnx model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the tokens.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--wav",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to test wave",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def load_audio(filename: str) -> Tuple[np.ndarray, int]:
|
||||
data, sample_rate = sf.read(
|
||||
filename,
|
||||
always_2d=True,
|
||||
dtype="float32",
|
||||
)
|
||||
data = data[:, 0] # use only the first channel
|
||||
|
||||
samples = np.ascontiguousarray(data)
|
||||
return samples, sample_rate
|
||||
|
||||
|
||||
def compute_features(filename: str, dim: int = 80) -> np.ndarray:
|
||||
"""
|
||||
Args:
|
||||
filename:
|
||||
Path to an audio file.
|
||||
Returns:
|
||||
Return a 1-D float32 tensor of shape (1, 80, 3000) containing the features.
|
||||
"""
|
||||
wave, sample_rate = load_audio(filename)
|
||||
if sample_rate != 16000:
|
||||
import librosa
|
||||
|
||||
wave = librosa.resample(wave, orig_sr=sample_rate, target_sr=16000)
|
||||
sample_rate = 16000
|
||||
|
||||
features = []
|
||||
opts = knf.FbankOptions()
|
||||
opts.frame_opts.dither = 0
|
||||
opts.mel_opts.num_bins = dim
|
||||
opts.frame_opts.snip_edges = False
|
||||
fbank = knf.OnlineFbank(opts)
|
||||
|
||||
fbank.accept_waveform(16000, wave)
|
||||
tail_paddings = np.zeros(int(0.5 * 16000), dtype=np.float32)
|
||||
fbank.accept_waveform(16000, tail_paddings)
|
||||
fbank.input_finished()
|
||||
for i in range(fbank.num_frames_ready):
|
||||
f = fbank.get_frame(i)
|
||||
features.append(f)
|
||||
|
||||
features = np.stack(features, axis=0)
|
||||
|
||||
return features
|
||||
|
||||
|
||||
def load_tokens(filename):
|
||||
tokens = dict()
|
||||
with open(filename, "r") as f:
|
||||
for line in f:
|
||||
t, i = line.split()
|
||||
tokens[int(i)] = t
|
||||
return tokens
|
||||
|
||||
|
||||
def init_model(filename, target_platform="rk3588", custom_string=None):
|
||||
rknn = RKNN(verbose=False)
|
||||
|
||||
rknn.config(target_platform=target_platform, custom_string=custom_string)
|
||||
if not Path(filename).is_file():
|
||||
exit(f"{filename} does not exist")
|
||||
|
||||
ret = rknn.load_onnx(model=filename)
|
||||
if ret != 0:
|
||||
exit(f"Load model {filename} failed!")
|
||||
|
||||
ret = rknn.build(do_quantization=False)
|
||||
if ret != 0:
|
||||
exit("Build model {filename} failed!")
|
||||
|
||||
ret = rknn.init_runtime()
|
||||
if ret != 0:
|
||||
exit(f"Failed to init rknn runtime for {filename}")
|
||||
return rknn
|
||||
|
||||
|
||||
class MetaData:
|
||||
def __init__(
|
||||
self,
|
||||
model_type: str,
|
||||
attention_dims: List[int],
|
||||
encoder_dims: List[int],
|
||||
T: int,
|
||||
left_context_len: List[int],
|
||||
decode_chunk_len: int,
|
||||
cnn_module_kernels: List[int],
|
||||
num_encoder_layers: List[int],
|
||||
):
|
||||
self.model_type = model_type
|
||||
self.attention_dims = attention_dims
|
||||
self.encoder_dims = encoder_dims
|
||||
self.T = T
|
||||
self.left_context_len = left_context_len
|
||||
self.decode_chunk_len = decode_chunk_len
|
||||
self.cnn_module_kernels = cnn_module_kernels
|
||||
self.num_encoder_layers = num_encoder_layers
|
||||
|
||||
def __str__(self) -> str:
|
||||
return self.to_str()
|
||||
|
||||
def to_str(self) -> str:
|
||||
def to_s(ll):
|
||||
return ",".join(list(map(str, ll)))
|
||||
|
||||
s = f"model_type={self.model_type}"
|
||||
s += ";attention_dims=" + to_s(self.attention_dims)
|
||||
s += ";encoder_dims=" + to_s(self.encoder_dims)
|
||||
s += ";T=" + str(self.T)
|
||||
