Update results using Zipformer-large on multi-hans-zh (#1679)

This commit is contained in:
Yuekai Zhang 2024-07-09 09:57:52 +08:00 committed by GitHub
parent 2d64228efa
commit 1c3d992a39
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 107 additions and 575 deletions

View File

@ -43,6 +43,61 @@ Fine-tuned models, training logs, decoding logs, tensorboard and decoding result
are available at are available at
<https://huggingface.co/yuekai/icefall_asr_multi-hans-zh_whisper> <https://huggingface.co/yuekai/icefall_asr_multi-hans-zh_whisper>
### Multi Chinese datasets char-based training results (streaming) on zipformer large model
#### Streaming (with CTC head)
The training command for large model (num of params : ~160M):
Please use the [script](https://github.com/k2-fsa/icefall/blob/master/egs/speech_llm/ASR_LLM/prepare.sh) to prepare fbank features.
```
./zipformer/train.py \
--world-size 8 \
--num-epochs 20 \
--use-fp16 1 \
--max-duration 1200 \
--num-workers 8 \
--use-ctc 1 \
--exp-dir zipformer/exp-large \
--causal 1 \
--num-encoder-layers 2,2,4,5,4,2 \
--feedforward-dim 768,1024,1536,2048,1536,768 \
--encoder-dim 256,384,512,768,512,256 \
--encoder-unmasked-dim 192,192,256,320,256,192
```
The decoding command for transducer greedy search:
```
./zipformer/decode.py \
--epoch 999 \
--avg 1 \
--causal 1 \
--use-averaged-model False \
--chunk_size -1
--left-context-frames -1 \
--use-ctc 1 \
--exp-dir zipformer/exp-large \
--max-duration 1200 \
--num-encoder-layers 2,2,4,5,4,2 \
--feedforward-dim 768,1024,1536,2048,1536,768 \
--encoder-dim 256,384,512,768,512,256 \
--encoder-unmasked-dim 192,192,256,320,256,192
```
Character Error Rates (CERs) listed below are produced by the checkpoint of the 18th epoch using BPE model ( # tokens is 2000, byte fallback enabled).
| Datasets | alimeeting | alimeeting | aishell-1 | aishell-1 | aishell-2 | aishell-2 | aishell-4 | magicdata | magicdata | kespeech-asr | kespeech-asr | kespeech-asr | WenetSpeech | WenetSpeech | WenetSpeech |
|--------------------------------|-------------------|--------------|----------------|-------------|------------------|-------------|------------------|------------------|-------------|-----------------------|-----------------------|-------------|--------------------|-------------------------|---------------------|
| Zipformer CER (%) | eval | test | dev | test | dev | test | test | dev | test | dev phase1 | dev phase2 | test | dev | test meeting | test net |
| CTC Greedy Streaming | 26.50 | 28.10| 1.71 | 1.97| 3.89| 4.06 | 17.23 | 3.69 | 2.87 | 8.14 | 3.61 |9.51 | 6.11 | 8.13 | 10.62 |
| CTC Greedy Offline | 23.47 | 25.02 | 1.39 | 1.50 | 3.15 | 3.41 | 15.14 | 3.07 | 2.37 | 6.06 | 2.90 | 7.13 | 5.40 | 6.52 | 9.64 |
| Transducer Greedy Offline | 23.16 | 24.78 | 1.33 | 1.38 | 3.06 | 3.23 | 15.36 | 2.54 | 2.09 | 5.24 | 2.28 | 6.26 | 4.87 | 6.26 | 7.07 |
| Transducer Greedy Streaming | 26.83|28.74 | 1.75 | 1.91 | 3.84 | 4.12 | 17.83 | 3.23 | 2.71 | 7.31 | 3.16 | 8.69 | 5.71 | 7.91 | 8.54 |
Pre-trained model can be found here : https://huggingface.co/yuekai/icefall-asr-multi-zh-hans-zipformer-large
### Multi Chinese datasets char-based training results (Non-streaming) on zipformer model ### Multi Chinese datasets char-based training results (Non-streaming) on zipformer model

