mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-09 05:55:26 +00:00
adding hent-srt recipe
This commit is contained in:
parent
0c7ce5256f
commit
173c278b42
1
egs/multi_conv_zh_es_ta/ST/hent_srt/asr_datamodule.py
Symbolic link
1
egs/multi_conv_zh_es_ta/ST/hent_srt/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../zipformer_multijoiner_st/asr_datamodule.py
|
||||
2680
egs/multi_conv_zh_es_ta/ST/hent_srt/beam_search.py
Normal file
2680
egs/multi_conv_zh_es_ta/ST/hent_srt/beam_search.py
Normal file
File diff suppressed because it is too large
Load Diff
1123
egs/multi_conv_zh_es_ta/ST/hent_srt/decode.py
Executable file
1123
egs/multi_conv_zh_es_ta/ST/hent_srt/decode.py
Executable file
File diff suppressed because it is too large
Load Diff
261
egs/multi_conv_zh_es_ta/ST/hent_srt/decoder.py
Normal file
261
egs/multi_conv_zh_es_ta/ST/hent_srt/decoder.py
Normal file
@ -0,0 +1,261 @@
|
||||
# Copyright 2025 Johns Hopkins University (author: Amir Hussein)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from scaling import Balancer
|
||||
|
||||
|
||||
# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Zengrui Jin,
|
||||
# Yifan Yang,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from scaling import Balancer
|
||||
|
||||
|
||||
class LSTMDecoder(nn.Module):
|
||||
"""LSTM decoder."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
blank_id: int,
|
||||
decoder_dim: int,
|
||||
num_layers: int,
|
||||
hidden_dim: int,
|
||||
embedding_dropout: float = 0.0,
|
||||
rnn_dropout: float = 0.0,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
vocab_size:
|
||||
Number of tokens of the modeling unit including blank.
|
||||
blank_id:
|
||||
The ID of the blank symbol.
|
||||
decoder_dim:
|
||||
Dimension of the input embedding.
|
||||
num_layers:
|
||||
Number of LSTM layers.
|
||||
hidden_dim:
|
||||
Hidden dimension of LSTM layers.
|
||||
embedding_dropout:
|
||||
Dropout rate for the embedding layer.
|
||||
rnn_dropout:
|
||||
Dropout for LSTM layers.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.embedding = nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=decoder_dim,
|
||||
)
|
||||
# the balancers are to avoid any drift in the magnitude of the
|
||||
# embeddings, which would interact badly with parameter averaging.
|
||||
self.balancer = Balancer(
|
||||
decoder_dim,
|
||||
channel_dim=-1,
|
||||
min_positive=0.0,
|
||||
max_positive=1.0,
|
||||
min_abs=0.5,
|
||||
max_abs=1.0,
|
||||
prob=0.05,
|
||||
)
|
||||
|
||||
self.blank_id = blank_id
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
|
||||
self.embedding_dropout = nn.Dropout(embedding_dropout)
|
||||
|
||||
self.rnn = nn.LSTM(
|
||||
input_size=decoder_dim,
|
||||
hidden_size=hidden_dim,
|
||||
num_layers=num_layers,
|
||||
batch_first=True,
|
||||
dropout=rnn_dropout,
|
||||
)
|
||||
|
||||
self.balancer2 = Balancer(
|
||||
decoder_dim,
|
||||
channel_dim=-1,
|
||||
min_positive=0.0,
|
||||
max_positive=1.0,
|
||||
min_abs=0.5,
|
||||
max_abs=1.0,
|
||||
prob=0.05,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
y: torch.Tensor,
|
||||
states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
need_pad: bool = False
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
y:
|
||||
A 2-D tensor of shape (N, U).
|
||||
Returns:
|
||||
Return a tensor of shape (N, U, decoder_dim).