s += ";left_context_len=" + to_s(self.left_context_len)
|
||||
s += ";decode_chunk_len=" + str(self.decode_chunk_len)
|
||||
s += ";cnn_module_kernels=" + to_s(self.cnn_module_kernels)
|
||||
s += ";num_encoder_layers=" + to_s(self.num_encoder_layers)
|
||||
|
||||
assert len(s) < 1024, (s, len(s))
|
||||
|
||||
return s
|
||||
|
||||
|
||||
def get_meta_data(encoder: str):
|
||||
import onnxruntime
|
||||
|
||||
session_opts = onnxruntime.SessionOptions()
|
||||
session_opts.inter_op_num_threads = 1
|
||||
session_opts.intra_op_num_threads = 1
|
||||
|
||||
m = onnxruntime.InferenceSession(
|
||||
encoder,
|
||||
sess_options=session_opts,
|
||||
providers=["CPUExecutionProvider"],
|
||||
)
|
||||
|
||||
meta = m.get_modelmeta().custom_metadata_map
|
||||
print(meta)
|
||||
# {'attention_dims': '192,192,192,192,192', 'version': '1',
|
||||
# 'model_type': 'zipformer', 'encoder_dims': '256,256,256,256,256',
|
||||
# 'model_author': 'k2-fsa', 'T': '103',
|
||||
# 'left_context_len': '192,96,48,24,96',
|
||||
# 'decode_chunk_len': '96',
|
||||
# 'cnn_module_kernels': '31,31,31,31,31',
|
||||
# 'num_encoder_layers': '2,2,2,2,2'}
|
||||
|
||||
def to_int_list(s):
|
||||
return list(map(int, s.split(",")))
|
||||
|
||||
model_type = meta["model_type"]
|
||||
attention_dims = to_int_list(meta["attention_dims"])
|
||||
encoder_dims = to_int_list(meta["encoder_dims"])
|
||||
T = int(meta["T"])
|
||||
left_context_len = to_int_list(meta["left_context_len"])
|
||||
decode_chunk_len = int(meta["decode_chunk_len"])
|
||||
cnn_module_kernels = to_int_list(meta["cnn_module_kernels"])
|
||||
num_encoder_layers = to_int_list(meta["num_encoder_layers"])
|
||||
|
||||
return MetaData(
|
||||
model_type=model_type,
|
||||
attention_dims=attention_dims,
|
||||
encoder_dims=encoder_dims,
|
||||
T=T,
|
||||
left_context_len=left_context_len,
|
||||
decode_chunk_len=decode_chunk_len,
|
||||
cnn_module_kernels=cnn_module_kernels,
|
||||
num_encoder_layers=num_encoder_layers,
|
||||
)
|
||||
|
||||
|
||||
class RKNNModel:
|
||||
def __init__(
|
||||
self, encoder: str, decoder: str, joiner: str, target_platform="rk3588"
|
||||
):
|
||||
self.meta = get_meta_data(encoder)
|
||||
self.encoder = init_model(encoder, custom_string=self.meta.to_str())
|
||||
self.decoder = init_model(decoder)
|
||||
self.joiner = init_model(joiner)
|
||||
|
||||
def release(self):
|
||||
self.encoder.release()
|
||||
self.decoder.release()
|
||||
self.joiner.release()
|
||||
|
||||
def get_init_states(
|
||||
self,
|
||||
) -> List[np.ndarray]:
|
||||
|
||||
cached_len = []
|
||||
cached_avg = []
|
||||
cached_key = []
|
||||
cached_val = []
|
||||
cached_val2 = []
|
||||
cached_conv1 = []
|
||||
cached_conv2 = []
|
||||
|
||||
num_encoder_layers = self.meta.num_encoder_layers
|
||||
encoder_dims = self.meta.encoder_dims
|
||||
left_context_len = self.meta.left_context_len
|
||||
attention_dims = self.meta.attention_dims
|
||||
cnn_module_kernels = self.meta.cnn_module_kernels
|
||||
|
||||
num_encoders = len(num_encoder_layers)
|
||||
N = 1
|
||||
|
||||
for i in range(num_encoders):
|
||||
cached_len.append(np.zeros((num_encoder_layers[i], N), dtype=np.int64))
|
||||
cached_avg.append(
|
||||
np.zeros((num_encoder_layers[i], N, encoder_dims[i]), dtype=np.float32)
|
||||
)
|
||||
cached_key.append(
|
||||
np.zeros(
|
||||
(num_encoder_layers[i], left_context_len[i], N, attention_dims[i]),
|
||||
dtype=np.float32,
|
||||
)
|
||||
)
|
||||
|
||||
cached_val.append(
|
||||
np.zeros(
|
||||
(
|
||||
num_encoder_layers[i],
|
||||
left_context_len[i],
|
||||
N,
|
||||