View File

@ -1,247 +0,0 @@
# Copyright 2023 Xiaomi Corp. (authors: Zengrui Jin)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import logging
import re
from pathlib import Path
from typing import Dict, List
import lhotse
from lhotse import CutSet, load_manifest_lazy
class MultiDataset:
def __init__(self, fbank_dir: str):
"""
Args:
manifest_dir:
It is expected to contain the following files:
- aishell_cuts_train.jsonl.gz
- aishell2_cuts_train.jsonl.gz
- aishell4_cuts_train_L.jsonl.gz
- aishell4_cuts_train_M.jsonl.gz
- aishell4_cuts_train_S.jsonl.gz
- alimeeting-far_cuts_train.jsonl.gz
- magicdata_cuts_train.jsonl.gz
- primewords_cuts_train.jsonl.gz
- stcmds_cuts_train.jsonl.gz
- thchs_30_cuts_train.jsonl.gz
- kespeech/kespeech-asr_cuts_train_phase1.jsonl.gz
- kespeech/kespeech-asr_cuts_train_phase2.jsonl.gz
- wenetspeech/cuts_L_fixed.jsonl.gz
"""
self.fbank_dir = Path(fbank_dir)
def train_cuts(self) -> CutSet:
logging.info("About to get multidataset train cuts")
# THCHS-30
logging.info("Loading THCHS-30 in lazy mode")
thchs_30_cuts = load_manifest_lazy(
self.fbank_dir / "thchs_30_cuts_train.jsonl.gz"
)
# AISHELL-1
logging.info("Loading Aishell-1 in lazy mode")
aishell_cuts = load_manifest_lazy(
self.fbank_dir / "aishell_cuts_train.jsonl.gz"
)
# AISHELL-2
logging.info("Loading Aishell-2 in lazy mode")
aishell_2_cuts = load_manifest_lazy(
self.fbank_dir / "aishell2_cuts_train.jsonl.gz"
)
# AISHELL-4
logging.info("Loading Aishell-4 in lazy mode")
aishell_4_L_cuts = load_manifest_lazy(
self.fbank_dir / "aishell4_cuts_train_L.jsonl.gz"
)
aishell_4_M_cuts = load_manifest_lazy(
self.fbank_dir / "aishell4_cuts_train_M.jsonl.gz"
)
aishell_4_S_cuts = load_manifest_lazy(
self.fbank_dir / "aishell4_cuts_train_S.jsonl.gz"
)
# ST-CMDS
logging.info("Loading ST-CMDS in lazy mode")
stcmds_cuts = load_manifest_lazy(self.fbank_dir / "stcmds_cuts_train.jsonl.gz")
# Primewords
logging.info("Loading Primewords in lazy mode")
primewords_cuts = load_manifest_lazy(
self.fbank_dir / "primewords_cuts_train.jsonl.gz"
)
# MagicData
logging.info("Loading MagicData in lazy mode")
magicdata_cuts = load_manifest_lazy(
self.fbank_dir / "magicdata_cuts_train.jsonl.gz"
)
# Ali-Meeting
logging.info("Loading Ali-Meeting in lazy mode")
alimeeting_cuts = load_manifest_lazy(
self.fbank_dir / "alimeeting-far_cuts_train.jsonl.gz"
)
# WeNetSpeech
logging.info("Loading WeNetSpeech in lazy mode")
wenetspeech_L_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_L_fixed.jsonl.gz"
)
# KeSpeech
logging.info("Loading KeSpeech in lazy mode")
kespeech_1_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_train_phase1.jsonl.gz"
)
kespeech_2_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_train_phase2.jsonl.gz"
)
return CutSet.mux(
thchs_30_cuts,
aishell_cuts,
aishell_2_cuts,
aishell_4_L_cuts,
aishell_4_M_cuts,
aishell_4_S_cuts,
alimeeting_cuts,
stcmds_cuts,
primewords_cuts,
magicdata_cuts,
wenetspeech_L_cuts,
kespeech_1_cuts,
kespeech_2_cuts,
weights=[
len(thchs_30_cuts),
len(aishell_cuts),
len(aishell_2_cuts),
len(aishell_4_L_cuts),
