mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-11 11:02:29 +00:00
update train.py
This commit is contained in:
parent
ab38f4a926
commit
1d494556fc
@ -27,8 +27,8 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
--num-epochs 30 \
|
||||
--start-epoch 1 \
|
||||
--exp-dir pruned_transducer_stateless7/exp \
|
||||
--full-libri 1 \
|
||||
--max-duration 300
|
||||
--max-duration 750 \
|
||||
--training-subset L
|
||||
|
||||
# For mix precision training:
|
||||
|
||||
@ -38,9 +38,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
--start-epoch 1 \
|
||||
--use-fp16 1 \
|
||||
--exp-dir pruned_transducer_stateless7/exp \
|
||||
--full-libri 1 \
|
||||
--max-duration 550
|
||||
|
||||
--max-duration 750
|
||||
"""
|
||||
|
||||
|
||||
@ -54,12 +52,10 @@ from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import k2
|
||||
import optim
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from zipformer import Zipformer
|
||||
from asr_datamodule import WenetSpeechAsrDataModule
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from lhotse.cut import Cut
|
||||
@ -71,17 +67,20 @@ from torch import Tensor
|
||||
from torch.cuda.amp import GradScaler
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from zipformer import Zipformer
|
||||
|
||||
from icefall import diagnostics
|
||||
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import load_checkpoint, remove_checkpoints
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.checkpoint import (
|
||||
save_checkpoint_with_global_batch_idx,
|
||||
update_averaged_model,
|
||||
)
|
||||
from icefall.hooks import register_inf_check_hooks
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.hooks import register_inf_check_hooks
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||
|
||||
LRSchedulerType = Union[
|
||||
@ -89,14 +88,12 @@ LRSchedulerType = Union[
|
||||
]
|
||||
|
||||
|
||||
def set_batch_count(
|
||||
model: Union[nn.Module, DDP], batch_count: float
|
||||
) -> None:
|
||||
def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
|
||||
if isinstance(model, DDP):
|
||||
# get underlying nn.Module
|
||||
model = model.module
|
||||
for module in model.modules():
|
||||
if hasattr(module, 'batch_count'):
|
||||
if hasattr(module, "batch_count"):
|
||||
module.batch_count = batch_count
|
||||
|
||||
|
||||
@ -126,7 +123,7 @@ def add_model_arguments(parser: argparse.ArgumentParser):
|
||||
"--encoder-dims",
|
||||
type=str,
|
||||
default="384,384,384,384,384",
|
||||
help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated"
|
||||
help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -134,7 +131,7 @@ def add_model_arguments(parser: argparse.ArgumentParser):
|
||||
type=str,
|
||||
default="192,192,192,192,192",
|
||||
help="""Attention dimension in the 2 blocks of zipformer encoder layers, comma separated;
|
||||
not the same as embedding dimension."""
|
||||
not the same as embedding dimension.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -143,7 +140,7 @@ def add_model_arguments(parser: argparse.ArgumentParser):
|
||||
default="256,256,256,256,256",
|
||||
help="Unmasked dimensions in the encoders, relates to augmentation during training. "
|
||||
"Must be <= each of encoder_dims. Empirically, less than 256 seems to make performance "
|
||||
" worse."
|
||||
" worse.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -241,17 +238,17 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
default="data/lang_char",
|
||||
help="""The lang dir
|
||||
It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--base-lr",
|
||||
type=float,
|
||||
default=0.05,
|
||||
help="The base learning rate."
