mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Remove all-in-one for onnx export (#614)
* Remove all-in-one for onnx export * Exit on error for CI
This commit is contained in:
parent
f3db4ea871
commit
1c07d2fb37
@ -4,6 +4,8 @@
|
||||
# The computed features are saved to ~/tmp/fbank-libri and are
|
||||
# cached for later runs
|
||||
|
||||
set -e
|
||||
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
echo $PYTHONPATH
|
||||
|
||||
|
@ -6,6 +6,8 @@
|
||||
# You will find directories `~/tmp/giga-dev-dataset-fbank` after running
|
||||
# this script.
|
||||
|
||||
set -e
|
||||
|
||||
mkdir -p ~/tmp
|
||||
cd ~/tmp
|
||||
|
||||
|
@ -7,6 +7,8 @@
|
||||
# You will find directories ~/tmp/download/LibriSpeech after running
|
||||
# this script.
|
||||
|
||||
set -e
|
||||
|
||||
mkdir ~/tmp/download
|
||||
cd egs/librispeech/ASR
|
||||
ln -s ~/tmp/download .
|
||||
|
2
.github/scripts/install-kaldifeat.sh
vendored
2
.github/scripts/install-kaldifeat.sh
vendored
@ -3,6 +3,8 @@
|
||||
# This script installs kaldifeat into the directory ~/tmp/kaldifeat
|
||||
# which is cached by GitHub actions for later runs.
|
||||
|
||||
set -e
|
||||
|
||||
mkdir -p ~/tmp
|
||||
cd ~/tmp
|
||||
git clone https://github.com/csukuangfj/kaldifeat
|
||||
|
@ -4,6 +4,8 @@
|
||||
# to egs/librispeech/ASR/download/LibriSpeech and generates manifest
|
||||
# files in egs/librispeech/ASR/data/manifests
|
||||
|
||||
set -e
|
||||
|
||||
cd egs/librispeech/ASR
|
||||
[ ! -e download ] && ln -s ~/tmp/download .
|
||||
mkdir -p data/manifests
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -1,4 +1,6 @@
|
||||
#!/usr/bin/env bash
|
||||
#
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
@ -62,15 +64,13 @@ log "Decode with ONNX models"
|
||||
--onnx-joiner-encoder-proj-filename $repo/exp/joiner_encoder_proj.onnx \
|
||||
--onnx-joiner-decoder-proj-filename $repo/exp/joiner_decoder_proj.onnx
|
||||
|
||||
./pruned_transducer_stateless3/onnx_check_all_in_one.py \
|
||||
--jit-filename $repo/exp/cpu_jit.pt \
|
||||
--onnx-all-in-one-filename $repo/exp/all_in_one.onnx
|
||||
|
||||
./pruned_transducer_stateless3/onnx_pretrained.py \
|
||||
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||
--encoder-model-filename $repo/exp/encoder.onnx \
|
||||
--decoder-model-filename $repo/exp/decoder.onnx \
|
||||
--joiner-model-filename $repo/exp/joiner.onnx \
|
||||
--joiner-encoder-proj-model-filename $repo/exp/joiner_encoder_proj.onnx \
|
||||
--joiner-decoder-proj-model-filename $repo/exp/joiner_decoder_proj.onnx \
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
|
@ -476,8 +476,8 @@ class ConformerEncoderLayer(nn.Module):
|
||||
self,
|
||||
src: Tensor,
|
||||
pos_emb: Tensor,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
warmup: float = 1.0,
|
||||
) -> Tensor:
|
||||
"""
|
||||
@ -486,8 +486,8 @@ class ConformerEncoderLayer(nn.Module):
|
||||
Args:
|
||||
src: the sequence to the encoder layer (required).
|
||||
pos_emb: Positional embedding tensor (required).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
warmup: controls selective bypass of of layers; if < 1.0, we will
|
||||
bypass layers more frequently.
|
||||
Shape:
|
||||
@ -663,8 +663,8 @@ class ConformerEncoder(nn.Module):
|
||||
self,
|
||||
src: Tensor,
|
||||
pos_emb: Tensor,
|
||||
mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
mask: Optional[Tensor] = None,
|
||||
warmup: float = 1.0,
|
||||
) -> Tensor:
|
||||
r"""Pass the input through the encoder layers in turn.
|
||||
@ -672,8 +672,8 @@ class ConformerEncoder(nn.Module):
|
||||
Args:
|
||||
src: the sequence to the encoder (required).
|
||||
pos_emb: Positional embedding tensor (required).
|
||||
mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
mask: the mask for the src sequence (optional).
|
||||
warmup: controls selective bypass of of layers; if < 1.0, we will
|
||||
bypass layers more frequently.
|
||||
|
||||
|
@ -62,7 +62,7 @@ It will generates 3 files: `encoder_jit_trace.pt`,
|
||||
--avg 10 \
|
||||
--onnx 1
|
||||
|
||||
It will generate the following six files in the given `exp_dir`.
|
||||
It will generate the following files in the given `exp_dir`.
|
||||
Check `onnx_check.py` for how to use them.
|
||||
|
||||
- encoder.onnx
|
||||
@ -70,8 +70,8 @@ Check `onnx_check.py` for how to use them.
|
||||
- joiner.onnx
|
||||
- joiner_encoder_proj.onnx
|
||||
- joiner_decoder_proj.onnx
|
||||
- all_in_one.onnx
|
||||
|
||||
Please see ./onnx_pretrained.py for usage of the generated files
|
||||
|
||||
(4) Export `model.state_dict()`
|
||||
|
||||
@ -118,8 +118,6 @@ import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import onnx_graphsurgeon as gs
|
||||
import onnx
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -217,16 +215,15 @@ def get_parser():
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""If True, --jit is ignored and it exports the model
|
||||
to onnx format. Three files will be generated:
|
||||
to onnx format. It will generate the following files:
|
||||
|
||||
- encoder.onnx
|
||||
- decoder.onnx
|
||||
- joiner.onnx
|
||||
- joiner_encoder_proj.onnx
|
||||
- joiner_decoder_proj.onnx
|
||||
- all_in_one.onnx
|
||||
|
||||
Check ./onnx_check.py and ./onnx_pretrained.py for how to use them.
|
||||
Refer to ./onnx_check.py and ./onnx_pretrained.py for how to use them.
|
||||
""",
|
||||
)
|
||||
|
||||
@ -483,134 +480,99 @@ def export_joiner_model_onnx(
|
||||
opset_version: int = 11,
|
||||
) -> None:
|
||||
"""Export the joiner model to ONNX format.