len(aishell_4_M_cuts),
len(aishell_4_S_cuts),
len(alimeeting_cuts),
len(stcmds_cuts),
len(primewords_cuts),
len(magicdata_cuts),
len(wenetspeech_L_cuts),
len(kespeech_1_cuts),
len(kespeech_2_cuts),
],
)
def dev_cuts(self) -> CutSet:
logging.info("About to get multidataset dev cuts")
# WeNetSpeech
logging.info("Loading WeNetSpeech DEV set in lazy mode")
wenetspeech_dev_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_DEV_fixed.jsonl.gz"
)
return wenetspeech_dev_cuts
def test_cuts(self) -> Dict[str, CutSet]:
logging.info("About to get multidataset test cuts")
# AISHELL
logging.info("Loading Aishell set in lazy mode")
aishell_test_cuts = load_manifest_lazy(
self.fbank_dir / "aishell_cuts_test.jsonl.gz"
)
aishell_dev_cuts = load_manifest_lazy(
self.fbank_dir / "aishell_cuts_dev.jsonl.gz"
)
# AISHELL-2
logging.info("Loading Aishell-2 set in lazy mode")
aishell2_test_cuts = load_manifest_lazy(
self.fbank_dir / "aishell2_cuts_test.jsonl.gz"
)
aishell2_dev_cuts = load_manifest_lazy(
self.fbank_dir / "aishell2_cuts_dev.jsonl.gz"
)
# AISHELL-4
logging.info("Loading Aishell-4 TEST set in lazy mode")
aishell4_test_cuts = load_manifest_lazy(
self.fbank_dir / "aishell4_cuts_test.jsonl.gz"
)
# Ali-Meeting
logging.info("Loading Ali-Meeting set in lazy mode")
alimeeting_test_cuts = load_manifest_lazy(
self.fbank_dir / "alimeeting-far_cuts_test.jsonl.gz"
)
alimeeting_eval_cuts = load_manifest_lazy(
self.fbank_dir / "alimeeting-far_cuts_eval.jsonl.gz"
)
# MagicData
logging.info("Loading MagicData set in lazy mode")
magicdata_test_cuts = load_manifest_lazy(
self.fbank_dir / "magicdata_cuts_test.jsonl.gz"
)
magicdata_dev_cuts = load_manifest_lazy(
self.fbank_dir / "magicdata_cuts_dev.jsonl.gz"
)
# KeSpeech
logging.info("Loading KeSpeech set in lazy mode")
kespeech_test_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_test.jsonl.gz"
)
kespeech_dev_phase1_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase1.jsonl.gz"
)
kespeech_dev_phase2_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase2.jsonl.gz"
)
# WeNetSpeech
logging.info("Loading WeNetSpeech set in lazy mode")
wenetspeech_test_meeting_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_TEST_MEETING.jsonl.gz"
)
wenetspeech_test_net_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_TEST_NET.jsonl.gz"
)
wenetspeech_dev_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_DEV_fixed.jsonl.gz"
)
return {
"wenetspeech-meeting_test": wenetspeech_test_meeting_cuts,
# "aishell_test": aishell_test_cuts,
# "aishell_dev": aishell_dev_cuts,
# "ali-meeting_test": alimeeting_test_cuts,
# "ali-meeting_eval": alimeeting_eval_cuts,
# "aishell-4_test": aishell4_test_cuts,
# "aishell-2_test": aishell2_test_cuts,
# "aishell-2_dev": aishell2_dev_cuts,
# "magicdata_test": magicdata_test_cuts,
# "magicdata_dev": magicdata_dev_cuts,
# "kespeech-asr_test": kespeech_test_cuts,
# "kespeech-asr_dev_phase1": kespeech_dev_phase1_cuts,
# "kespeech-asr_dev_phase2": kespeech_dev_phase2_cuts,
# "wenetspeech-net_test": wenetspeech_test_net_cuts,
# "wenetspeech_dev": wenetspeech_dev_cuts,
}

