mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-09 17:14:20 +00:00
minor updates
This commit is contained in:
parent
cb85d4c337
commit
1bd6be03c1
@ -464,8 +464,8 @@ def decode_dataset(
|
||||
)
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
if not params.use_ls_test_set:
|
||||
results[name + " " + book_name].extend(this_batch)
|
||||
# if not params.use_ls_test_set:
|
||||
# results[name + " " + book_name].extend(this_batch)
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
@ -707,12 +707,6 @@ def main():
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
def get_joint_last(texts: List[str], pre_texts: List[str]):
|
||||
return {
|
||||
"text": texts[-1],
|
||||
"pre_text": pre_texts[-1]
|
||||
}
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
libriheavy = LibriHeavyAsrDataModule(args)
|
||||
@ -722,7 +716,6 @@ def main():
|
||||
ls_test_clean_cuts = libriheavy.librispeech_test_clean_cuts()
|
||||
ls_test_other_cuts = libriheavy.librispeech_test_other_cuts()
|
||||
long_audio_cuts = libriheavy.long_audio_cuts()
|
||||
#test_clean_cuts = test_clean_cuts.filter(lambda c: "Brain Twister" not in c.text_path)
|
||||
|
||||
test_clean_dl = libriheavy.valid_dataloaders(test_clean_cuts,)
|
||||
test_other_dl = libriheavy.valid_dataloaders(test_other_cuts,)
|
||||
|
@ -438,8 +438,8 @@ def decode_one_batch(
|
||||
pre_texts = [t.lower() for t in pre_texts]
|
||||
|
||||
if params.use_style_prompt:
|
||||
fixed_sentence = "Mixed-case English transcription, with punctuation. Actually, it is fully not related."
|
||||
style_texts = batch["supervisions"].get("style_text", [fixed_sentence for _ in range(batch_size)])
|
||||
fixed_sentence = "Mixed-case English transcription, with punctuation. Actually, it is fully not related. I'm hoping that this will lead to more accurate transcriptions."
|
||||
style_texts = [fixed_sentence for _ in range(batch_size)]
|
||||
style_texts = [train_text_normalization(t) for t in style_texts]
|
||||
else:
|
||||
style_texts = ["" for _ in range(batch_size)] # use empty string
|
||||
|
Loading…
x
Reference in New Issue
Block a user