|
||||
The exported model has two inputs:
|
||||
The exported joiner model has two inputs:
|
||||
|
||||
- projected_encoder_out: a tensor of shape (N, joiner_dim)
|
||||
- projected_decoder_out: a tensor of shape (N, joiner_dim)
|
||||
|
||||
and produces one output:
|
||||
|
||||
- logit: a tensor of shape (N, vocab_size)
|
||||
|
||||
The exported encoder_proj model has one input:
|
||||
|
||||
- encoder_out: a tensor of shape (N, encoder_out_dim)
|
||||
|
||||
and produces one output:
|
||||
|
||||
- projected_encoder_out: a tensor of shape (N, joiner_dim)
|
||||
|
||||
The exported decoder_proj model has one input:
|
||||
|
||||
- decoder_out: a tensor of shape (N, decoder_out_dim)
|
||||
|
||||
and has one output:
|
||||
|
||||
- joiner_out: a tensor of shape (N, vocab_size)
|
||||
and produces one output:
|
||||
|
||||
- projected_decoder_out: a tensor of shape (N, joiner_dim)
|
||||
"""
|
||||
encoder_proj_filename = str(joiner_filename).replace(
|
||||
".onnx", "_encoder_proj.onnx"
|
||||
)
|
||||
|
||||
decoder_proj_filename = str(joiner_filename).replace(
|
||||
".onnx", "_decoder_proj.onnx"
|
||||
)
|
||||
|
||||
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
|
||||
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
|
||||
encoder_out = torch.rand(1, 1, 1, encoder_out_dim, dtype=torch.float32)
|
||||
decoder_out = torch.rand(1, 1, 1, decoder_out_dim, dtype=torch.float32)
|
||||
joiner_dim = joiner_model.decoder_proj.weight.shape[0]
|
||||
|
||||
project_input = True
|
||||
projected_encoder_out = torch.rand(1, joiner_dim, dtype=torch.float32)
|
||||
projected_decoder_out = torch.rand(1, joiner_dim, dtype=torch.float32)
|
||||
|
||||
project_input = False
|
||||
# Note: It uses torch.jit.trace() internally
|
||||
torch.onnx.export(
|
||||
joiner_model,
|
||||
(encoder_out, decoder_out, project_input),
|
||||
(projected_encoder_out, projected_decoder_out, project_input),
|
||||
joiner_filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["encoder_out", "decoder_out", "project_input"],
|
||||
input_names=[
|
||||
"projected_encoder_out",
|
||||
"projected_decoder_out",
|
||||
"project_input",
|
||||
],
|
||||
output_names=["logit"],
|
||||
dynamic_axes={
|
||||
"encoder_out": {0: "N"},
|
||||
"decoder_out": {0: "N"},
|
||||
"projected_encoder_out": {0: "N"},
|
||||
"projected_decoder_out": {0: "N"},
|
||||
"logit": {0: "N"},
|
||||
},
|
||||
)
|
||||
torch.onnx.export(
|
||||
joiner_model.encoder_proj,
|
||||
(encoder_out.squeeze(0).squeeze(0)),
|
||||
str(joiner_filename).replace(".onnx", "_encoder_proj.onnx"),
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["encoder_out"],
|
||||
output_names=["encoder_proj"],
|
||||
dynamic_axes={
|
||||
"encoder_out": {0: "N"},
|
||||
"encoder_proj": {0: "N"},
|
||||
},
|
||||
)
|
||||
torch.onnx.export(
|
||||
joiner_model.decoder_proj,
|
||||
(decoder_out.squeeze(0).squeeze(0)),
|
||||
str(joiner_filename).replace(".onnx", "_decoder_proj.onnx"),
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["decoder_out"],
|
||||
output_names=["decoder_proj"],
|
||||
dynamic_axes={
|
||||
"decoder_out": {0: "N"},
|
||||
"decoder_proj": {0: "N"},
|
||||
},
|
||||
)
|
||||
logging.info(f"Saved to {joiner_filename}")
|
||||
|
||||
|
||||
def add_variables(
|
||||
model: nn.Module, combined_model: onnx.ModelProto
|
||||
) -> onnx.ModelProto:
|
||||
graph = gs.import_onnx(combined_model)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
unk_id = getattr(model, "unk_id", blank_id)
|
||||
context_size = model.decoder.context_size
|
||||
|
||||
node = gs.Node(
|
||||
op="Identity",
|
||||
name="constants_lm",
|
||||
attrs={
|
||||
"blank_id": blank_id,
|
||||
"unk_id": unk_id,
|
||||
"context_size": context_size,
|
||||
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
|
||||
torch.onnx.export(
|
||||
joiner_model.encoder_proj,
|
||||
encoder_out,
|
||||
encoder_proj_filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["encoder_out"],
|
||||
output_names=["projected_encoder_out"],
|
||||
dynamic_axes={
|
||||
"encoder_out": {0: "N"},
|
||||
"projected_encoder_out": {0: "N"},
|
||||
},
|
||||
inputs=[],
|
||||
outputs=[],
|
||||
)
|
||||
graph.nodes.append(node)
|
||||
logging.info(f"Saved to {encoder_proj_filename}")
|
||||
|
||||
graph = gs.export_onnx(graph)
|
||||
return graph
|
||||
|
||||
|
||||
def export_all_in_one_onnx(
|
||||
model: nn.Module,
|
||||
encoder_filename: str,
|
||||
decoder_filename: str,
|
||||
joiner_filename: str,
|
||||
all_in_one_filename: str,
|
||||
):
|
||||
encoder_onnx = onnx.load(encoder_filename)
|
||||
decoder_onnx = onnx.load(decoder_filename)
|
||||
joiner_onnx = onnx.load(joiner_filename)
|
||||
joiner_encoder_proj_onnx = onnx.load(
|
||||
str(joiner_filename).replace(".onnx", "_encoder_proj.onnx")
|
||||
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
|
||||
torch.onnx.export(
|
||||
joiner_model.decoder_proj,
|
||||
decoder_out,
|
||||
decoder_proj_filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["decoder_out"],
|
||||
output_names=["projected_decoder_out"],
|
||||
dynamic_axes={
|
||||
"decoder_out": {0: "N"},
|
||||
"projected_decoder_out": {0: "N"},
|
||||
},
|
||||
)
|
||||
joiner_decoder_proj_onnx = onnx.load(
|
||||
str(joiner_filename).replace(".onnx", "_decoder_proj.onnx")
|
||||
)
|
||||
|
||||
encoder_onnx = onnx.compose.add_prefix(encoder_onnx, prefix="encoder/")
|
||||
decoder_onnx = onnx.compose.add_prefix(decoder_onnx, prefix="decoder/")
|
||||
joiner_onnx = onnx.compose.add_prefix(joiner_onnx, prefix="joiner/")
|
||||
joiner_encoder_proj_onnx = onnx.compose.add_prefix(
|
||||
joiner_encoder_proj_onnx, prefix="joiner_encoder_proj/"
|
||||
)
|
||||
joiner_decoder_proj_onnx = onnx.compose.add_prefix(
|
||||
joiner_decoder_proj_onnx, prefix="joiner_decoder_proj/"