|
||||
"--base-lr", type=float, default=0.05, help="The base learning rate."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -451,11 +448,14 @@ def get_params() -> AttributeDict:
|
||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||
# TODO: We can add an option to switch between Zipformer and Transformer
|
||||
def to_int_tuple(s: str):
|
||||
return tuple(map(int, s.split(',')))
|
||||
return tuple(map(int, s.split(",")))
|
||||
|
||||
encoder = Zipformer(
|
||||
num_features=params.feature_dim,
|
||||
output_downsampling_factor=2,
|
||||
zipformer_downsampling_factors=to_int_tuple(params.zipformer_downsampling_factors),
|
||||
zipformer_downsampling_factors=to_int_tuple(
|
||||
params.zipformer_downsampling_factors
|
||||
),
|
||||
encoder_dims=to_int_tuple(params.encoder_dims),
|
||||
attention_dim=to_int_tuple(params.attention_dims),
|
||||
encoder_unmasked_dims=to_int_tuple(params.encoder_unmasked_dims),
|
||||
@ -479,7 +479,7 @@ def get_decoder_model(params: AttributeDict) -> nn.Module:
|
||||
|
||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||
joiner = Joiner(
|
||||
encoder_dim=int(params.encoder_dims.split(',')[-1]),
|
||||
encoder_dim=int(params.encoder_dims.split(",")[-1]),
|
||||
decoder_dim=params.decoder_dim,
|
||||
joiner_dim=params.joiner_dim,
|
||||
vocab_size=params.vocab_size,
|
||||
@ -496,7 +496,7 @@ def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
encoder_dim=int(params.encoder_dims.split(',')[-1]),
|
||||
encoder_dim=int(params.encoder_dims.split(",")[-1]),
|
||||
decoder_dim=params.decoder_dim,
|
||||
joiner_dim=params.joiner_dim,
|
||||
vocab_size=params.vocab_size,
|
||||
@ -567,9 +567,6 @@ def load_checkpoint_if_available(
|
||||
if "cur_epoch" in saved_params:
|
||||
params["start_epoch"] = saved_params["cur_epoch"]
|
||||
|
||||
if "cur_batch_idx" in saved_params:
|
||||
params["cur_batch_idx"] = saved_params["cur_batch_idx"]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
@ -626,7 +623,7 @@ def save_checkpoint(
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: Union[nn.Module, DDP],
|
||||
sp: spm.SentencePieceProcessor,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
batch: dict,
|
||||
is_training: bool,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
@ -665,7 +662,8 @@ def compute_loss(
|
||||
warm_step = params.warm_step
|
||||
|
||||
texts = batch["supervisions"]["text"]
|
||||
y = sp.encode(texts, out_type=int)
|
||||
|
||||
y = graph_compiler.texts_to_ids(texts)
|
||||
y = k2.RaggedTensor(y).to(device)
|
||||
|
||||
with torch.set_grad_enabled(is_training):
|
||||
@ -682,18 +680,17 @@ def compute_loss(
|
||||
# take down the scale on the simple loss from 1.0 at the start
|
||||
# to params.simple_loss scale by warm_step.
|
||||
simple_loss_scale = (
|
||||
s if batch_idx_train >= warm_step
|
||||
s
|
||||
if batch_idx_train >= warm_step
|
||||
else 1.0 - (batch_idx_train / warm_step) * (1.0 - s)
|
||||
)
|
||||
pruned_loss_scale = (
|
||||
1.0 if batch_idx_train >= warm_step
|
||||
1.0
|
||||
if batch_idx_train >= warm_step
|
||||
else 0.1 + 0.9 * (batch_idx_train / warm_step)
|
||||
)
|
||||
|
||||
loss = (
|
||||
simple_loss_scale * simple_loss +
|
||||
pruned_loss_scale * pruned_loss
|
||||
)
|
||||
loss = simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
@ -715,7 +712,7 @@ def compute_loss(
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: Union[nn.Module, DDP],
|
||||
sp: spm.SentencePieceProcessor,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
@ -728,7 +725,7 @@ def compute_validation_loss(
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
graph_compiler=graph_compiler,
|
||||
batch=batch,
|
||||
is_training=False,
|
||||
)
|
||||
@ -751,7 +748,7 @@ def train_one_epoch(
|
||||
model: Union[nn.Module, DDP],
|
||||
optimizer: torch.optim.Optimizer,
|
||||
scheduler: LRSchedulerType,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
scaler: GradScaler,
|
||||
@ -795,13 +792,7 @@ def train_one_epoch(
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
cur_batch_idx = params.get("cur_batch_idx", 0)
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
if batch_idx < cur_batch_idx:
|
||||
continue
|
||||
cur_batch_idx = batch_idx
|
||||
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
@ -810,7 +801,7 @@ def train_one_epoch(
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
graph_compiler=graph_compiler,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
@ -827,7 +818,7 @@ def train_one_epoch(
|
||||
scaler.update()
|
||||
optimizer.zero_grad()
|
||||
except: # noqa
|
||||
display_and_save_batch(batch, params=params, sp=sp)
|
||||
display_and_save_batch(batch, params=params)
|
||||
raise
|
||||
|
||||
if params.print_diagnostics and batch_idx == 5:
|
||||
@ -848,7 +839,6 @@ def train_one_epoch(
|
||||
params.batch_idx_train > 0
|
||||
and params.batch_idx_train % params.save_every_n == 0
|
||||
):
|
||||
params.cur_batch_idx = batch_idx
|
||||
save_checkpoint_with_global_batch_idx(
|
||||
out_dir=params.exp_dir,
|
||||
global_batch_idx=params.batch_idx_train,
|
||||
@ -861,7 +851,6 @@ def train_one_epoch(
|
||||
scaler=scaler,
|
||||
rank=rank,
|
||||
)