|
||||
"""
|
||||
y = y.to(torch.int64)
|
||||
# this stuff about clamp() is a temporary fix for a mismatch
|
||||
# at utterance start, we use negative ids in beam_search.py
|
||||
embedding_out = self.embedding(y.clamp(min=0)) * (y >= 0).unsqueeze(-1)
|
||||
|
||||
embedding_out = self.embedding_dropout(embedding_out)
|
||||
|
||||
embedding_out = self.balancer(embedding_out)
|
||||
if need_pad is True:
|
||||
embedding_out = pad_sequence(embedding_out, batch_first=True, padding_value=0)
|
||||
|
||||
rnn_out, (h, c) = self.rnn(embedding_out, states)
|
||||
|
||||
rnn_out = F.relu(rnn_out)
|
||||
rnn_out = self.balancer2(rnn_out)
|
||||
|
||||
return rnn_out, (h, c)
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
"""This class modifies the stateless decoder from the following paper:
|
||||
|
||||
RNN-transducer with stateless prediction network
|
||||
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
|
||||
|
||||
It removes the recurrent connection from the decoder, i.e., the prediction
|
||||
network. Different from the above paper, it adds an extra Conv1d
|
||||
right after the embedding layer.
|
||||
|
||||
TODO: Implement https://arxiv.org/pdf/2109.07513.pdf
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
decoder_dim: int,
|
||||
blank_id: int,
|
||||
context_size: int,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
vocab_size:
|
||||
Number of tokens of the modeling unit including blank.
|
||||
decoder_dim:
|
||||
Dimension of the input embedding, and of the decoder output.
|
||||
blank_id:
|
||||
The ID of the blank symbol.
|
||||
context_size:
|
||||
Number of previous words to use to predict the next word.
|
||||
1 means bigram; 2 means trigram. n means (n+1)-gram.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.embedding = nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=decoder_dim,
|
||||
)
|
||||
# the balancers are to avoid any drift in the magnitude of the
|
||||
# embeddings, which would interact badly with parameter averaging.
|
||||
self.balancer = Balancer(
|
||||
decoder_dim,
|
||||
channel_dim=-1,
|
||||
min_positive=0.0,
|
||||
max_positive=1.0,
|
||||
min_abs=0.5,
|
||||
max_abs=1.0,
|
||||
prob=0.05,
|
||||
)
|
||||
|
||||
self.blank_id = blank_id
|
||||
|
||||
assert context_size >= 1, context_size
|
||||
self.context_size = context_size
|
||||
self.vocab_size = vocab_size
|
||||
|
||||
if context_size > 1:
|
||||
self.conv = nn.Conv1d(
|
||||
in_channels=decoder_dim,
|
||||
out_channels=decoder_dim,
|
||||
kernel_size=context_size,
|
||||
padding=0,
|
||||
groups=decoder_dim // 4, # group size == 4
|
||||
bias=False,
|
||||
)
|
||||
self.balancer2 = Balancer(
|
||||
decoder_dim,
|
||||
channel_dim=-1,
|
||||
min_positive=0.0,
|
||||
max_positive=1.0,
|
||||
min_abs=0.5,
|
||||
max_abs=1.0,
|
||||
prob=0.05,
|
||||
)
|
||||
|
||||
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
y:
|
||||
A 2-D tensor of shape (N, U).
|
||||
need_pad:
|
||||
True to left pad the input. Should be True during training.
|
||||
False to not pad the input. Should be False during inference.
|
||||
Returns:
|
||||
Return a tensor of shape (N, U, decoder_dim).
|
||||
"""
|
||||
y = y.to(torch.int64)
|
||||
# this stuff about clamp() is a temporary fix for a mismatch
|
||||
# at utterance start, we use negative ids in beam_search.py
|
||||
embedding_out = self.embedding(y.clamp(min=0)) * (y >= 0).unsqueeze(-1)
|
||||
|
||||
embedding_out = self.balancer(embedding_out)
|
||||
|
||||
if self.context_size > 1:
|
||||
embedding_out = embedding_out.permute(0, 2, 1)
|
||||
if need_pad is True:
|
||||
embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0))
|
||||
else:
|
||||
# During inference time, there is no need to do extra padding
|
||||
# as we only need one output
|
||||
assert embedding_out.size(-1) == self.context_size
|
||||
embedding_out = self.conv(embedding_out)
|
||||
embedding_out = embedding_out.permute(0, 2, 1)
|
||||
embedding_out = F.relu(embedding_out)
|
||||
embedding_out = self.balancer2(embedding_out)
|
||||
|
||||
return embedding_out
|
||||
640
egs/multi_conv_zh_es_ta/ST/hent_srt/export.py
Executable file
640
egs/multi_conv_zh_es_ta/ST/hent_srt/export.py
Executable file
@ -0,0 +1,640 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2025 Johns Hopkins University (author: Amir Hussein)
|
||||
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao,
|
||||
# Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
|
||||
Usage:
|
||||
|
||||
Note: This is a example for librispeech dataset, if you are using different
|
||||
dataset, you should change the argument values according to your dataset.