|
||||
)
|
||||
|
||||
combined_model = onnx.compose.merge_models(
|
||||
encoder_onnx, decoder_onnx, io_map={}
|
||||
)
|
||||
combined_model = onnx.compose.merge_models(
|
||||
combined_model, joiner_onnx, io_map={}
|
||||
)
|
||||
combined_model = onnx.compose.merge_models(
|
||||
combined_model, joiner_encoder_proj_onnx, io_map={}
|
||||
)
|
||||
combined_model = onnx.compose.merge_models(
|
||||
combined_model, joiner_decoder_proj_onnx, io_map={}
|
||||
)
|
||||
combined_model = add_variables(model, combined_model)
|
||||
onnx.save(combined_model, all_in_one_filename)
|
||||
logging.info(f"Saved to {all_in_one_filename}")
|
||||
logging.info(f"Saved to {decoder_proj_filename}")
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@ -704,15 +666,6 @@ def main():
|
||||
joiner_filename,
|
||||
opset_version=opset_version,
|
||||
)
|
||||
|
||||
all_in_one_filename = params.exp_dir / "all_in_one.onnx"
|
||||
export_all_in_one_onnx(
|
||||
model,
|
||||
encoder_filename,
|
||||
decoder_filename,
|
||||
joiner_filename,
|
||||
all_in_one_filename,
|
||||
)
|
||||
elif params.jit is True:
|
||||
convert_scaled_to_non_scaled(model, inplace=True)
|
||||
logging.info("Using torch.jit.script()")
|
||||
|
@ -84,11 +84,13 @@ def test_encoder(
|
||||
model: torch.jit.ScriptModule,
|
||||
encoder_session: ort.InferenceSession,
|
||||
):
|
||||
encoder_inputs = encoder_session.get_inputs()
|
||||
assert encoder_inputs[0].name == "x"
|
||||
assert encoder_inputs[1].name == "x_lens"
|
||||
assert encoder_inputs[0].shape == ["N", "T", 80]
|
||||
assert encoder_inputs[1].shape == ["N"]
|
||||
inputs = encoder_session.get_inputs()
|
||||
outputs = encoder_session.get_outputs()
|
||||
input_names = [n.name for n in inputs]
|
||||
output_names = [n.name for n in outputs]
|
||||
|
||||
assert inputs[0].shape == ["N", "T", 80]
|
||||
assert inputs[1].shape == ["N"]
|
||||
|
||||
for N in [1, 5]:
|
||||
for T in [12, 25]:
|
||||
@ -98,11 +100,11 @@ def test_encoder(
|
||||
x_lens[0] = T
|
||||
|
||||
encoder_inputs = {
|
||||
"x": x.numpy(),
|
||||
"x_lens": x_lens.numpy(),
|
||||
input_names[0]: x.numpy(),
|
||||
input_names[1]: x_lens.numpy(),
|
||||
}
|
||||
encoder_out, encoder_out_lens = encoder_session.run(
|
||||
["encoder_out", "encoder_out_lens"],
|
||||
output_names,
|
||||
encoder_inputs,
|
||||
)
|
||||
|
||||
@ -110,7 +112,9 @@ def test_encoder(
|
||||
|
||||
encoder_out = torch.from_numpy(encoder_out)
|
||||
assert torch.allclose(encoder_out, torch_encoder_out, atol=1e-05), (
|
||||
(encoder_out - torch_encoder_out).abs().max()
|
||||
(encoder_out - torch_encoder_out).abs().max(),
|
||||
encoder_out.shape,
|
||||
torch_encoder_out.shape,
|
||||
)
|
||||
|
||||
|
||||
@ -118,15 +122,18 @@ def test_decoder(
|
||||
model: torch.jit.ScriptModule,
|
||||
decoder_session: ort.InferenceSession,
|
||||
):
|
||||
decoder_inputs = decoder_session.get_inputs()
|
||||
assert decoder_inputs[0].name == "y"
|
||||
assert decoder_inputs[0].shape == ["N", 2]
|
||||
inputs = decoder_session.get_inputs()
|
||||
outputs = decoder_session.get_outputs()
|
||||
input_names = [n.name for n in inputs]
|
||||
output_names = [n.name for n in outputs]
|
||||
|
||||
assert inputs[0].shape == ["N", 2]
|
||||
for N in [1, 5, 10]:
|
||||
y = torch.randint(low=1, high=500, size=(10, 2))
|
||||
|
||||
decoder_inputs = {"y": y.numpy()}
|
||||
decoder_inputs = {input_names[0]: y.numpy()}
|
||||
decoder_out = decoder_session.run(
|
||||
["decoder_out"],
|
||||
output_names,
|
||||
decoder_inputs,
|
||||
)[0]
|
||||
decoder_out = torch.from_numpy(decoder_out)
|
||||
@ -144,51 +151,62 @@ def test_joiner(
|
||||
joiner_decoder_proj_session: ort.InferenceSession,
|
||||
):
|
||||
joiner_inputs = joiner_session.get_inputs()
|
||||
assert joiner_inputs[0].name == "encoder_out"
|
||||
assert joiner_inputs[0].shape == ["N", 1, 1, 512]
|
||||
joiner_outputs = joiner_session.get_outputs()
|
||||
joiner_input_names = [n.name for n in joiner_inputs]
|
||||
joiner_output_names = [n.name for n in joiner_outputs]
|
||||
|
||||
assert joiner_inputs[1].name == "decoder_out"
|
||||
assert joiner_inputs[1].shape == ["N", 1, 1, 512]
|
||||
assert joiner_inputs[0].shape == ["N", 512]
|
||||
assert joiner_inputs[1].shape == ["N", 512]
|
||||
|
||||
joiner_encoder_proj_inputs = joiner_encoder_proj_session.get_inputs()
|
||||
assert joiner_encoder_proj_inputs[0].name == "encoder_out"
|
||||
encoder_proj_input_name = joiner_encoder_proj_inputs[0].name
|
||||
|
||||
assert joiner_encoder_proj_inputs[0].shape == ["N", 512]
|
||||
|
||||
joiner_encoder_proj_outputs = joiner_encoder_proj_session.get_outputs()
|
||||
encoder_proj_output_name = joiner_encoder_proj_outputs[0].name
|
||||
|
||||
joiner_decoder_proj_inputs = joiner_decoder_proj_session.get_inputs()
|
||||
assert joiner_decoder_proj_inputs[0].name == "decoder_out"
|
||||
decoder_proj_input_name = joiner_decoder_proj_inputs[0].name
|
||||
|
||||
assert joiner_decoder_proj_inputs[0].shape == ["N", 512]
|
||||
|
||||
joiner_decoder_proj_outputs = joiner_decoder_proj_session.get_outputs()
|
||||
decoder_proj_output_name = joiner_decoder_proj_outputs[0].name
|
||||
|
||||
for N in [1, 5, 10]:
|
||||
encoder_out = torch.rand(N, 1, 1, 512)
|
||||
decoder_out = torch.rand(N, 1, 1, 512)
|
||||
encoder_out = torch.rand(N, 512)
|
||||
decoder_out = torch.rand(N, 512)
|
||||
|
||||
projected_encoder_out = torch.rand(N, 512)
|
||||
projected_decoder_out = torch.rand(N, 512)
|
||||
|
||||
joiner_inputs = {
|
||||
"encoder_out": encoder_out.numpy(),
|
||||
"decoder_out": decoder_out.numpy(),
|
||||
joiner_input_names[0]: projected_encoder_out.numpy(),
|
||||
joiner_input_names[1]: projected_decoder_out.numpy(),
|
||||
}
|
||||
joiner_out = joiner_session.run(["logit"], joiner_inputs)[0]