View File

@ -0,0 +1 @@
../../../speech_llm/ASR_LLM/whisper_llm_zh/multi_dataset.py

View File

@ -46,7 +46,7 @@ import torch.nn as nn
from asr_datamodule import AsrDataModule from asr_datamodule import AsrDataModule
from lhotse.cut import Cut from lhotse.cut import Cut
from multi_dataset import MultiDataset from multi_dataset import MultiDataset
from train import add_model_arguments, get_model, get_params from train import add_model_arguments, get_model, get_params, normalize_text_alimeeting
from icefall.checkpoint import ( from icefall.checkpoint import (
average_checkpoints, average_checkpoints,
@ -367,21 +367,18 @@ def decode_dataset(
hyps_dict = decode_one_batch( hyps_dict = decode_one_batch(
params=params, params=params,
model=model, model=model,
HLG=HLG,
H=H, H=H,
bpe_model=bpe_model, bpe_model=bpe_model,
batch=batch, batch=batch,
word_table=word_table,
G=G,
) )
for name, hyps in hyps_dict.items(): for name, hyps in hyps_dict.items():
this_batch = [] this_batch = []
assert len(hyps) == len(texts) assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_words = list(ref_text.replace(" ", "")) ref_text = normalize_text_alimeeting(ref_text)
hyp_words = list("".join(hyp_words)) hyp_text = "".join(hyp_words)
this_batch.append((cut_id, ref_words, hyp_words)) this_batch.append((cut_id, ref_text, hyp_text))
results[name].extend(this_batch) results[name].extend(this_batch)
@ -583,7 +580,7 @@ def main():
data_module = AsrDataModule(args) data_module = AsrDataModule(args)
multi_dataset = MultiDataset(args.manifest_dir) multi_dataset = MultiDataset(args.manifest_dir)
test_sets_cuts = multi_dataset.test_cuts() test_sets_cuts = {**multi_dataset.test_cuts(), **multi_dataset.speechio_test_cuts()}
def remove_short_utt(c: Cut): def remove_short_utt(c: Cut):
T = ((c.num_frames - 7) // 2 + 1) // 2 T = ((c.num_frames - 7) // 2 + 1) // 2

View File

@ -118,7 +118,7 @@ from beam_search import (
) )
from lhotse.cut import Cut from lhotse.cut import Cut
from multi_dataset import MultiDataset from multi_dataset import MultiDataset
from train import add_model_arguments, get_model, get_params from train import add_model_arguments, get_model, get_params, normalize_text_alimeeting
from icefall.checkpoint import ( from icefall.checkpoint import (
average_checkpoints, average_checkpoints,
@ -532,7 +532,6 @@ def decode_dataset(
results = defaultdict(list) results = defaultdict(list)
for batch_idx, batch in enumerate(dl): for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"] texts = batch["supervisions"]["text"]
texts = [list(str(text).replace(" ", "")) for text in texts]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch( hyps_dict = decode_one_batch(
@ -548,6 +547,7 @@ def decode_dataset(
this_batch = [] this_batch = []
assert len(hyps) == len(texts) assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_text = normalize_text_alimeeting(ref_text)
hyp_text = "".join(hyp_words) hyp_text = "".join(hyp_words)
this_batch.append((cut_id, ref_text, hyp_text)) this_batch.append((cut_id, ref_text, hyp_text))
@ -795,7 +795,7 @@ def main():
) )
return T > 0 return T > 0
test_sets_cuts = multi_dataset.test_cuts() test_sets_cuts = {**multi_dataset.test_cuts(), **multi_dataset.speechio_test_cuts()}
test_sets = test_sets_cuts.keys() test_sets = test_sets_cuts.keys()
test_dl = [ test_dl = [