|
||||
|
||||
(1) Export to torchscript model using torch.jit.script()
|
||||
|
||||
- For non-streaming model:
|
||||
|
||||
./hent_srt/export.py \
|
||||
--exp-dir ./hent_srt/exp-st \
|
||||
--causal 0 \
|
||||
--use-averaged-model 1 \
|
||||
--tokens data/lang_bpe_5000/tokens.txt \
|
||||
--st-tokens data/lang_st_bpe_4000/tokens.txt \
|
||||
--num-encoder-layers 2,2,2,2,2 \
|
||||
--feedforward-dim 512,768,1024,1024,1024 \
|
||||
--encoder-dim 192,256,384,512,384 \
|
||||
--encoder-unmasked-dim 192,192,256,256,256 \
|
||||
--downsampling-factor 1,2,4,8,4 \
|
||||
--cnn-module-kernel 31,31,15,15,15 \
|
||||
--num-heads 4,4,4,8,8 \
|
||||
--st-num-encoder-layers 2,2,2,2,2 \
|
||||
--st-feedforward-dim 512,512,256,256,256 \
|
||||
--st-encoder-dim 384,512,256,256,256 \
|
||||
--st-encoder-unmasked-dim 256,256,256,256,192 \
|
||||
--st-downsampling-factor 1,2,4,4,4 \
|
||||
--st-cnn-module-kernel 15,31,31,15,15 \
|
||||
--st-num-heads 8,8,8,8,8 \
|
||||
--epoch 25 \
|
||||
--avg 13 \
|
||||
--jit 1 \
|
||||
--output-downsampling-factor 2 \
|
||||
--st-output-downsampling-factor 1 \
|
||||
--use-st-joiner True \
|
||||
--use-hat-decode False \
|
||||
--use-ctc 1 \
|
||||
--use-st-ctc 1
|
||||
|
||||
It will generate a file `jit_script.pt` in the given `exp_dir`. You can later
|
||||
load it by `torch.jit.load("jit_script.pt")`.
|
||||
|
||||
Check ./jit_pretrained.py for its usage.
|
||||
|
||||
Check https://github.com/k2-fsa/sherpa
|
||||
for how to use the exported models outside of icefall.
|
||||
|
||||
- For streaming model:
|
||||
|
||||
./zipformer/export.py \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--causal 1 \
|
||||
--chunk-size 32 \
|
||||
--left-context-frames 128 \
|
||||
--tokens data/lang_bpe_500/tokens.txt \
|
||||
--epoch 30 \
|
||||
--avg 9 \
|
||||
--jit 1
|
||||
|
||||
It will generate a file `jit_script_chunk_16_left_128.pt` in the given `exp_dir`.
|
||||
You can later load it by `torch.jit.load("jit_script_chunk_16_left_128.pt")`.
|
||||
|
||||
Check ./jit_pretrained_streaming.py for its usage.
|
||||
|
||||
Check https://github.com/k2-fsa/sherpa
|
||||
for how to use the exported models outside of icefall.