|
||||
joiner_out = joiner_session.run(joiner_output_names, joiner_inputs)[0]
|
||||
joiner_out = torch.from_numpy(joiner_out)
|
||||
|
||||
torch_joiner_out = model.joiner(
|
||||
encoder_out,
|
||||
decoder_out,
|
||||
project_input=True,
|
||||
projected_encoder_out,
|
||||
projected_decoder_out,
|
||||
project_input=False,
|
||||
)
|
||||
assert torch.allclose(joiner_out, torch_joiner_out, atol=1e-5), (
|
||||
(joiner_out - torch_joiner_out).abs().max()
|
||||
)
|
||||
|
||||
# Now test encoder_proj
|
||||
joiner_encoder_proj_inputs = {
|
||||
"encoder_out": encoder_out.squeeze(1).squeeze(1).numpy()
|
||||
encoder_proj_input_name: encoder_out.numpy()
|
||||
}
|
||||
joiner_encoder_proj_out = joiner_encoder_proj_session.run(
|
||||
["encoder_proj"], joiner_encoder_proj_inputs
|
||||
[encoder_proj_output_name], joiner_encoder_proj_inputs
|
||||
)[0]
|
||||
joiner_encoder_proj_out = torch.from_numpy(joiner_encoder_proj_out)
|
||||
|
||||
torch_joiner_encoder_proj_out = model.joiner.encoder_proj(
|
||||
encoder_out.squeeze(1).squeeze(1)
|
||||
)
|
||||
torch_joiner_encoder_proj_out = model.joiner.encoder_proj(encoder_out)
|
||||
assert torch.allclose(
|
||||
joiner_encoder_proj_out, torch_joiner_encoder_proj_out, atol=1e-5
|
||||
), (
|
||||
@ -197,17 +215,16 @@ def test_joiner(
|
||||
.max()
|
||||
)
|
||||
|
||||
# Now test decoder_proj
|
||||
joiner_decoder_proj_inputs = {
|
||||
"decoder_out": decoder_out.squeeze(1).squeeze(1).numpy()
|
||||
decoder_proj_input_name: decoder_out.numpy()
|
||||
}
|
||||
joiner_decoder_proj_out = joiner_decoder_proj_session.run(
|
||||
["decoder_proj"], joiner_decoder_proj_inputs
|
||||
[decoder_proj_output_name], joiner_decoder_proj_inputs
|
||||
)[0]
|
||||
joiner_decoder_proj_out = torch.from_numpy(joiner_decoder_proj_out)
|
||||
|
||||
torch_joiner_decoder_proj_out = model.joiner.decoder_proj(
|
||||
decoder_out.squeeze(1).squeeze(1)
|
||||
)
|
||||
torch_joiner_decoder_proj_out = model.joiner.decoder_proj(decoder_out)
|
||||
assert torch.allclose(
|
||||
joiner_decoder_proj_out, torch_joiner_decoder_proj_out, atol=1e-5
|
||||
), (
|
||||
|
@ -1,284 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Yunus Emre Ozkose)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script checks that exported onnx models produce the same output
|
||||
with the given torchscript model for the same input.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
|
||||
import onnx
|
||||
import onnx_graphsurgeon as gs
|
||||
import onnxruntime
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
|
||||
ort.set_default_logger_severity(3)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit-filename",
|
||||
required=True,
|
||||
type=str,
|
||||
help="Path to the torchscript model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--onnx-all-in-one-filename",
|
||||
required=True,
|
||||
type=str,
|
||||
help="Path to the onnx all in one model",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def test_encoder(
|
||||
model: torch.jit.ScriptModule,
|
||||
encoder_session: ort.InferenceSession,
|
||||
):
|
||||
encoder_inputs = encoder_session.get_inputs()
|
||||
assert encoder_inputs[0].shape == ["N", "T", 80]
|
||||
assert encoder_inputs[1].shape == ["N"]
|
||||
encoder_input_names = [i.name for i in encoder_inputs]
|
||||
encoder_output_names = [i.name for i in encoder_session.get_outputs()]
|
||||
|
||||
for N in [1, 5]:
|
||||
for T in [12, 25]:
|
||||
print("N, T", N, T)
|
||||
x = torch.rand(N, T, 80, dtype=torch.float32)
|
||||
x_lens = torch.randint(low=10, high=T + 1, size=(N,))
|
||||
x_lens[0] = T
|
||||
|
||||
encoder_inputs = {
|
||||
encoder_input_names[0]: x.numpy(),
|
||||
encoder_input_names[1]: x_lens.numpy(),
|
||||
}
|
||||
encoder_out, encoder_out_lens = encoder_session.run(
|
||||
[encoder_output_names[1], encoder_output_names[0]],
|
||||
encoder_inputs,
|
||||
)
|
||||
|
||||
torch_encoder_out, torch_encoder_out_lens = model.encoder(x, x_lens)
|
||||
|
||||
encoder_out = torch.from_numpy(encoder_out)
|
||||
assert torch.allclose(encoder_out, torch_encoder_out, atol=1e-05), (
|
||||
(encoder_out - torch_encoder_out).abs().max()
|
||||
)
|
||||
|
||||
|
||||
def test_decoder(
|
||||
model: torch.jit.ScriptModule,
|
||||
decoder_session: ort.InferenceSession,
|
||||
):
|
||||
decoder_inputs = decoder_session.get_inputs()
|
||||
assert decoder_inputs[0].shape == ["N", 2]
|
||||
decoder_input_names = [i.name for i in decoder_inputs]
|
||||
decoder_output_names = [i.name for i in decoder_session.get_outputs()]
|
||||
|
||||
for N in [1, 5, 10]:
|
||||
y = torch.randint(low=1, high=500, size=(10, 2))
|
||||
|
||||
decoder_inputs = {decoder_input_names[0]: y.numpy()}
|
||||
decoder_out = decoder_session.run(
|
||||
[decoder_output_names[0]],
|
||||
decoder_inputs,
|
||||
)[0]
|
||||
decoder_out = torch.from_numpy(decoder_out)
|
||||
|
||||
torch_decoder_out = model.decoder(y, need_pad=False)
|
||||
assert torch.allclose(decoder_out, torch_decoder_out, atol=1e-5), (
|
||||
(decoder_out - torch_decoder_out).abs().max()
|
||||
)
|
||||
|
||||
|
||||
def test_joiner(
|
||||
model: torch.jit.ScriptModule,
|
||||
joiner_session: ort.InferenceSession,
|
||||
):
|
||||
joiner_inputs = joiner_session.get_inputs()
|
||||
assert joiner_inputs[0].shape == ["N", 512]
|
||||
assert joiner_inputs[1].shape == ["N", 512]
|
||||
joiner_input_names = [i.name for i in joiner_inputs]
|
||||
joiner_output_names = [i.name for i in joiner_session.get_outputs()]
|
||||
|
||||
for N in [1, 5, 10]:
|
||||
encoder_out = torch.rand(N, 512)
|
||||
decoder_out = torch.rand(N, 512)
|
||||
|
||||
joiner_inputs = {
|
||||
joiner_input_names[0]: encoder_out.numpy(),
|
||||
joiner_input_names[1]: decoder_out.numpy(),
|
||||
}
|
||||
