diff --git a/egs/aishell/ASR/README.md b/egs/aishell/ASR/README.md index 176f065e5..b54719162 100644 --- a/egs/aishell/ASR/README.md +++ b/egs/aishell/ASR/README.md @@ -24,3 +24,10 @@ The following table lists the differences among them. The decoder in `transducer_stateless` is modified from the paper [Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/). We place an additional Conv1d layer right after the input embedding layer. + +# Whisper + +Recipe to finetune large pretrained models +| | Encoder | Decoder | Comment | +|------------------------------------|-----------|--------------------|-----------------------------------------------------------------------------------| +| `whisper` | Transformer | Transformer | support fine-tuning using deepspeed diff --git a/egs/aishell/ASR/RESULTS.md b/egs/aishell/ASR/RESULTS.md index ff9504274..46d712fb2 100644 --- a/egs/aishell/ASR/RESULTS.md +++ b/egs/aishell/ASR/RESULTS.md @@ -1,5 +1,63 @@ ## Results +### Aishell training results (Fine-tuning Pretrained Models) +#### Whisper +[./whisper](./whisper) +##### fine-tuning results on Aishell test set on whisper medium, large-v2, large-v3 + +| | test (before fine-tuning) | test (after fine-tuning) | comment | +|------------------------|------|------|-----------------------------------------| +| medium | 7.23 | 3.27 | --epoch 10 --avg 4, ddp | +| large-v2 | 6.56 | 2.47 | --epoch 10 --avg 6, deepspeed zero stage1 | +| large-v3 | 6.06 | 2.84 | --epoch 5 --avg 3, deepspeed zero stage1 | + +Command for training is: +```bash +pip install -r whisper/requirements.txt + +./prepare.sh --stage 30 --stop_stage 30 + +#fine-tuning with deepspeed zero stage 1 +torchrun --nproc-per-node 8 ./whisper/train.py \ + --max-duration 200 \ + --exp-dir whisper/exp_large_v2 \ + --model-name large-v2 \ + --deepspeed \ + --deepspeed_config ./whisper/ds_config_zero1.json + +# fine-tuning with ddp +torchrun --nproc-per-node 8 ./whisper/train.py \ + --max-duration 200 \ + --exp-dir whisper/exp_medium \ + --base-lr 1e-5 \ + --model-name medium +``` + +Command for decoding using fine-tuned models: +```bash +git lfs install +git clone https://huggingface.co/yuekai/icefall_asr_aishell_whisper +ln -s icefall_asr_aishell_whisper/exp_large_v2/epoch-10-avg6.pt whisper/exp_large_v2/epoch-999.pt + +python3 ./whisper/decode.py \ + --exp-dir whisper/exp_large_v2 \ + --model-name large-v2 \ + --epoch 999 --avg 1 \ + --beam-size 10 --max-duration 50 +``` +Command for decoding using pretrained models (before fine-tuning): +```bash +python3 ./whisper/decode.py \ + --exp-dir whisper/exp_large_v2 \ + --model-name large-v2 \ + --epoch -1 --avg 1 \ + --remove-whisper-encoder-input-length-restriction False \ + --beam-size 10 --max-duration 50 +``` +Fine-tuned models, training logs, decoding logs, tensorboard and decoding results +are available at + + ### Aishell training result (Stateless Transducer) #### Zipformer (Byte-level BPE) @@ -71,7 +129,7 @@ It's reworked Zipformer with Pruned RNNT loss. Command for training is: ```bash -./prepare.sh +./prepare.sh export CUDA_VISIBLE_DEVICES="0,1" @@ -136,7 +194,7 @@ export CUDA_VISIBLE_DEVICES="0,1" --feedforward-dim 512,768,768,768,768,768 \ --encoder-dim 192,256,256,256,256,256 \ --encoder-unmasked-dim 192,192,192,192,192,192 \ - --max-duration 1200 + --max-duration 1200 ``` Command for decoding is: @@ -186,7 +244,7 @@ export CUDA_VISIBLE_DEVICES="0,1" --feedforward-dim 512,768,1536,2048,1536,768 \ --encoder-dim 192,256,512,768,512,256 \ --encoder-unmasked-dim 192,192,256,320,256,192 \ - --max-duration 800 + --max-duration 800 ``` Command for decoding is: @@ -202,7 +260,7 @@ for m in greedy_search modified_beam_search fast_beam_search ; do --num-encoder-layers 2,2,4,5,4,2 \ --feedforward-dim 512,768,1536,2048,1536,768 \ --encoder-dim 192,256,512,768,512,256 \ - --encoder-unmasked-dim 192,192,256,320,256,192 + --encoder-unmasked-dim 192,192,256,320,256,192 done ``` @@ -755,7 +813,6 @@ python3 ./transducer_stateless/decode.py \ --max-sym-per-frame 3 ``` -### Aishell training results (Transducer-stateless) #### 2022-02-18 (Pingfeng Luo) : The tensorboard log for training is available at And pretrained model is available at diff --git a/egs/aishell/ASR/local/compute_fbank_aishell.py b/egs/aishell/ASR/local/compute_fbank_aishell.py index c7000da1c..3c48f0aa1 100755 --- a/egs/aishell/ASR/local/compute_fbank_aishell.py +++ b/egs/aishell/ASR/local/compute_fbank_aishell.py @@ -29,7 +29,14 @@ import os from pathlib import Path import torch -from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter +from lhotse import ( + CutSet, + Fbank, + FbankConfig, + LilcomChunkyWriter, + WhisperFbank, + WhisperFbankConfig, +) from lhotse.recipes.utils import