|
||||
del params.cur_batch_idx
|
||||
remove_checkpoints(
|
||||
out_dir=params.exp_dir,
|
||||
topk=params.keep_last_k,
|
||||
@ -873,12 +862,16 @@ def train_one_epoch(
|
||||
# of the grad scaler is configurable, but we can't configure it to have different
|
||||
# behavior depending on the current grad scale.
|
||||
cur_grad_scale = scaler._scale.item()
|
||||
if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0):
|
||||
if cur_grad_scale < 1.0 or (
|
||||
cur_grad_scale < 8.0 and batch_idx % 400 == 0
|
||||
):
|
||||
scaler.update(cur_grad_scale * 2.0)
|
||||
if cur_grad_scale < 0.01:
|
||||
logging.warning(f"Grad scale is small: {cur_grad_scale}")
|
||||
if cur_grad_scale < 1.0e-05:
|
||||
raise RuntimeError(f"grad_scale is too small, exiting: {cur_grad_scale}")
|
||||
raise RuntimeError(
|
||||
f"grad_scale is too small, exiting: {cur_grad_scale}"
|
||||
)
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
cur_lr = scheduler.get_last_lr()[0]
|
||||
@ -888,8 +881,12 @@ def train_one_epoch(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||||
f"lr: {cur_lr:.2e}, " +
|
||||
(f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "")
|
||||
f"lr: {cur_lr:.2e}, "
|
||||
+ (
|
||||
f"grad_scale: {scaler._scale.item()}"
|
||||
if params.use_fp16
|
||||
else ""
|
||||
)
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
@ -905,23 +902,28 @@ def train_one_epoch(
|
||||
)
|
||||
if params.use_fp16:
|
||||
tb_writer.add_scalar(
|
||||
"train/grad_scale", cur_grad_scale, params.batch_idx_train
|
||||
"train/grad_scale",
|
||||
cur_grad_scale,
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
|
||||
|
||||
if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
|
||||
if (
|
||||
batch_idx % params.valid_interval == 0
|
||||
and not params.print_diagnostics
|
||||
):
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
graph_compiler=graph_compiler,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
logging.info(f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB")
|
||||
logging.info(
|
||||
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
||||
)
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
@ -948,8 +950,6 @@ def run(rank, world_size, args):
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
if params.full_libri is False:
|
||||
params.valid_interval = 1600
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
if world_size > 1:
|
||||
@ -968,12 +968,14 @@ def run(rank, world_size, args):
|
||||
device = torch.device("cuda", rank)
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||
lexicon=lexicon,
|
||||
device=device,
|
||||
)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
params.blank_id = lexicon.token_table["<blk>"]
|
||||
params.vocab_size = max(lexicon.tokens) + 1
|
||||
|
||||
logging.info(params)
|
||||
|
||||
@ -997,12 +999,11 @@ def run(rank, world_size, args):
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
logging.info("Using DDP")
|
||||
model = DDP(model, device_ids=[rank],
|
||||
find_unused_parameters=True)
|
||||
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
||||
|
||||
optimizer = ScaledAdam(model.parameters(),
|
||||
lr=params.base_lr,
|
||||
clipping_scale=2.0)
|
||||
optimizer = ScaledAdam(
|
||||
model.parameters(), lr=params.base_lr, clipping_scale=2.0
|
||||
)
|
||||
|
||||
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
|
||||
|
||||
@ -1027,26 +1028,26 @@ def run(rank, world_size, args):
|
||||
if params.inf_check:
|
||||
register_inf_check_hooks(model)
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
wenetspeech = WenetSpeechAsrDataModule(args)
|
||||
|
||||
train_cuts = librispeech.train_clean_100_cuts()
|
||||
if params.full_libri:
|
||||
train_cuts += librispeech.train_clean_360_cuts()
|
||||
train_cuts += librispeech.train_other_500_cuts()
|
||||
train_cuts = wenetspeech.train_cuts()
|
||||
valid_cuts = wenetspeech.valid_cuts()
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
# Keep only utterances with duration between 1 second and 19 seconds
|
||||
#
|
||||
# Caution: There is a reason to select 20.0 here. Please see
|