joiner_out = joiner_session.run(
|
||||
[joiner_output_names[0]], joiner_inputs
|
||||
)[0]
|
||||
joiner_out = torch.from_numpy(joiner_out)
|
||||
|
||||
torch_joiner_out = model.joiner(
|
||||
encoder_out,
|
||||
decoder_out,
|
||||
project_input=True,
|
||||
)
|
||||
assert torch.allclose(joiner_out, torch_joiner_out, atol=1e-5), (
|
||||
(joiner_out - torch_joiner_out).abs().max()
|
||||
)
|
||||
|
||||
|
||||
def extract_sub_model(
|
||||
onnx_graph: onnx.ModelProto,
|
||||
input_op_names: list,
|
||||
output_op_names: list,
|
||||
non_verbose=False,
|
||||
):
|
||||
onnx_graph = onnx.shape_inference.infer_shapes(onnx_graph)
|
||||
graph = gs.import_onnx(onnx_graph)
|
||||
graph.cleanup().toposort()
|
||||
|
||||
# Extraction of input OP and output OP
|
||||
graph_node_inputs = [
|
||||
graph_nodes
|
||||
for graph_nodes in graph.nodes
|
||||
for graph_nodes_input in graph_nodes.inputs
|
||||
if graph_nodes_input.name in input_op_names
|
||||
]
|
||||
graph_node_outputs = [
|
||||
graph_nodes
|
||||
for graph_nodes in graph.nodes
|
||||
for graph_nodes_output in graph_nodes.outputs
|
||||
if graph_nodes_output.name in output_op_names
|
||||
]
|
||||
|
||||
# Init graph INPUT/OUTPUT
|
||||
graph.inputs.clear()
|
||||
graph.outputs.clear()
|
||||
|
||||
# Update graph INPUT/OUTPUT
|
||||
graph.inputs = [
|
||||
graph_node_input
|
||||
for graph_node in graph_node_inputs
|
||||
for graph_node_input in graph_node.inputs
|
||||
if graph_node_input.shape
|
||||
]
|
||||
graph.outputs = [
|
||||
graph_node_output
|
||||
for graph_node in graph_node_outputs
|
||||
for graph_node_output in graph_node.outputs
|
||||
]
|
||||
|
||||
# Cleanup
|
||||
graph.cleanup().toposort()
|
||||
|
||||
# Shape Estimation
|
||||
extracted_graph = None
|
||||
try:
|
||||
extracted_graph = onnx.shape_inference.infer_shapes(
|
||||
gs.export_onnx(graph)
|
||||
)
|
||||
except Exception:
|
||||
extracted_graph = gs.export_onnx(graph)
|
||||
if not non_verbose:
|
||||
print(
|
||||
"WARNING: "
|
||||
+ "The input shape of the next OP does not match the output shape. "
|
||||
+ "Be sure to open the .onnx file to verify the certainty of the geometry."
|
||||
)
|
||||
return extracted_graph
|
||||
|
||||
|
||||
def extract_encoder(onnx_model: onnx.ModelProto):
|
||||
encoder_ = extract_sub_model(
|
||||
onnx_model,
|
||||
["encoder/x", "encoder/x_lens"],
|
||||
["encoder/encoder_out", "encoder/encoder_out_lens"],
|
||||
False,
|
||||
)
|
||||
onnx.save(encoder_, "tmp_encoder.onnx")
|
||||
onnx.checker.check_model(encoder_)
|
||||
sess = onnxruntime.InferenceSession("tmp_encoder.onnx")
|
||||
os.remove("tmp_encoder.onnx")
|
||||
return sess
|
||||
|
||||
|
||||
def extract_decoder(onnx_model: onnx.ModelProto):
|
||||
decoder_ = extract_sub_model(
|
||||
onnx_model, ["decoder/y"], ["decoder/decoder_out"], False
|
||||
)
|
||||
onnx.save(decoder_, "tmp_decoder.onnx")
|
||||
onnx.checker.check_model(decoder_)
|
||||
sess = onnxruntime.InferenceSession("tmp_decoder.onnx")
|
||||
os.remove("tmp_decoder.onnx")
|
||||
return sess
|
||||
|
||||
|
||||
def extract_joiner(onnx_model: onnx.ModelProto):
|
||||
joiner_ = extract_sub_model(
|
||||
onnx_model,
|
||||
["joiner/encoder_out", "joiner/decoder_out"],
|
||||
["joiner/logit"],
|
||||
False,
|
||||
)
|
||||
onnx.save(joiner_, "tmp_joiner.onnx")
|
||||
onnx.checker.check_model(joiner_)
|
||||
sess = onnxruntime.InferenceSession("tmp_joiner.onnx")
|
||||
os.remove("tmp_joiner.onnx")
|
||||
return sess
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
logging.info(vars(args))
|
||||
|
||||
model = torch.jit.load(args.jit_filename)
|
||||
onnx_model = onnx.load(args.onnx_all_in_one_filename)
|
||||
|
||||
options = ort.SessionOptions()
|
||||
options.inter_op_num_threads = 1
|
||||
options.intra_op_num_threads = 1
|
||||
|
||||
logging.info("Test encoder")
|
||||
encoder_session = extract_encoder(onnx_model)
|
||||
test_encoder(model, encoder_session)
|
||||
|
||||
logging.info("Test decoder")
|
||||
decoder_session = extract_decoder(onnx_model)
|
||||
test_decoder(model, decoder_session)
|
||||
|
||||
logging.info("Test joiner")
|
||||
joiner_session = extract_joiner(onnx_model)
|
||||
test_joiner(model, joiner_session)
|
||||
logging.info("Finished checking ONNX models")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(20220727)
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -59,21 +59,35 @@ def get_parser():
|
||||
"--encoder-model-filename",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the encoder torchscript model. ",
|
||||
help="Path to the encoder onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoder-model-filename",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the decoder torchscript model. ",
|
||||
help="Path to the decoder onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--joiner-model-filename",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the joiner torchscript model. ",
|
||||
help="Path to the joiner onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--joiner-encoder-proj-model-filename",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the joiner encoder_proj onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--joiner-decoder-proj-model-filename",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the joiner decoder_proj onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -136,6 +150,8 @@ def read_sound_files(
|
||||
def greedy_search(
|
||||
decoder: ort.InferenceSession,
|
||||
joiner: ort.InferenceSession,
|
||||
joiner_encoder_proj: ort.InferenceSession,
|
||||
joiner_decoder_proj: ort.InferenceSession,
|
||||
encoder_out: np.ndarray,
|
||||
encoder_out_lens: np.ndarray,
|
||||
context_size: int,
|
||||
@ -146,6 +162,10 @@ def greedy_search(
|
||||
The decoder model.