read_manifests_if_cached from icefall.utils import get_executor, str2bool @@ -42,9 +49,14 @@ torch.set_num_threads(1) torch.set_num_interop_threads(1) -def compute_fbank_aishell(num_mel_bins: int = 80, perturb_speed: bool = False): +def compute_fbank_aishell( + num_mel_bins: int = 80, + perturb_speed: bool = False, + whisper_fbank: bool = False, + output_dir: str = "data/fbank", +): src_dir = Path("data/manifests") - output_dir = Path("data/fbank") + output_dir = Path(output_dir) num_jobs = min(15, os.cpu_count()) dataset_parts = ( @@ -68,8 +80,12 @@ def compute_fbank_aishell(num_mel_bins: int = 80, perturb_speed: bool = False): list(manifests.keys()), dataset_parts, ) - - extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) + if whisper_fbank: + extractor = WhisperFbank( + WhisperFbankConfig(num_filters=num_mel_bins, device="cuda") + ) + else: + extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) with get_executor() as ex: # Initialize the executor only once. for partition, m in manifests.items(): @@ -82,7 +98,7 @@ def compute_fbank_aishell(num_mel_bins: int = 80, perturb_speed: bool = False): supervisions=m["supervisions"], ) if "train" in partition and perturb_speed: - logging.info(f"Doing speed perturb") + logging.info("Doing speed perturb") cut_set = ( cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) ) @@ -111,6 +127,18 @@ def get_args(): default=False, help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.", ) + parser.add_argument( + "--whisper-fbank", + type=str2bool, + default=False, + help="Use WhisperFbank instead of Fbank. Default: False.", + ) + parser.add_argument( + "--output-dir", + type=str, + default="data/fbank", + help="Output directory. Default: data/fbank.", + ) return parser.parse_args() @@ -121,5 +149,8 @@ if __name__ == "__main__": args = get_args() compute_fbank_aishell( - num_mel_bins=args.num_mel_bins, perturb_speed=args.perturb_speed + num_mel_bins=args.num_mel_bins, + perturb_speed=args.perturb_speed, + whisper_fbank=args.whisper_fbank, + output_dir=args.output_dir, ) diff --git a/egs/aishell/ASR/prepare.sh b/egs/aishell/ASR/prepare.sh index 9f73a2073..b7be89bc8 100755 --- a/egs/aishell/ASR/prepare.sh +++ b/egs/aishell/ASR/prepare.sh @@ -376,3 +376,16 @@ if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then --vocab-size 4336 \ --master-port 12345 fi + +# whisper large-v3 using 128 mel bins, others using 80 mel bins +whisper_mel_bins=80 +output_dir=data/fbank_whisper +if [ $stage -le 30 ] && [ $stop_stage -ge 30 ]; then + log "Stage 30: Compute ${whisper_mel_bins} dim fbank for whisper model fine-tuning" + if [ ! -f $output_dir/.aishell.whisper.done ]; then + mkdir -p $output_dir + ./local/compute_fbank_aishell.py --perturb-speed ${perturb_speed} --num-mel-bins ${whisper_mel_bins} --whisper-fbank true --output-dir $output_dir + ./local/compute_fbank_musan.py --num-mel-bins ${whisper_mel_bins} --whisper-fbank true --output-dir $output_dir + touch $output_dir/.aishell.whisper.done + fi +fi diff --git a/egs/aishell/ASR/whisper/asr_datamodule.py b/egs/aishell/ASR/whisper/asr_datamodule.py new file mode 120000 index 000000000..fa1b8cca3 --- /dev/null +++ b/egs/aishell/ASR/whisper/asr_datamodule.py @@ -0,0 +1 @@ +../tdnn_lstm_ctc/asr_datamodule.py \ No newline at end of file diff --git a/egs/aishell/ASR/whisper/decode.py b/egs/aishell/ASR/whisper/decode.py new file mode 100755 index 000000000..7f841dcb7 --- /dev/null +++ b/egs/aishell/ASR/whisper/decode.py @@ -0,0 +1,503 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, +# Fangjun Kuang, +# Wei Kang) +# 2024 Yuekai Zhang +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +# Command for decoding using fine-tuned models: +git lfs install +git clone https://huggingface.co/yuekai/icefall_asr_aishell_whisper +ln -s icefall_asr_aishell_whisper/exp_large_v2/epoch-10-avg6.pt whisper/exp_large_v2/epoch-999.pt + +python3 ./whisper/decode.py \ + --exp-dir whisper/exp_large_v2 \ + --model-name large-v2 \ + --epoch 999 --avg 1 \ + --manifest-dir data/fbank_whisper \ + --beam-size 10 --max-duration 50 + +# Command for decoding using pretrained models (before fine-tuning): + +python3 ./whisper/decode.py \ + --exp-dir whisper/exp_large_v2 \ + --model-name large-v2 \ + --epoch -1 --avg 1 \ + --manifest-dir data/fbank_whisper \ + --remove-whisper-encoder-input-length-restriction False \ + --beam-size 10 --max-duration 50 + +""" + +import argparse +import logging +import re +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import torch +import torch.nn as nn +import whisper +from asr_datamodule import AishellAsrDataModule +from tn.chinese.normalizer import Normalizer +from whisper.normalizers import BasicTextNormalizer +from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward +from zhconv import convert + +from icefall.checkpoint import average_checkpoints_with_averaged_model, load_checkpoint +from icefall.env import get_env_info +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + + +def average_checkpoints( + filenames: List[Path], device: torch.device = torch.device("cpu") +) -> dict: + """Average a list of checkpoints. + The function is mainly used for deepspeed converted checkpoint averaging, which only include model state_dict. + + Args: + filenames: + Filenames of the checkpoints to be averaged. We assume all + checkpoints are saved by :func:`save_checkpoint`. + device: + Move checkpoints to this device before averaging. + Returns: + Return a dict (i.e., state_dict) which is the average of all + model state dicts contained in the checkpoints. + """ + n = len(filenames) + + if "model" in torch.load(filenames[0], map_location=device): + avg = torch.load(filenames[0], map_location=device)["model"] + else: + avg = torch.load(filenames[0], map_location=device) + + # Identify shared parameters. Two parameters are said to be shared + # if they have the same data_ptr + uniqued: Dict[int, str] = dict() + + for k, v in avg.items(): + v_data_ptr = v.data_ptr() + if v_data_ptr in uniqued: + continue + uniqued[v_data_ptr] = k + + uniqued_names = list(uniqued.values()) + + for i in range(1, n): + if "model" in torch.load(filenames[i], map_location=device): + state_dict = torch.load(filenames[i], map_location=device)["model"] + else: + state_dict = torch.load(filenames[i], map_location=device) + for k in uniqued_names: + avg[k] += state_dict[k] + + for k in uniqued_names: + if avg[k].is_floating_point(): + avg[k] /= n + else: + avg[k] //= n + + return avg + + +def remove_punctuation(text: str or List[str]): + """Modified from https://github.com/yeyupiaoling/Whisper-Finetune/blob/master/utils/data_utils.py + + Args: + text: It can be a string or a list of strings. + Returns: + Return a string or a list of strings without any punctuation. + """ + punctuation = "!,.;:?、!,。;:?《》 " + if isinstance(text, str): + text = re.sub(r"[{}]+".format(punctuation), "", text).strip() + return text + elif isinstance(text, list): + result_text = [] + for t in text: + t = re.sub(r"[{}]+".format(punctuation), "", t).strip() + result_text.append(t) + return result_text + else: + raise Exception(f"Not support type {type(text)}") + + +def to_simple(text: str or List[str]): + """Convert traditional Chinese to simplified Chinese. + Args: + text: It can be a string or a list of strings. + Returns: + Return a string or a list of strings converted to simplified Chinese. + """ + if isinstance(text, str): + text = convert(text, "zh-cn") + return text + elif isinstance(text, list): + result_text = [] + for t in text: + t = convert(t, "zh-cn") + result_text.append(t) + return result_text + else: + raise Exception(f"Not support type{type(text)}") + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=-1, + help="It specifies the checkpoint to use for decoding." + "Note: Epoch counts from 0.", + ) + parser.add_argument( + "--avg", + type=int, + default=1, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch'. ", + ) + + parser.add_argument( + "--method", + type=str, + default="beam-search", + help="""Decoding method. + Supported values are: + - beam-search + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=1, + help="beam size for beam search decoding", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="whisper/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--model-name", + type=str, + default="large-v2", + choices=["large-v2", "large-v3", "medium", "small", "tiny"], + help="""The model name to use. + """, + ) + + parser.add_argument( + "--remove-whisper-encoder-input-length-restriction", + type=str2bool, + default=True, + help="replace whisper encoder forward method to remove input length restriction", + ) + + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "env_info": get_env_info(), + } + ) + return params + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + batch: dict, +) -> Dict[str, List[List[int]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: "beam-search" + - value: A list of lists. Each sublist is a list of token IDs. + Args: + params: + It is returned by :func:`get_params`. + model: + The neural model. + batch: + It is returned by :meth:`torch.utils.data.DataLoader.