View File

@ -1,316 +0,0 @@
# Copyright 2023 Xiaomi Corp. (authors: Zengrui Jin)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import logging
import re
from pathlib import Path
from typing import Dict, List
import lhotse
from lhotse import CutSet, load_manifest_lazy
class MultiDataset:
def __init__(self, fbank_dir: str):
"""
Args:
manifest_dir:
It is expected to contain the following files:
- aidatatang_cuts_train.jsonl.gz
- aishell_cuts_train.jsonl.gz
- aishell2_cuts_train.jsonl.gz
- aishell4_cuts_train_L.jsonl.gz
- aishell4_cuts_train_M.jsonl.gz
- aishell4_cuts_train_S.jsonl.gz
- alimeeting-far_cuts_train.jsonl.gz
- magicdata_cuts_train.jsonl.gz
- primewords_cuts_train.jsonl.gz
- stcmds_cuts_train.jsonl.gz
- thchs_30_cuts_train.jsonl.gz
- kespeech/kespeech-asr_cuts_train_phase1.jsonl.gz
- kespeech/kespeech-asr_cuts_train_phase2.jsonl.gz
- wenetspeech/cuts_L.jsonl.gz
"""
self.fbank_dir = Path(fbank_dir)
def train_cuts(self) -> CutSet:
logging.info("About to get multidataset train cuts")
# THCHS-30
logging.info("Loading THCHS-30 in lazy mode")
thchs_30_cuts = load_manifest_lazy(
self.fbank_dir / "thchs_30_cuts_train.jsonl.gz"
)
# AISHELL-1
logging.info("Loading Aishell-1 in lazy mode")
aishell_cuts = load_manifest_lazy(
self.fbank_dir / "aishell_cuts_train.jsonl.gz"
)
# AISHELL-2
logging.info("Loading Aishell-2 in lazy mode")
aishell_2_cuts = load_manifest_lazy(
self.fbank_dir / "aishell2_cuts_train.jsonl.gz"
)
# AISHELL-4
logging.info("Loading Aishell-4 in lazy mode")
aishell_4_L_cuts = load_manifest_lazy(
self.fbank_dir / "aishell4_cuts_train_L.jsonl.gz"
)
aishell_4_M_cuts = load_manifest_lazy(
self.fbank_dir / "aishell4_cuts_train_M.jsonl.gz"
)
aishell_4_S_cuts = load_manifest_lazy(
self.fbank_dir / "aishell4_cuts_train_S.jsonl.gz"
)
# ST-CMDS
logging.info("Loading ST-CMDS in lazy mode")
stcmds_cuts = load_manifest_lazy(self.fbank_dir / "stcmds_cuts_train.jsonl.gz")
# Primewords
logging.info("Loading Primewords in lazy mode")
primewords_cuts = load_manifest_lazy(
self.fbank_dir / "primewords_cuts_train.jsonl.gz"
)
# MagicData
logging.info("Loading MagicData in lazy mode")
magicdata_cuts = load_manifest_lazy(
self.fbank_dir / "magicdata_cuts_train.jsonl.gz"
)
# Aidatatang_200zh
logging.info("Loading Aidatatang_200zh in lazy mode")
aidatatang_200zh_cuts = load_manifest_lazy(
self.fbank_dir / "aidatatang_cuts_train.jsonl.gz"
)
# Ali-Meeting
logging.info("Loading Ali-Meeting in lazy mode")
alimeeting_cuts = load_manifest_lazy(
self.fbank_dir / "alimeeting-far_cuts_train.jsonl.gz"
)
# WeNetSpeech
logging.info("Loading WeNetSpeech in lazy mode")
wenetspeech_L_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_L.jsonl.gz"
)
# KeSpeech
logging.info("Loading KeSpeech in lazy mode")
kespeech_1_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_train_phase1.jsonl.gz"
)
kespeech_2_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_train_phase2.jsonl.gz"
)
return CutSet.mux(
thchs_30_cuts,
aishell_cuts,
aishell_2_cuts,
aishell_4_L_cuts,
aishell_4_M_cuts,
aishell_4_S_cuts,
stcmds_cuts,
primewords_cuts,
magicdata_cuts,
aidatatang_200zh_cuts,
alimeeting_cuts,
wenetspeech_L_cuts,
kespeech_1_cuts,
kespeech_2_cuts,
weights=[
len(thchs_30_cuts),
len(aishell_cuts),
len(aishell_2_cuts),
len(aishell_4_L_cuts),
len(aishell_4_M_cuts),
len(aishell_4_S_cuts),
len(stcmds_cuts),
len(primewords_cuts),
len(magicdata_cuts),
len(aidatatang_200zh_cuts),
len(alimeeting_cuts),
len(wenetspeech_L_cuts),
len(kespeech_1_cuts),
len(kespeech_2_cuts),
],
)
def dev_cuts(self) -> CutSet:
logging.info("About to get multidataset dev cuts")
# Aidatatang_200zh
logging.info("Loading Aidatatang_200zh DEV set in lazy mode")
aidatatang_dev_cuts = load_manifest_lazy(
self.fbank_dir / "aidatatang_cuts_dev.jsonl.gz"
)
# AISHELL
logging.info("Loading Aishell DEV set in lazy mode")
aishell_dev_cuts = load_manifest_lazy(
self.fbank_dir / "aishell_cuts_dev.jsonl.gz"
)
# AISHELL-2
logging.info("Loading Aishell-2 DEV set in lazy mode")