|
||||
joiner:
|
||||
The joiner model.
|
||||
joiner_encoder_proj:
|
||||
The joiner encoder projection model.
|
||||
joiner_decoder_proj:
|
||||
The joiner decoder projection model.
|
||||
encoder_out:
|
||||
A 3-D tensor of shape (N, T, C)
|
||||
encoder_out_lens:
|
||||
@ -167,6 +187,15 @@ def greedy_search(
|
||||
enforce_sorted=False,
|
||||
)
|
||||
|
||||
projected_encoder_out = joiner_encoder_proj.run(
|
||||
[joiner_encoder_proj.get_outputs()[0].name],
|
||||
{
|
||||
joiner_encoder_proj.get_inputs()[
|
||||
0
|
||||
].name: packed_encoder_out.data.numpy()
|
||||
},
|
||||
)[0]
|
||||
|
||||
blank_id = 0 # hard-code to 0
|
||||
|
||||
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
||||
@ -194,30 +223,28 @@ def greedy_search(
|
||||
decoder_input_nodes[0].name: decoder_input.numpy(),
|
||||
},
|
||||
)[0].squeeze(1)
|
||||
decoder_out = torch.from_numpy(decoder_out)
|
||||
projected_decoder_out = joiner_decoder_proj.run(
|
||||
[joiner_decoder_proj.get_outputs()[0].name],
|
||||
{joiner_decoder_proj.get_inputs()[0].name: decoder_out},
|
||||
)[0]
|
||||
|
||||
projected_decoder_out = torch.from_numpy(projected_decoder_out)
|
||||
|
||||
offset = 0
|
||||
for batch_size in batch_size_list:
|
||||
start = offset
|
||||
end = offset + batch_size
|
||||
current_encoder_out = packed_encoder_out.data[start:end]
|
||||
current_encoder_out = current_encoder_out
|
||||
current_encoder_out = projected_encoder_out[start:end]
|
||||
# current_encoder_out's shape: (batch_size, encoder_out_dim)
|
||||
offset = end
|
||||
|
||||
decoder_out = decoder_out[:batch_size]
|
||||
projected_decoder_out = projected_decoder_out[:batch_size]
|
||||
|
||||
logits = joiner.run(
|
||||
[joiner_output_nodes[0].name],
|
||||
{
|
||||
joiner_input_nodes[0]
|
||||
.name: current_encoder_out.unsqueeze(1)
|
||||
.unsqueeze(1)
|
||||
.numpy(),
|
||||
joiner_input_nodes[1]
|
||||
.name: decoder_out.unsqueeze(1)
|
||||
.unsqueeze(1)
|
||||
.numpy(),
|
||||
joiner_input_nodes[0].name: current_encoder_out,
|
||||
joiner_input_nodes[1].name: projected_decoder_out.numpy(),
|
||||
},
|
||||
)[0]
|
||||
logits = torch.from_numpy(logits).squeeze(1).squeeze(1)
|
||||
@ -243,7 +270,11 @@ def greedy_search(
|
||||
decoder_input_nodes[0].name: decoder_input.numpy(),
|
||||
},
|
||||
)[0].squeeze(1)
|
||||
decoder_out = torch.from_numpy(decoder_out)
|
||||
projected_decoder_out = joiner_decoder_proj.run(
|
||||
[joiner_decoder_proj.get_outputs()[0].name],
|
||||
{joiner_decoder_proj.get_inputs()[0].name: decoder_out},
|
||||
)[0]
|
||||
projected_decoder_out = torch.from_numpy(projected_decoder_out)
|
||||
|
||||
sorted_ans = [h[context_size:] for h in hyps]
|
||||
ans = []
|
||||
@ -279,6 +310,16 @@ def main():
|
||||
sess_options=session_opts,
|
||||
)
|
||||
|
||||
joiner_encoder_proj = ort.InferenceSession(
|
||||
args.joiner_encoder_proj_model_filename,
|
||||
sess_options=session_opts,
|
||||
)
|
||||
|
||||
joiner_decoder_proj = ort.InferenceSession(
|
||||
args.joiner_decoder_proj_model_filename,
|
||||
sess_options=session_opts,
|
||||
)
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(args.bpe_model)
|
||||
|
||||
@ -323,6 +364,8 @@ def main():
|
||||
hyps = greedy_search(
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
joiner_encoder_proj=joiner_encoder_proj,
|
||||
joiner_decoder_proj=joiner_decoder_proj,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
context_size=args.context_size,
|
||||
|
401
egs/librispeech/ASR/pruned_transducer_stateless3/test_onnx.py
Executable file
401
egs/librispeech/ASR/pruned_transducer_stateless3/test_onnx.py
Executable file
@ -0,0 +1,401 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file is to test that models can be exported to onnx.