__iter__`. + Returns: + Return a dict, whose key may be "beam-search". + """ + dtype = torch.float16 + device = torch.device("cuda") + + feature = batch["inputs"] + assert feature.ndim == 3 + feature = feature.to(device, dtype=dtype).transpose(1, 2) + if not params.remove_whisper_encoder_input_length_restriction: + T = 3000 + if feature.shape[2] < T: + feature = torch.cat( + [ + feature, + torch.zeros( + feature.shape[0], feature.shape[1], T - feature.shape[2] + ).to(device, dtype=dtype), + ], + 2, + ) + + supervisions = batch["supervisions"] + feature_len = supervisions["num_frames"] + feature_len = feature_len.to(device, dtype=dtype) + results = model.decode(feature, params.decoding_options) + hyps = [result.text for result in results] + + hyps = remove_punctuation(hyps) + hyps = to_simple(hyps) + hyps = [params.normalizer.normalize(hyp) for hyp in hyps] + + return {"beam-search": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + The dataloader. + params: + It is returned by :func:`get_params`. + model: + The neural model. + Returns: + Return a dict, whose key may be "beam-search". + """ + results = [] + + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + batch=batch, + ) + + for lm_scale, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[lm_scale].extend(this_batch) + + num_cuts += len(batch["supervisions"]["text"]) + + if batch_idx % 100 == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + + enable_log = True + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.exp_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results) + if enable_log: + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.exp_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + # we compute CER for aishell dataset. + results_char = [] + for res in results: + results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, f"{test_set_name}-{key}", results_char, enable_log=enable_log + ) + test_set_wers[key] = wer + + if enable_log: + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = params.exp_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt" + with open(errs_info, "w") as f: + print("settings\tCER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, CER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + AishellAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + setup_logger( + f"{params.exp_dir}/log-{params.method}-beam{params.beam_size}/log-decode-{params.suffix}" + ) + + options = whisper.DecodingOptions( + task="transcribe", + language="zh", + without_timestamps=True, + beam_size=params.beam_size, + ) + params.decoding_options = options + params.cleaner = BasicTextNormalizer() + params.normalizer = Normalizer() + + logging.info("Decoding started") + logging.info(params) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda") + + logging.info(f"device: {device}") + + if params.remove_whisper_encoder_input_length_restriction: + replace_whisper_encoder_forward() + model = whisper.load_model(params.model_name, "cpu") + if params.epoch > 0: + if params.avg > 1: + start = params.epoch - params.avg + assert start >= 1, start + checkpoint = torch.load( + f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu" + ) + if "model" not in checkpoint: + # deepspeed converted checkpoint only contains model state_dict + filenames = [ + f"{params.exp_dir}/epoch-{epoch}.pt" + for epoch in range(start, params.epoch + 1) + ] + model.load_state_dict(average_checkpoints(filenames)) + else: + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + # save checkpoints + filename = f"{params.exp_dir}/epoch-{params.epoch}-avg-{params.avg}.pt" + torch.save(model.state_dict(), filename) + else: + checkpoint = torch.load( + f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu" + ) + if "model" not in checkpoint: + model.load_state_dict(checkpoint, strict=True) + else: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + model.to(device) + model.eval() + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + aishell = AishellAsrDataModule(args) + valid_dl = aishell.valid_dataloaders(aishell.valid_cuts()) + test_dl = aishell.test_dataloaders(aishell.test_cuts()) + test_sets = ["valid", "test"] + test_dls = [valid_dl, test_dl] + + for test_set, test_dl in zip(test_sets, test_dls): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + ) + + save_results(params=params, test_set_name=test_set, results_dict=results_dict) + + logging.info("Done!") + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/aishell/ASR/whisper/ds_config_zero1.json b/egs/aishell/ASR/whisper/ds_config_zero1.json new file mode 100644 index 000000000..bf8cc0452 --- /dev/null +++ b/egs/aishell/ASR/whisper/ds_config_zero1.json @@ -0,0 +1,38 @@ +{ + "fp16": { + "enabled": true, + "loss_scale": 0, + "loss_scale_window": 100, + "initial_scale_power": 16, + "hysteresis": 2, + "min_loss_scale": 0.01 + }, + "zero_optimization": { + "stage": 1, + "allgather_partitions": true, + "allgather_bucket_size": 2e8, + "overlap_comm": true, + "reduce_scatter": true, + "reduce_bucket_size": 