aishell2_dev_cuts = load_manifest_lazy(
self.fbank_dir / "aishell2_cuts_dev.jsonl.gz"
)
# Ali-Meeting
logging.info("Loading Ali-Meeting DEV set in lazy mode")
alimeeting_dev_cuts = load_manifest_lazy(
self.fbank_dir / "alimeeting-far_cuts_eval.jsonl.gz"
)
# MagicData
logging.info("Loading MagicData DEV set in lazy mode")
magicdata_dev_cuts = load_manifest_lazy(
self.fbank_dir / "magicdata_cuts_dev.jsonl.gz"
)
# KeSpeech
logging.info("Loading KeSpeech DEV set in lazy mode")
kespeech_dev_phase1_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase1.jsonl.gz"
)
kespeech_dev_phase2_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase2.jsonl.gz"
)
# WeNetSpeech
logging.info("Loading WeNetSpeech DEV set in lazy mode")
wenetspeech_dev_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_DEV.jsonl.gz"
)
return wenetspeech_dev_cuts
# return [
# aidatatang_dev_cuts,
# aishell_dev_cuts,
# aishell2_dev_cuts,
# alimeeting_dev_cuts,
# magicdata_dev_cuts,
# kespeech_dev_phase1_cuts,
# kespeech_dev_phase2_cuts,
# wenetspeech_dev_cuts,
# ]
def test_cuts(self) -> Dict[str, CutSet]:
logging.info("About to get multidataset test cuts")
# Aidatatang_200zh
logging.info("Loading Aidatatang_200zh set in lazy mode")
aidatatang_test_cuts = load_manifest_lazy(
self.fbank_dir / "aidatatang_cuts_test.jsonl.gz"
)
aidatatang_dev_cuts = load_manifest_lazy(
self.fbank_dir / "aidatatang_cuts_dev.jsonl.gz"
)
# AISHELL
logging.info("Loading Aishell set in lazy mode")
aishell_test_cuts = load_manifest_lazy(
self.fbank_dir / "aishell_cuts_test.jsonl.gz"
)
aishell_dev_cuts = load_manifest_lazy(
self.fbank_dir / "aishell_cuts_dev.jsonl.gz"
)
# AISHELL-2
logging.info("Loading Aishell-2 set in lazy mode")
aishell2_test_cuts = load_manifest_lazy(
self.fbank_dir / "aishell2_cuts_test.jsonl.gz"
)
aishell2_dev_cuts = load_manifest_lazy(
self.fbank_dir / "aishell2_cuts_dev.jsonl.gz"
)
# AISHELL-4
logging.info("Loading Aishell-4 TEST set in lazy mode")
aishell4_test_cuts = load_manifest_lazy(
self.fbank_dir / "aishell4_cuts_test.jsonl.gz"
)
# Ali-Meeting
logging.info("Loading Ali-Meeting set in lazy mode")
alimeeting_test_cuts = load_manifest_lazy(
self.fbank_dir / "alimeeting-far_cuts_test.jsonl.gz"
)
alimeeting_eval_cuts = load_manifest_lazy(
self.fbank_dir / "alimeeting-far_cuts_eval.jsonl.gz"
)
# MagicData
logging.info("Loading MagicData set in lazy mode")
magicdata_test_cuts = load_manifest_lazy(
self.fbank_dir / "magicdata_cuts_test.jsonl.gz"
)
magicdata_dev_cuts = load_manifest_lazy(
self.fbank_dir / "magicdata_cuts_dev.jsonl.gz"
)
# KeSpeech
logging.info("Loading KeSpeech set in lazy mode")
kespeech_test_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_test.jsonl.gz"
)
kespeech_dev_phase1_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase1.jsonl.gz"
)
kespeech_dev_phase2_cuts = load_manifest_lazy(
self.fbank_dir / "kespeech" / "kespeech-asr_cuts_dev_phase2.jsonl.gz"
)
# WeNetSpeech
logging.info("Loading WeNetSpeech set in lazy mode")
wenetspeech_test_meeting_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_TEST_MEETING.jsonl.gz"
)
wenetspeech_test_net_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_TEST_NET.jsonl.gz"
)
wenetspeech_dev_cuts = load_manifest_lazy(
self.fbank_dir / "wenetspeech" / "cuts_DEV.jsonl.gz"
)
return {
"aidatatang_test": aidatatang_test_cuts,
"aidatatang_dev": aidatatang_dev_cuts,
"alimeeting_test": alimeeting_test_cuts,
"alimeeting_eval": alimeeting_eval_cuts,
"aishell_test": aishell_test_cuts,
"aishell_dev": aishell_dev_cuts,
"aishell-2_test": aishell2_test_cuts,
"aishell-2_dev": aishell2_dev_cuts,
"aishell-4": aishell4_test_cuts,
"magicdata_test": magicdata_test_cuts,
"magicdata_dev": magicdata_dev_cuts,
"kespeech-asr_test": kespeech_test_cuts,
"kespeech-asr_dev_phase1": kespeech_dev_phase1_cuts,
"kespeech-asr_dev_phase2": kespeech_dev_phase2_cuts,
"wenetspeech-meeting_test": wenetspeech_test_meeting_cuts,
"wenetspeech-net_test": wenetspeech_test_net_cuts,
"wenetspeech_dev": wenetspeech_dev_cuts,
}