|
||||
"""
|
||||
import os
|
||||
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
from conformer import (
|
||||
Conformer,
|
||||
ConformerEncoder,
|
||||
ConformerEncoderLayer,
|
||||
Conv2dSubsampling,
|
||||
RelPositionalEncoding,
|
||||
)
|
||||
from scaling_converter import convert_scaled_to_non_scaled
|
||||
|
||||
from icefall.utils import make_pad_mask
|
||||
|
||||
ort.set_default_logger_severity(3)
|
||||
|
||||
|
||||
def test_conv2d_subsampling():
|
||||
filename = "conv2d_subsampling.onnx"
|
||||
opset_version = 11
|
||||
N = 30
|
||||
T = 50
|
||||
num_features = 80
|
||||
d_model = 512
|
||||
x = torch.rand(N, T, num_features)
|
||||
|
||||
encoder_embed = Conv2dSubsampling(num_features, d_model)
|
||||
encoder_embed.eval()
|
||||
encoder_embed = convert_scaled_to_non_scaled(encoder_embed, inplace=True)
|
||||
|
||||
jit_model = torch.jit.trace(encoder_embed, x)
|
||||
|
||||
torch.onnx.export(
|
||||
encoder_embed,
|
||||
x,
|
||||
filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["x"],
|
||||
output_names=["y"],
|
||||
dynamic_axes={
|
||||
"x": {0: "N", 1: "T"},
|
||||
"y": {0: "N", 1: "T"},
|
||||
},
|
||||
)
|
||||
|
||||
options = ort.SessionOptions()
|
||||
options.inter_op_num_threads = 1
|
||||
options.intra_op_num_threads = 1
|
||||
|
||||
session = ort.InferenceSession(
|
||||
filename,
|
||||
sess_options=options,
|
||||
)
|
||||
|
||||
input_nodes = session.get_inputs()
|
||||
assert input_nodes[0].name == "x"
|
||||
assert input_nodes[0].shape == ["N", "T", num_features]
|
||||
|
||||
inputs = {input_nodes[0].name: x.numpy()}
|
||||
|
||||
onnx_y = session.run(["y"], inputs)[0]
|
||||
|
||||
onnx_y = torch.from_numpy(onnx_y)
|
||||
torch_y = jit_model(x)
|
||||
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (
|
||||
(onnx_y - torch_y).abs().max()
|
||||
)
|
||||
|
||||
os.remove(filename)
|
||||
|
||||
|
||||
def test_rel_pos():
|
||||
filename = "rel_pos.onnx"
|
||||
|
||||
opset_version = 11
|
||||
N = 30
|
||||
T = 50
|
||||
num_features = 80
|
||||
d_model = 512
|
||||
x = torch.rand(N, T, num_features)
|
||||
|
||||
encoder_pos = RelPositionalEncoding(d_model, dropout_rate=0.1)
|
||||
encoder_pos.eval()
|
||||
encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True)
|
||||
|
||||
jit_model = torch.jit.trace(encoder_pos, x)
|
||||
|
||||
torch.onnx.export(
|
||||
encoder_pos,
|
||||
x,
|
||||
filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["x"],
|
||||
output_names=["y", "pos_emb"],
|
||||
dynamic_axes={
|
||||
"x": {0: "N", 1: "T"},
|
||||
"y": {0: "N", 1: "T"},
|
||||
"pos_emb": {0: "N", 1: "T"},
|
||||
},
|
||||
)
|
||||
|
||||
options = ort.SessionOptions()
|
||||
options.inter_op_num_threads = 1
|
||||
options.intra_op_num_threads = 1
|
||||
|
||||
session = ort.InferenceSession(
|
||||
filename,
|
||||
sess_options=options,
|
||||
)
|
||||
|
||||
input_nodes = session.get_inputs()
|
||||
assert input_nodes[0].name == "x"
|
||||
assert input_nodes[0].shape == ["N", "T", num_features]
|
||||
|
||||
inputs = {input_nodes[0].name: x.numpy()}
|
||||
onnx_y, onnx_pos_emb = session.run(["y", "pos_emb"], inputs)
|
||||
onnx_y = torch.from_numpy(onnx_y)
|
||||
onnx_pos_emb = torch.from_numpy(onnx_pos_emb)
|
||||
|
||||
torch_y, torch_pos_emb = jit_model(x)
|
||||
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (
|
||||
(onnx_y - torch_y).abs().max()
|
||||
)
|
||||
|
||||
assert torch.allclose(onnx_pos_emb, torch_pos_emb, atol=1e-05), (
|
||||
(onnx_pos_emb - torch_pos_emb).abs().max()
|
||||
)
|
||||
print(onnx_y.abs().sum(), torch_y.abs().sum())
|
||||
print(onnx_pos_emb.abs().sum(), torch_pos_emb.abs().sum())
|
||||
|
||||
os.remove(filename)
|
||||
|
||||
|
||||
def test_conformer_encoder_layer():
|
||||
filename = "conformer_encoder_layer.onnx"
|
||||
opset_version = 11
|
||||
N = 30
|
||||
T = 50
|
||||
|
||||
d_model = 512
|
||||
nhead = 8
|
||||
dim_feedforward = 2048
|
||||
dropout = 0.1
|
||||
layer_dropout = 0.075
|
||||
cnn_module_kernel = 31
|
||||
causal = False
|
||||
|
||||
x = torch.rand(N, T, d_model)
|
||||
x_lens = torch.full((N,), fill_value=T, dtype=torch.int64)
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
|
||||
encoder_pos = RelPositionalEncoding(d_model, dropout)
|
||||
encoder_pos.eval()
|
||||
encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True)
|
||||
|
||||
x, pos_emb = encoder_pos(x)
|
||||
x = x.permute(1, 0, 2)
|
||||
|
||||
encoder_layer = ConformerEncoderLayer(
|
||||
d_model,
|
||||
nhead,
|
||||
dim_feedforward,
|
||||
dropout,
|
||||
layer_dropout,
|
||||
cnn_module_kernel,
|
||||
causal,
|
||||
)
|
||||
encoder_layer.eval()
|
||||
encoder_layer = convert_scaled_to_non_scaled(encoder_layer, inplace=True)
|
||||
|
||||
jit_model = torch.jit.trace(
|
||||
encoder_layer, (x, pos_emb, src_key_padding_mask)
|
||||
)
|
||||
|
||||
torch.onnx.export(
|
||||
encoder_layer,
|
||||
(x, pos_emb, src_key_padding_mask),
|
||||
filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["x", "pos_emb", "src_key_padding_mask"],
|
||||
output_names=["y"],
|
||||
dynamic_axes={
|
||||
"x": {0: "T", 1: "N"},
|
||||
"pos_emb": {0: "N", 1: "T"},
|
||||
"src_key_padding_mask": {0: "N", 1: "T"},
|
||||
"y": {0: "T", 1: "N"},
|
||||
},
|
||||
)
|
||||
|
||||
options = ort.SessionOptions()
|
||||
options.inter_op_num_threads = 1
|
||||
options.intra_op_num_threads = 1
|
||||
