mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Merge branch 'quantization' of github.com:yaozengwei/icefall into quantization
This commit is contained in:
commit
1aa6fc0122
@ -125,48 +125,48 @@ class BatchedOptimizer(Optimizer):
|
||||
|
||||
class ScaledAdam(BatchedOptimizer):
|
||||
"""
|
||||
Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
|
||||
proportional to the norm of that parameter; and also learn the scale of the parameter,
|
||||
in log space, subject to upper and lower limits (as if we had factored each parameter as
|
||||
param = underlying_param * log_scale.exp())
|
||||
Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
|
||||
proportional to the norm of that parameter; and also learn the scale of the parameter,
|
||||
in log space, subject to upper and lower limits (as if we had factored each parameter as
|
||||
param = underlying_param * log_scale.exp())
|
||||
|
||||
|
||||
Args:
|
||||
params: The parameters or param_groups to optimize (like other Optimizer subclasses)
|
||||
lr: The learning rate. We will typically use a learning rate schedule that starts
|
||||
at 0.03 and decreases over time, i.e. much higher than other common
|
||||
optimizers.
|
||||
clipping_scale: (e.g. 2.0)
|
||||
A scale for gradient-clipping: if specified, the normalized gradients
|
||||
over the whole model will be clipped to have 2-norm equal to
|
||||
`clipping_scale` times the median 2-norm over the most recent period
|
||||
of `clipping_update_period` minibatches. By "normalized gradients",
|
||||
we mean after multiplying by the rms parameter value for this tensor
|
||||
[for non-scalars]; this is appropriate because our update is scaled
|
||||
by this quantity.
|
||||
betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
|
||||
Must satisfy 0 < beta <= beta2 < 1.
|
||||
scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
|
||||
scale of each parameter tensor and scalar parameters of the mode..
|
||||
If each parameter were decomposed
|
||||
as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
|
||||
would be a the scaling factor on the learning rate of p_scale.
|
||||
eps: A general-purpose epsilon to prevent division by zero
|
||||
param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
|
||||
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
||||
parameter tensor to be >= this value)
|
||||
param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
|
||||
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
||||
parameter tensor to be <= this value)
|
||||
scalar_max: Maximum absolute value for scalar parameters (applicable if your
|
||||
model has any parameters with numel() == 1).
|
||||
size_update_period: The periodicity, in steps, with which we update the size (scale)
|
||||
of the parameter tensor. This is provided to save a little time
|
||||
in the update.
|
||||
clipping_update_period: if clipping_scale is specified, this is the period
|
||||
percentile_limit: The parameter absolute values over 1-percentile_limit (e.g., 95%) percentile will be limited.
|
||||
p_limit_values: The probability (e.g., 0.1) to modify the update sign, so as to limit the
|
||||
parameter absolute values that are larger than 1-percentile_limit (e.g., 95%) percentile.
|
||||
Args:
|
||||
params: The parameters or param_groups to optimize (like other Optimizer subclasses)
|
||||
lr: The learning rate. We will typically use a learning rate schedule that starts
|
||||
at 0.03 and decreases over time, i.e. much higher than other common
|
||||
optimizers.
|
||||
clipping_scale: (e.g. 2.0)
|
||||
A scale for gradient-clipping: if specified, the normalized gradients
|
||||
over the whole model will be clipped to have 2-norm equal to
|
||||
`clipping_scale` times the median 2-norm over the most recent period
|
||||
of `clipping_update_period` minibatches. By "normalized gradients",
|
||||
we mean after multiplying by the rms parameter value for this tensor
|
||||
[for non-scalars]; this is appropriate because our update is scaled
|
||||
by this quantity.
|
||||
betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
|
||||
Must satisfy 0 < beta <= beta2 < 1.
|
||||
scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
|
||||
scale of each parameter tensor and scalar parameters of the mode..
|
||||
If each parameter were decomposed
|
||||
as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
|
||||
would be a the scaling factor on the learning rate of p_scale.
|
||||
eps: A general-purpose epsilon to prevent division by zero
|
||||
param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
|
||||
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
||||
parameter tensor to be >= this value)
|
||||
param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
|
||||
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
||||
parameter tensor to be <= this value)
|
||||
scalar_max: Maximum absolute value for scalar parameters (applicable if your
|
||||
model has any parameters with numel() == 1).
|
||||
size_update_period: The periodicity, in steps, with which we update the size (scale)
|
||||
of the parameter tensor. This is provided to save a little time
|
||||
in the update.
|
||||
clipping_update_period: if clipping_scale is specified, this is the period
|
||||
percentile_limit: The parameter absolute values over 1-percentile_limit (e.g., 95%) percentile will be limited.
|
||||
p_limit_values: The probability (e.g., 0.1) to modify the update sign, so as to limit the
|
||||
parameter absolute values that are larger than 1-percentile_limit (e.g., 95%) percentile.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@ -681,10 +681,14 @@ class ScaledAdam(BatchedOptimizer):
|
||||
|
||||
p_exceed = p_abs > stored_percentiles # same shape as p
|
||||
# The proportion that exceeds stored_percentiles
|
||||
proportion_exceed = p_exceed.sum(dim=list(range(1, p.ndim)), keepdim=True) / numel
|
||||
proportion_exceed = (
|
||||
p_exceed.sum(dim=list(range(1, p.ndim)), keepdim=True) / numel
|
||||
)
|
||||
# Update store_percentiles
|
||||
update_sign = (proportion_exceed - percentile_limit).sign()
|
||||
stored_percentiles.mul_(1 + update_sign * lr / p_limit_values).clamp_(min=1.0e-20)
|
||||
stored_percentiles.mul_(1 + update_sign * lr / p_limit_values).clamp_(
|
||||
min=1.0e-20
|
||||
)
|
||||
|
||||
# For these parameters that exceed stored_percentile,
|
||||
# flip the update sign if they would get larger absolute values
|
||||
|
Loading…
x
Reference in New Issue
Block a user