View File

@ -0,0 +1 @@
../../../speech_llm/ASR_LLM/whisper_llm_zh/multi_dataset.py

View File

@ -539,6 +539,43 @@ def get_params() -> AttributeDict:
return params return params
def normalize_text_alimeeting(text: str, normalize: str = "m2met") -> str:
"""
Text normalization similar to M2MeT challenge baseline.
See: https://github.com/yufan-aslp/AliMeeting/blob/main/asr/local/text_normalize.pl
"""
if normalize == "none":
return text
elif normalize == "m2met":
import re
text = text.replace(" ", "")
text = text.replace("<sil>", "")
text = text.replace("<%>", "")
text = text.replace("<->", "")
text = text.replace("<$>", "")
text = text.replace("<#>", "")
text = text.replace("<_>", "")
text = text.replace("<space>", "")
text = text.replace("`", "")
text = text.replace("&", "")
text = text.replace(",", "")
if re.search("[a-zA-Z]", text):
text = text.upper()
text = text.replace("", "A")
text = text.replace("", "A")
text = text.replace("", "B")
text = text.replace("", "C")
text = text.replace("", "K")
text = text.replace("", "T")
text = text.replace("", "")
text = text.replace("", "")
text = text.replace("", "")
text = text.replace("", "")
text = text.replace("", "")
return text
def _to_int_tuple(s: str): def _to_int_tuple(s: str):
return tuple(map(int, s.split(","))) return tuple(map(int, s.split(",")))
@ -788,6 +825,9 @@ def compute_loss(
warm_step = params.warm_step warm_step = params.warm_step
texts = batch["supervisions"]["text"] texts = batch["supervisions"]["text"]
# remove spaces in texts
texts = [normalize_text_alimeeting(text) for text in texts]
y = sp.encode(texts, out_type=int) y = sp.encode(texts, out_type=int)
y = k2.RaggedTensor(y) y = k2.RaggedTensor(y)

View File

@ -114,6 +114,7 @@ def extract_hyp_ref_wavname(filename):
for line in f: for line in f:
if "ref" in line: if "ref" in line:
ref = line.split("ref=")[1].strip() ref = line.split("ref=")[1].strip()
if ref[0] == "[":
ref = ref[2:-2] ref = ref[2:-2]
list_elements = ref.split("', '") list_elements = ref.split("', '")
ref = "".join(list_elements) ref = "".join(list_elements)