|
||||
|
||||
(2) Export `model.state_dict()`
|
||||
|
||||
- For non-streaming model:
|
||||
|
||||
./hent_srt/export.py \
|
||||
--exp-dir ./hent_srt/exp-st \
|
||||
--causal 0 \
|
||||
--use-averaged-model 1 \
|
||||
--tokens data/lang_bpe_5000/tokens.txt \
|
||||
--st-tokens data/lang_st_bpe_4000/tokens.txt \
|
||||
--num-encoder-layers 2,2,2,2,2 \
|
||||
--feedforward-dim 512,768,1024,1024,1024 \
|
||||
--encoder-dim 192,256,384,512,384 \
|
||||
--encoder-unmasked-dim 192,192,256,256,256 \
|
||||
--downsampling-factor 1,2,4,8,4 \
|
||||
--cnn-module-kernel 31,31,15,15,15 \
|
||||
--num-heads 4,4,4,8,8 \
|
||||
--st-num-encoder-layers 2,2,2,2,2 \
|
||||
--st-feedforward-dim 512,512,256,256,256 \
|
||||
--st-encoder-dim 384,512,256,256,256 \
|
||||
--st-encoder-unmasked-dim 256,256,256,256,192 \
|
||||
--st-downsampling-factor 1,2,4,4,4 \
|
||||
--st-cnn-module-kernel 15,31,31,15,15 \
|
||||
--st-num-heads 8,8,8,8,8 \
|
||||
--epoch 20 \
|
||||
--avg 13 \
|
||||
--jit 0 \
|
||||
--output-downsampling-factor 2 \
|
||||
--st-output-downsampling-factor 1 \
|
||||
--use-st-joiner True \
|
||||
--use-hat False \
|
||||
--use-ctc 1 \
|
||||
--use-st-ctc 1
|
||||
|
||||
- For streaming model:
|
||||
|
||||
./hent_srt/export.py \
|
||||
--exp-dir ./hent_srt/exp-st_causal \
|
||||
--causal 1 \
|
||||
--use-averaged-model 1 \
|
||||
--tokens data/lang_bpe_5000/tokens.txt \
|
||||
--st-tokens data/lang_st_bpe_4000/tokens.txt \
|
||||
--num-encoder-layers 2,2,2,2,2 \
|
||||
--feedforward-dim 512,768,1024,1024,1024 \
|
||||
--encoder-dim 192,256,384,512,384 \
|
||||
--encoder-unmasked-dim 192,192,256,256,256 \
|
||||
--downsampling-factor 1,2,4,8,4 \
|
||||
--cnn-module-kernel 31,31,15,15,15 \
|
||||
--num-heads 4,4,4,8,8 \
|
||||
--st-num-encoder-layers 2,2,2,2,2 \
|
||||
--st-feedforward-dim 512,512,256,256,256 \
|
||||
--st-encoder-dim 384,512,256,256,256 \
|
||||
--st-encoder-unmasked-dim 256,256,256,256,192 \
|
||||
--st-downsampling-factor 1,2,4,4,4 \
|
||||
--st-cnn-module-kernel 15,31,31,15,15 \
|
||||
--st-num-heads 8,8,8,8,8 \
|
||||
--epoch 20 \
|
||||
--avg 13 \
|
||||
--jit 0 \
|
||||
--output-downsampling-factor 2 \
|
||||
--st-output-downsampling-factor 1 \
|
||||
--use-st-joiner True \
|
||||
--use-hat False \
|
||||
--use-ctc 1 \
|
||||
--use-st-ctc 1
|
||||
|
||||
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
|
||||
load it by `icefall.checkpoint.load_checkpoint()`.
|
||||
|
||||
- For non-streaming model:
|
||||
|
||||
To use the generated file with `zipformer/decode.py`,
|
||||
you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/multi_conv_zh_es_ta/ST
|
||||
|
||||
./hent_srt/decode.py \
|
||||
--epoch 9999 --avg 1 --use-averaged-model 0 \
|
||||
--beam-size 20 \
|
||||
--causal 0 \
|
||||
--exp-dir hent_srt/exp-st \
|
||||
--bpe-model data/lang_bpe_5000/bpe.model \
|
||||
--bpe-st-model data/lang_st_bpe_4000/bpe.model \
|
||||
--output-downsampling-factor 2 \
|
||||
--st-output-downsampling-factor 1 \
|
||||
--max-duration 800 \
|
||||
--num-encoder-layers 2,2,2,2,2 \
|
||||
--feedforward-dim 512,768,1024,1024,1024 \
|
||||
--encoder-dim 192,256,384,512,384 \
|
||||
--encoder-unmasked-dim 192,192,256,256,256 \
|
||||
--downsampling-factor 1,2,4,8,4 \
|
||||
--cnn-module-kernel 31,31,15,15,15 \
|
||||
--num-heads 4,4,4,8,8 \
|
||||
--st-num-encoder-layers 2,2,2,2,2 \
|
||||
--st-feedforward-dim 512,512,256,256,256 \
|
||||
--st-encoder-dim 384,512,256,256,256 \
|
||||
--st-encoder-unmasked-dim 256,256,256,256,192 \
|
||||
--st-downsampling-factor 1,2,4,4,4 \
|
||||
--st-cnn-module-kernel 15,31,31,15,15 \
|
||||
--st-num-heads 8,8,8,8,8 \
|
||||
--decoding-method modified_beam_search \
|
||||
--use-st-joiner True \
|
||||
--use-hat-decode False \
|
||||
--use-ctc 1 \
|
||||
--use-st-ctc 1 \
|
||||
--st-blank-penalty 1
|
||||
|
||||