attention_dims[i] // 2,
|
||||
),
|
||||
dtype=np.float32,
|
||||
)
|
||||
)
|
||||
cached_val2.append(
|
||||
np.zeros(
|
||||
(
|
||||
num_encoder_layers[i],
|
||||
left_context_len[i],
|
||||
N,
|
||||
attention_dims[i] // 2,
|
||||
),
|
||||
dtype=np.float32,
|
||||
)
|
||||
)
|
||||
cached_conv1.append(
|
||||
np.zeros(
|
||||
(
|
||||
num_encoder_layers[i],
|
||||
N,
|
||||
encoder_dims[i],
|
||||
cnn_module_kernels[i] - 1,
|
||||
),
|
||||
dtype=np.float32,
|
||||
)
|
||||
)
|
||||
cached_conv2.append(
|
||||
np.zeros(
|
||||
(
|
||||
num_encoder_layers[i],
|
||||
N,
|
||||
encoder_dims[i],
|
||||
cnn_module_kernels[i] - 1,
|
||||
),
|
||||
dtype=np.float32,
|
||||
)
|
||||
)
|
||||
|
||||
ans = (
|
||||
cached_len
|
||||
+ cached_avg
|
||||
+ cached_key
|
||||
+ cached_val
|
||||
+ cached_val2
|
||||
+ cached_conv1
|
||||
+ cached_conv2
|
||||
)
|
||||
# for i, s in enumerate(ans):
|
||||
# if s.ndim == 4:
|
||||
# ans[i] = np.transpose(s, (0, 2, 3, 1))
|
||||
return ans
|
||||
|
||||
def run_encoder(self, x: np.ndarray, states: List[np.ndarray]):
|
||||
"""
|
||||
Args:
|
||||
x: (T, C), np.float32
|
||||
states: A list of states
|
||||
"""
|
||||
x = np.expand_dims(x, axis=0)
|
||||
|
||||
out = self.encoder.inference(inputs=[x] + states, data_format="nchw")
|
||||
# out[0], encoder_out, shape (1, 24, 512)
|
||||
return out[0], out[1:]
|
||||
|
||||
def run_decoder(self, x: np.ndarray):
|
||||
"""
|
||||
Args:
|
||||
x: (1, context_size), np.int64
|
||||
Returns:
|
||||
Return decoder_out, (1, C), np.float32
|
||||
"""
|
||||
return self.decoder.inference(inputs=[x])[0]
|
||||
|
||||
def run_joiner(self, encoder_out: np.ndarray, decoder_out: np.ndarray):
|
||||
"""
|
||||
Args:
|
||||
encoder_out: (1, encoder_out_dim), np.float32
|
||||
decoder_out: (1, decoder_out_dim), np.float32
|
||||
Returns:
|
||||
joiner_out: (1, vocab_size), np.float32
|
||||
"""
|
||||
return self.joiner.inference(inputs=[encoder_out, decoder_out])[0]
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
print(vars(args))
|
||||
|
||||
id2token = load_tokens(args.tokens)
|
||||
features = compute_features(args.wav)
|
||||
model = RKNNModel(
|
||||
encoder=args.encoder,
|
||||
decoder=args.decoder,
|
||||
joiner=args.joiner,
|
||||
)
|
||||
print(model.meta)
|
||||
|
||||
states = model.get_init_states()
|
||||
|
||||
segment = model.meta.T
|
||||
offset = model.meta.decode_chunk_len
|
||||
|
||||
context_size = 2
|
||||
hyp = [0] * context_size
|
||||
decoder_input = np.array([hyp], dtype=np.int64)
|
||||
decoder_out = model.run_decoder(decoder_input)
|
||||
|
||||
i = 0
|
||||
while True:
|
||||
if i + segment > features.shape[0]:
|
||||
break
|
||||
x = features[i : i + segment]
|
||||
i += offset
|
||||
encoder_out, states = model.run_encoder(x, states)
|
||||
encoder_out = encoder_out.squeeze(0) # (1, T, C) -> (T, C)
|
||||
|
||||
num_frames = encoder_out.shape[0]
|
||||
for k in range(num_frames):
|
||||
joiner_out = model.run_joiner(encoder_out[k : k + 1], decoder_out)
|
||||
joiner_out = joiner_out.squeeze(0)
|
||||
max_token_id = joiner_out.argmax()
|
||||
|
||||
# assume 0 is the blank id
|
||||
if max_token_id != 0:
|
||||
hyp.append(max_token_id)
|
||||
decoder_input = np.array([hyp[-context_size:]], dtype=np.int64)
|
||||
decoder_out = model.run_decoder(decoder_input)
|
||||
print(hyp)
|
||||
final_hyp = hyp[context_size:]
|
||||
print(final_hyp)
|
||||
text = "".join([id2token[i] for i in final_hyp])
|
||||
text = text.replace("▁", " ")
|
||||
print(text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user