|
||||
session = ort.InferenceSession(
|
||||
filename,
|
||||
sess_options=options,
|
||||
)
|
||||
|
||||
input_nodes = session.get_inputs()
|
||||
inputs = {
|
||||
input_nodes[0].name: x.numpy(),
|
||||
input_nodes[1].name: pos_emb.numpy(),
|
||||
input_nodes[2].name: src_key_padding_mask.numpy(),
|
||||
}
|
||||
onnx_y = session.run(["y"], inputs)[0]
|
||||
onnx_y = torch.from_numpy(onnx_y)
|
||||
|
||||
torch_y = jit_model(x, pos_emb, src_key_padding_mask)
|
||||
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (
|
||||
(onnx_y - torch_y).abs().max()
|
||||
)
|
||||
|
||||
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
|
||||
|
||||
os.remove(filename)
|
||||
|
||||
|
||||
def test_conformer_encoder():
|
||||
filename = "conformer_encoder.onnx"
|
||||
|
||||
opset_version = 11
|
||||
N = 3
|
||||
T = 15
|
||||
|
||||
d_model = 512
|
||||
nhead = 8
|
||||
dim_feedforward = 2048
|
||||
dropout = 0.1
|
||||
layer_dropout = 0.075
|
||||
cnn_module_kernel = 31
|
||||
causal = False
|
||||
num_encoder_layers = 12
|
||||
|
||||
x = torch.rand(N, T, d_model)
|
||||
x_lens = torch.full((N,), fill_value=T, dtype=torch.int64)
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
|
||||
encoder_pos = RelPositionalEncoding(d_model, dropout)
|
||||
encoder_pos.eval()
|
||||
encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True)
|
||||
|
||||
x, pos_emb = encoder_pos(x)
|
||||
x = x.permute(1, 0, 2)
|
||||
|
||||
encoder_layer = ConformerEncoderLayer(
|
||||
d_model,
|
||||
nhead,
|
||||
dim_feedforward,
|
||||
dropout,
|
||||
layer_dropout,
|
||||
cnn_module_kernel,
|
||||
causal,
|
||||
)
|
||||
encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
||||
encoder.eval()
|
||||
encoder = convert_scaled_to_non_scaled(encoder, inplace=True)
|
||||
|
||||
jit_model = torch.jit.trace(encoder, (x, pos_emb, src_key_padding_mask))
|
||||
|
||||
torch.onnx.export(
|
||||
encoder,
|
||||
(x, pos_emb, src_key_padding_mask),
|
||||
filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["x", "pos_emb", "src_key_padding_mask"],
|
||||
output_names=["y"],
|
||||
dynamic_axes={
|
||||
"x": {0: "T", 1: "N"},
|
||||
"pos_emb": {0: "N", 1: "T"},
|
||||
"src_key_padding_mask": {0: "N", 1: "T"},
|
||||
"y": {0: "T", 1: "N"},
|
||||
},
|
||||
)
|
||||
|
||||
options = ort.SessionOptions()
|
||||
options.inter_op_num_threads = 1
|
||||
options.intra_op_num_threads = 1
|
||||
|
||||
session = ort.InferenceSession(
|
||||
filename,
|
||||
sess_options=options,
|
||||
)
|
||||
|
||||
input_nodes = session.get_inputs()
|
||||
inputs = {
|
||||
input_nodes[0].name: x.numpy(),
|
||||
input_nodes[1].name: pos_emb.numpy(),
|
||||
input_nodes[2].name: src_key_padding_mask.numpy(),
|
||||
}
|
||||
onnx_y = session.run(["y"], inputs)[0]
|
||||
onnx_y = torch.from_numpy(onnx_y)
|
||||
|
||||
torch_y = jit_model(x, pos_emb, src_key_padding_mask)
|
||||
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (
|
||||
(onnx_y - torch_y).abs().max()
|
||||
)
|
||||
|
||||
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
|
||||
|
||||
os.remove(filename)
|
||||
|
||||
|
||||
def test_conformer():
|
||||
filename = "conformer.onnx"
|
||||
opset_version = 11
|
||||
N = 3
|
||||
T = 15
|
||||
num_features = 80
|
||||
x = torch.rand(N, T, num_features)
|
||||
x_lens = torch.full((N,), fill_value=T, dtype=torch.int64)
|
||||
|
||||
conformer = Conformer(num_features=num_features)
|
||||
conformer.eval()
|
||||
conformer = convert_scaled_to_non_scaled(conformer, inplace=True)
|
||||
|
||||
jit_model = torch.jit.trace(conformer, (x, x_lens))
|
||||
torch.onnx.export(
|
||||
conformer,
|
||||
(x, x_lens),
|
||||
filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["x", "x_lens"],
|
||||
output_names=["y", "y_lens"],
|
||||
dynamic_axes={
|
||||
"x": {0: "N", 1: "T"},
|
||||
"x_lens": {0: "N"},
|
||||
"y": {0: "N", 1: "T"},
|
||||
"y_lens": {0: "N"},
|
||||
},
|
||||
)
|
||||
options = ort.SessionOptions()
|
||||
options.inter_op_num_threads = 1
|
||||
options.intra_op_num_threads = 1
|
||||
|
||||
session = ort.InferenceSession(
|
||||
filename,
|
||||
sess_options=options,
|
||||
)
|
||||
|
||||
input_nodes = session.get_inputs()
|
||||
inputs = {
|
||||
input_nodes[0].name: x.numpy(),
|
||||
input_nodes[1].name: x_lens.numpy(),
|
||||
}
|
||||
onnx_y, onnx_y_lens = session.run(["y", "y_lens"], inputs)
|
||||
onnx_y = torch.from_numpy(onnx_y)
|
||||
onnx_y_lens = torch.from_numpy(onnx_y_lens)
|
||||
|
||||
torch_y, torch_y_lens = jit_model(x, x_lens)
|
||||
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (
|
||||
(onnx_y - torch_y).abs().max()
|
||||
)
|
||||
|
||||
assert torch.allclose(onnx_y_lens, torch_y_lens, atol=1e-05), (
|
||||
(onnx_y_lens - torch_y_lens).abs().max()
|
||||
)
|
||||
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
|
||||
print(onnx_y_lens, torch_y_lens)
|
||||
|
||||
os.remove(filename)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
test_conv2d_subsampling()
|
||||
test_rel_pos()
|
||||
test_conformer_encoder_layer()
|
||||
test_conformer_encoder()
|
||||
test_conformer()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(20221011)
|
||||
main()
|
@ -7,5 +7,4 @@ multi_quantization
|
||||
onnx
|
||||
onnxruntime
|
||||
--extra-index-url https://pypi.ngc.nvidia.com
|
||||
onnx_graphsurgeon
|
||||
dill
|
||||
|
Loading…
x
Reference in New Issue
Block a user