2e8, + "contiguous_gradients": true + }, + "optimizer": { + "type": "Adam", + "params": { + "lr": 1e-5 + } + }, + "scheduler": { + "type": "WarmupLR", + "params": { + "warmup_min_lr": 0, + "warmup_max_lr": 1e-5, + "warmup_num_steps": 100 + } + }, + "gradient_accumulation_steps": 1, + "gradient_clipping": 5, + "steps_per_print": 50, + "train_micro_batch_size_per_gpu": 1, + "wall_clock_breakdown": false +} diff --git a/egs/aishell/ASR/whisper/label_smoothing.py b/egs/aishell/ASR/whisper/label_smoothing.py new file mode 120000 index 000000000..e9d239fff --- /dev/null +++ b/egs/aishell/ASR/whisper/label_smoothing.py @@ -0,0 +1 @@ +../../../librispeech/ASR/conformer_ctc/label_smoothing.py \ No newline at end of file diff --git a/egs/aishell/ASR/whisper/optim.py b/egs/aishell/ASR/whisper/optim.py new file mode 120000 index 000000000..5eaa3cffd --- /dev/null +++ b/egs/aishell/ASR/whisper/optim.py @@ -0,0 +1 @@ +../../../librispeech/ASR/zipformer/optim.py \ No newline at end of file diff --git a/egs/aishell/ASR/whisper/requirements.txt b/egs/aishell/ASR/whisper/requirements.txt new file mode 100755 index 000000000..0708f2344 --- /dev/null +++ b/egs/aishell/ASR/whisper/requirements.txt @@ -0,0 +1,10 @@ +k2 +kaldialign +git+https://github.com/lhotse-speech/lhotse +sentencepiece +tensorboard +librosa +git+https://github.com/yuekaizhang/whisper.git +zhconv +WeTextProcessing +deepspeed diff --git a/egs/aishell/ASR/whisper/train.py b/egs/aishell/ASR/whisper/train.py new file mode 100755 index 000000000..d16793eb2 --- /dev/null +++ b/egs/aishell/ASR/whisper/train.py @@ -0,0 +1,927 @@ +#!/usr/bin/env python3 +# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang) +# 2024 Yuekai Zhang +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +#fine-tuning with deepspeed zero stage 1 +torchrun --nproc-per-node 8 ./whisper/train.py \ + --max-duration 200 \ + --exp-dir whisper/exp_large_v2 \ + --model-name large-v2 \ + --manifest-dir data/fbank_whisper \ + --deepspeed \ + --deepspeed_config ./whisper/ds_config_zero1.json + +# fine-tuning with ddp +torchrun --nproc-per-node 8 ./whisper/train.py \ + --max-duration 200 \ + --exp-dir whisper/exp_medium \ + --manifest-dir data/fbank_whisper \ + --base-lr 1e-5 \ + --model-name medium +""" + + +import argparse +import copy +import logging +import random +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple, Union + +import deepspeed +import k2 +import optim +import torch +import torch.multiprocessing as mp +import torch.nn as nn +import whisper +from asr_datamodule import AishellAsrDataModule +from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict +from label_smoothing import LabelSmoothingLoss +from lhotse import CutSet, load_manifest +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from optim import Eden, ScaledAdam +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.functional import pad as pad_tensor +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter +from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward + +from icefall import diagnostics +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import update_averaged_model +from icefall.dist import cleanup_dist, get_rank, get_world_size, setup_dist +from icefall.env import get_env_info +from icefall.hooks import register_inf_check_hooks +from icefall.utils import ( + AttributeDict, + MetricsTracker, + filter_uneven_sized_batch, + setup_logger, + str2bool, +) + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: + if isinstance(model, DDP): + # get underlying nn.Module + model = model.module + for module in model.modules(): + if hasattr(module, "batch_count"): + module.batch_count = batch_count + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=10, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="pruned_transducer_stateless7/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--model-name", + type=str, + default="large-v2", + choices=["large-v2", "large-v3", "medium", "small", "tiny"], + help="""The model name to use. + """, + ) + + parser.add_argument( + "--base-lr", type=float, default=1e-5, help="The base learning rate." + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=5000, + help="""Number of steps that affects how rapidly the learning rate + decreases. We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=6, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--inf-check", + type=str2bool, + default=False, + help="Add hooks to check for infinite module outputs and gradients.", + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=30, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=200, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=True, + help="Whether to use half precision training.", + ) + + parser = deepspeed.add_config_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - frame_shift_ms: The frame shift in milliseconds. + - allowed_excess_duration_ratio: The allowed excess duration ratio. + - best_train_loss: The best training loss so far. + - best_valid_loss: The best validation loss so far. + - best_train_epoch: The epoch where the best training loss is achieved. + - best_valid_epoch: The epoch where the best validation loss is achieved. + - batch_idx_train: The batch index of the current batch. + - log_interval: Log training stats every `log_interval` batches. + - reset_interval: Reset the stats every `reset_interval` batches. + - valid_interval: Run validation every `valid_interval` batches. + - env_info: The environment information. + """ + params = AttributeDict( + { + "frame_shift_ms": 10.0, + "subsampling_factor": 2, + "allowed_excess_duration_ratio": 0.1, + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 5000, + "env_info": get_env_info(), + } + ) + + return params + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + tokenizer: whisper.tokenizer.Tokenizer, + model: Union[nn.Module, DDP], + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute the loss for the given batch. + Args: + params: + It is returned by :func:`get_params`. + tokenizer: + The tokenizer used to encode the text. + model: + The model for training. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + Whether it is training. + Returns: + Return a tuple of two elements. The first element is the loss tensor. + """ + # For the uneven-sized batch, the total duration after padding would possibly + # cause OOM. Hence, for each batch, which is sorted descendingly by length, + # we simply drop the last few shortest samples, so that the retained total frames + # (after padding) would not exceed `allowed_max_frames`: + # `allowed_max_frames = int(max_frames * (1.0 + allowed_excess_duration_ratio))`, + # where `max_frames = max_duration * 1000 // frame_shift_ms`. + # We set allowed_excess_duration_ratio=0.1. + if isinstance(model, DDP): + # get underlying nn.Module + model = model.module + + def _batch_tensors(tensors: List[Tensor], pad_value: Any) -> Tensor: + padding_size = max(tensor.shape[0] for tensor in tensors) + dims = len(tensors[0].shape) + padded_tensors = [] + for tensor in tensors: + padding = [0] * 2 * dims + padding[-1] = padding_size - tensor.shape[0] + padded_tensors.append(pad_tensor(tensor, padding, "constant", pad_value)) + return torch.stack([tensor for tensor in padded_tensors], dim=0) + + max_frames = params.max_duration * 1000 // params.frame_shift_ms + allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio)) + batch = filter_uneven_sized_batch(batch, allowed_max_frames) + + device = model.device if isinstance(model, DDP) else next(model.parameters()).device + feature = batch["inputs"] + + assert feature.ndim == 3 + feature = feature.to(device) + feature = feature.transpose(1, 2) # (N, C, T) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + batch_idx_train = params.batch_idx_train + + texts = batch["supervisions"]["text"] + # remove spaces in texts + texts = [text.replace(" ", "") for text in texts] + + text_tokens_list = [ + list(tokenizer.sot_sequence_including_notimestamps) + + tokenizer.encode(text) + + [tokenizer.eot] + for text in texts + ] + # convert it to torch tensor + text_tokens_list = [ + torch.LongTensor(text_tokens) for text_tokens in text_tokens_list + ] + + # 50256 is the index of for all whisper models + prev_outputs_tokens = _batch_tensors( + [tokens[:-1] for tokens in text_tokens_list], pad_value=50256 + ) + target_tokens = _batch_tensors( + [tokens[1:] for tokens in text_tokens_list], pad_value=50256 + ) + target_lengths = torch.LongTensor( + [tokens.shape[0] - 1 for tokens in text_tokens_list] + ) + + decoder_criterion = LabelSmoothingLoss( + ignore_index=50256, label_smoothing=0.1, reduction="sum" + ) + + # ignore the first 3 tokens, which are always <|lang_id|>, <|transcibe|>, <|notimestampes|> + ignore_prefix_size = 3 + with torch.set_grad_enabled(is_training): + encoder_out = model.encoder(feature) + text_logits = model.decoder(prev_outputs_tokens.to(device), encoder_out) + text_logits = text_logits[:, ignore_prefix_size:, :] + target_tokens = target_tokens[:, ignore_prefix_size:] + loss = decoder_criterion(text_logits, target_tokens.to(device)) + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + tokenizer: whisper.tokenizer.Tokenizer, + model: Union[nn.Module, DDP], + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + tokenizer=tokenizer, + model=model, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + tokenizer: whisper.tokenizer.Tokenizer, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(train_dl): + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + if batch_idx % params.valid_interval == 0 and not params.print_diagnostics: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + tokenizer=tokenizer, + model=model, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + tokenizer=tokenizer, + model=model, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + if params.deepspeed: + # deepspeed's backward() is different from torch's backward() + # in that it does not accept a loss tensor as input. + # It computes the loss internally. + model.backward(loss) + model.step() + else: + scaler.scale(loss).backward() + set_batch_count(model, params.batch_idx_train) + scheduler.step_batch(params.batch_idx_train) + + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + except: # noqa + display_and_save_batch(batch, params=params) + raise + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + and not params.deepspeed + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if batch_idx % 100 == 0 and params.use_fp16 and not params.deepspeed: + # If the grad scale was less than 1, try increasing it. The _growth_interval + # of the grad scaler is configurable, but we can't configure it to have different + # behavior depending on the current grad scale. + cur_grad_scale = scaler._scale.item() + if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0): + scaler.update(cur_grad_scale * 2.0) + if cur_grad_scale < 0.01: + logging.warning(f"Grad scale is small: {cur_grad_scale}") + if cur_grad_scale < 1.0e-05: + raise RuntimeError( + f"grad_scale is too small, exiting: {cur_grad_scale}" + ) + if batch_idx % params.log_interval == 0: + try: + cur_lr = scheduler.get_last_lr()[0] + except: # noqa + cur_lr = 0.0 + cur_grad_scale = ( + scaler._scale.item() + if (params.use_fp16 and not params.deepspeed) + else 1.0 + ) + + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}, " + + ( + f"grad_scale: {scaler._scale.item()}" + if (params.use_fp16 and not params.deepspeed) + else "" + ) + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + if params.use_fp16: + tb_writer.add_scalar( + "train/grad_scale", + cur_grad_scale, + params.batch_idx_train, + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + + fix_random_seed(params.seed) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info(params) + + logging.info("About to create model") + + replace_whisper_encoder_forward() + model = whisper.load_model(params.model_name, "cpu") + del model.alignment_heads + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + tokenizer = whisper.tokenizer.get_tokenizer( + model.is_multilingual, + num_languages=model.num_languages, + language="zh", + task="transcribe", + ) + + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model).to(torch.float64) + + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + else: + device = torch.device("cpu") + logging.info(f"Device: {device}") + model.to(device) + + optimizer = torch.optim.AdamW(model.parameters(), lr=params.base_lr) + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if world_size > 1: + if params.deepspeed: + logging.info("Using DeepSpeed") + model, optimizer, _, scheduler = deepspeed.initialize( + args=params, model=model, model_parameters=model.parameters() + ) + else: + logging.info("Using DDP") + setup_dist(use_ddp_launch=True) + model = DDP(model, device_ids=[rank], find_unused_parameters=True) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 2**22 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + if params.inf_check: + register_inf_check_hooks(model) + + aishell = AishellAsrDataModule(args) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + train_dl = aishell.train_dataloaders(aishell.train_cuts()) + valid_dl = aishell.valid_dataloaders(aishell.valid_cuts()) + + scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + logging.info(f"start training from epoch {params.start_epoch}") + for epoch in range(params.start_epoch, params.num_epochs + 1): + if not params.deepspeed: + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + tokenizer=tokenizer, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + if params.deepspeed: + model.save_checkpoint( + save_dir=params.exp_dir, + tag=f"epoch-{params.cur_epoch}", + client_state={}, + ) + if rank == 0: + convert_zero_checkpoint_to_fp32_state_dict( + params.exp_dir, + f"{params.exp_dir}/epoch-{params.cur_epoch}.pt", + tag=f"epoch-{params.cur_epoch}", + ) + else: + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1 and not params.deepspeed: + torch.distributed.barrier() + cleanup_dist() + + +def display_and_save_batch( + batch: dict, + params: AttributeDict, +) -> None: + """Display the batch statistics and save the batch into