||||
# Caution: There is a reason to select 19.0 here. Please see
|
||||
# ../local/display_manifest_statistics.py
|
||||
#
|
||||
# You should use ../local/display_manifest_statistics.py to get
|
||||
# an utterance duration distribution for your dataset to select
|
||||
# the threshold
|
||||
return 1.0 <= c.duration <= 20.0
|
||||
return 1.0 <= c.duration <= 19.0
|
||||
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
|
||||
valid_dl = wenetspeech.valid_dataloaders(valid_cuts)
|
||||
|
||||
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
||||
# We only load the sampler's state dict when it loads a checkpoint
|
||||
# saved in the middle of an epoch
|
||||
@ -1054,25 +1055,20 @@ def run(rank, world_size, args):
|
||||
else:
|
||||
sampler_state_dict = None
|
||||
|
||||
train_dl = librispeech.train_dataloaders(
|
||||
train_dl = wenetspeech.train_dataloaders(
|
||||
train_cuts, sampler_state_dict=sampler_state_dict
|
||||
)
|
||||
|
||||
valid_cuts = librispeech.dev_clean_cuts()
|
||||
valid_cuts += librispeech.dev_other_cuts()
|
||||
valid_dl = librispeech.valid_dataloaders(valid_cuts)
|
||||
|
||||
if not params.print_diagnostics:
|
||||
if False and not params.print_diagnostics:
|
||||
scan_pessimistic_batches_for_oom(
|
||||
model=model,
|
||||
train_dl=train_dl,
|
||||
optimizer=optimizer,
|
||||
sp=sp,
|
||||
graph_compiler=graph_compiler,
|
||||
params=params,
|
||||
)
|
||||
|
||||
scaler = GradScaler(enabled=params.use_fp16,
|
||||
init_scale=1.0)
|
||||
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
|
||||
if checkpoints and "grad_scaler" in checkpoints:
|
||||
logging.info("Loading grad scaler state dict")
|
||||
scaler.load_state_dict(checkpoints["grad_scaler"])
|
||||
@ -1093,7 +1089,7 @@ def run(rank, world_size, args):
|
||||
model_avg=model_avg,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
sp=sp,
|
||||
graph_compiler=graph_compiler,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
scaler=scaler,
|
||||
@ -1127,7 +1123,6 @@ def run(rank, world_size, args):
|
||||
def display_and_save_batch(
|
||||
batch: dict,
|
||||
params: AttributeDict,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
) -> None:
|
||||
"""Display the batch statistics and save the batch into disk.
|
||||
|
||||
@ -1137,8 +1132,6 @@ def display_and_save_batch(
|
||||
for the content in it.
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
sp:
|
||||
The BPE model.
|
||||
"""
|
||||
from lhotse.utils import uuid4
|
||||
|
||||
@ -1146,13 +1139,13 @@ def display_and_save_batch(
|
||||
logging.info(f"Saving batch to {filename}")
|
||||
torch.save(batch, filename)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
features = batch["inputs"]
|
||||
|
||||
logging.info(f"features shape: {features.shape}")
|
||||
|
||||
y = sp.encode(supervisions["text"], out_type=int)
|
||||
num_tokens = sum(len(i) for i in y)
|
||||
texts = batch["supervisions"]["text"]
|
||||
num_tokens = sum(len(i) for i in texts)
|
||||
|
||||
logging.info(f"num tokens: {num_tokens}")
|
||||
|
||||
|
||||
@ -1160,7 +1153,7 @@ def scan_pessimistic_batches_for_oom(
|
||||
model: Union[nn.Module, DDP],
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
params: AttributeDict,
|
||||
):
|
||||
from lhotse.dataset import find_pessimistic_batches
|
||||
@ -1176,7 +1169,7 @@ def scan_pessimistic_batches_for_oom(
|
||||
loss, _ = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
graph_compiler=graph_compiler,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
@ -1191,15 +1184,18 @@ def scan_pessimistic_batches_for_oom(
|
||||
f"Failing criterion: {criterion} "
|
||||
f"(={crit_values[criterion]}) ..."
|
||||
)
|
||||
display_and_save_batch(batch, params=params, sp=sp)
|
||||
display_and_save_batch(batch, params=params)
|
||||
raise
|
||||
logging.info(f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB")
|
||||
logging.info(
|
||||
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
WenetSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
|
Loading…
x
Reference in New Issue
Block a user