disk. + + Args: + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + params: + Parameters for training. See :func:`get_params`. + """ + from lhotse.utils import uuid4 + + filename = f"{params.exp_dir}/batch-{uuid4()}.pt" + logging.info(f"Saving batch to {filename}") + torch.save(batch, filename) + + supervisions = batch["supervisions"] + features = batch["inputs"] + + logging.info(f"features shape: {features.shape}") + + +def main(): + parser = get_parser() + AishellAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = get_world_size() + rank = get_rank() + + torch.set_num_threads(1) + torch.set_num_interop_threads(1) + run(rank=rank, world_size=world_size, args=args) + + +if __name__ == "__main__": + main() diff --git a/egs/aishell/ASR/whisper/whisper_encoder_forward_monkey_patch.py b/egs/aishell/ASR/whisper/whisper_encoder_forward_monkey_patch.py new file mode 100644 index 000000000..5bfbdce3b --- /dev/null +++ b/egs/aishell/ASR/whisper/whisper_encoder_forward_monkey_patch.py @@ -0,0 +1,29 @@ +import torch +import torch.nn.functional as F +import whisper + + +def forward(self, x: torch.Tensor): + """ + x : torch.Tensor, shape = (batch_size, n_mels, n_ctx) + the mel spectrogram of the audio + """ + x = F.gelu(self.conv1(x)) + x = F.gelu(self.conv2(x)) + x = x.permute(0, 2, 1) + + x = (x + self.positional_embedding[: x.shape[1], :]).to(x.dtype) + + for block in self.blocks: + x = block(x) + + x = self.ln_post(x) + return x + + +def replace_whisper_encoder_forward(): + """ + This function monkey patches the forward method of the whisper encoder. + To be called before the model is loaded, it changes whisper to process audio with any length < 30s. + """ + whisper.model.AudioEncoder.forward = forward diff --git a/egs/librispeech/ASR/local/compute_fbank_musan.py b/egs/librispeech/ASR/local/compute_fbank_musan.py index 62036467e..d7781687f 100755 --- a/egs/librispeech/ASR/local/compute_fbank_musan.py +++ b/egs/librispeech/ASR/local/compute_fbank_musan.py @@ -22,16 +22,25 @@ It looks for manifests in the directory data/manifests. The generated fbank features are saved in data/fbank. """ - +import argparse import logging import os from pathlib import Path import torch -from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter, MonoCut, combine +from lhotse import ( + CutSet, + Fbank, + FbankConfig, + LilcomChunkyWriter, + MonoCut, + WhisperFbank, + WhisperFbankConfig, + combine, +) from lhotse.recipes.utils import read_manifests_if_cached -from icefall.utils import get_executor +from icefall.utils import get_executor, str2bool # Torch's multithreaded behavior needs to be disabled or # it wastes a lot of CPU and slow things down. @@ -45,11 +54,12 @@ def is_cut_long(c: MonoCut) -> bool: return c.duration > 5 -def compute_fbank_musan(): +def compute_fbank_musan( + num_mel_bins: int = 80, whisper_fbank: bool = False, output_dir: str = "data/fbank" +): src_dir = Path("data/manifests") - output_dir = Path("data/fbank") + output_dir = Path(output_dir) num_jobs = min(15, os.cpu_count()) - num_mel_bins = 80 dataset_parts = ( "music", @@ -81,7 +91,12 @@ def compute_fbank_musan(): logging.info("Extracting features for Musan") - extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) + if whisper_fbank: + extractor = WhisperFbank( + WhisperFbankConfig(num_filters=num_mel_bins, device="cuda") + ) + else: + extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) with get_executor() as ex: # Initialize the executor only once. # create chunks of Musan with duration 5 - 10 seconds @@ -102,8 +117,36 @@ def compute_fbank_musan(): musan_cuts.to_file(musan_cuts_path) +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--num-mel-bins", + type=int, + default=80, + help="""The number of mel bins for Fbank""", + ) + parser.add_argument( + "--whisper-fbank", + type=str2bool, + default=False, + help="Use WhisperFbank instead of Fbank. Default: False.", + ) + parser.add_argument( + "--output-dir", + type=str, + default="data/fbank", + help="Output directory. Default: data/fbank.", + ) + return parser.parse_args() + + if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) - compute_fbank_musan() + args = get_args() + compute_fbank_musan( + num_mel_bins=args.num_mel_bins, + whisper_fbank=args.whisper_fbank, + output_dir=args.output_dir, + ) diff --git a/icefall/dist.py b/icefall/dist.py index 922f31a2f..ee76e994a 100644 --- a/icefall/dist.py +++ b/icefall/dist.py @@ -22,7 +22,7 @@ from torch import distributed as dist def setup_dist( - rank, world_size, master_port=None, use_ddp_launch=False, master_addr=None + rank=None, world_size=None, master_port=None, use_ddp_launch=False, master_addr=None ): """ rank and world_size are used only if use_ddp_launch is False.