- For streaming model:
|
||||
|
||||
To use the generated file with `zipformer/decode.py` and `zipformer/streaming_decode.py`, you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/multi_conv_zh_es_ta/ST
|
||||
|
||||
./hent_srt/decode.py \
|
||||
--epoch 9999 --avg 1 --use-averaged-model 0 \
|
||||
--causal 1 \
|
||||
--exp-dir hent_srt/exp-st_causal \
|
||||
--bpe-model data/lang_bpe_5000/bpe.model \
|
||||
--bpe-st-model data/lang_st_bpe_4000/bpe.model \
|
||||
--output-downsampling-factor 2 \
|
||||
--st-output-downsampling-factor 1 \
|
||||
--max-duration 800 \
|
||||
--num-encoder-layers 2,2,2,2,2 \
|
||||
--feedforward-dim 512,768,1024,1024,1024 \
|
||||
--encoder-dim 192,256,384,512,384 \
|
||||
--encoder-unmasked-dim 192,192,256,256,256 \
|
||||
--downsampling-factor 1,2,4,8,4 \
|
||||
--cnn-module-kernel 31,31,15,15,15 \
|
||||
--num-heads 4,4,4,8,8 \
|
||||
--st-num-encoder-layers 2,2,2,2,2 \
|
||||
--st-feedforward-dim 512,512,256,256,256 \
|
||||
--st-encoder-dim 384,512,256,256,256 \
|
||||
--st-encoder-unmasked-dim 256,256,256,256,192 \
|
||||
--st-downsampling-factor 1,2,4,4,4 \
|
||||
--st-cnn-module-kernel 15,31,31,15,15 \
|
||||
--st-num-heads 8,8,8,8,8 \
|
||||
--decoding-method greedy_search \
|
||||
--use-st-joiner True \
|
||||
--use-hat-decode False \
|
||||
--use-ctc 1 \
|
||||
--use-st-ctc 1 \
|
||||
--st-blank-penalty 2 \
|
||||
--chunk-size 64 \
|
||||
--left-context-frames 128 \
|
||||
--use-hat False --max-sym-per-frame 20
|
||||
|
||||
Note: If you don't want to train a model from scratch, we have
|
||||
provided one for you. You can get it at
|
||||
|
||||
- non-streaming model:
|
||||
https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15
|
||||
|
||||
- streaming model:
|
||||
https://huggingface.co/Zengwei/icefall-asr-librispeech-streaming-zipformer-2023-05-17
|
||||
|
||||
with the following commands:
|
||||
|
||||
sudo apt-get install git-lfs
|
||||
git lfs install
|
||||
git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15
|
||||
git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-streaming-zipformer-2023-05-17
|
||||
# You will find the pre-trained models in exp dir
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from scaling_converter import convert_scaled_to_non_scaled
|
||||
from torch import Tensor, nn
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import make_pad_mask, num_tokens, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=9,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
default="data/lang_bpe_5000/tokens.txt",
|
||||
help="Path to the tokens.txt",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--st-tokens",
|
||||
type=str,
|
||||
default="data/lang_st_bpe_4000/tokens.txt",
|
||||
help="Path to the tokens.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
It will generate a file named jit_script.pt.
|
||||
Check ./jit_pretrained.py for how to use it.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--st-context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
class EncoderModel(nn.Module):
|
||||
"""A wrapper for encoder and encoder_embed"""
|
||||
|
||||
def __init__(self, model: nn.Module) -> None:
|
||||
super().__init__()
|
||||
self.model = model
|
||||
|
||||
def forward(
|
||||
self, features: Tensor, feature_lengths: Tensor
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
"""
|
||||
Args:
|
||||
features: (N, T, C)
|
||||
feature_lengths: (N,)
|
||||
"""
|
||||
encoder_out, encoder_out_lens, st_encoder_out, st_encoder_out_lens = model.forward_encoder(feature, feature_lengths)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
st_encoder_out = st_encoder_out.permute(1, 0, 2)
|
||||
return encoder_out, encoder_out_lens, st_encoder_out, st_encoder_out_lens
|
||||
|
||||
|
||||
class StreamingEncoderModel(nn.Module):
|
||||
"""A wrapper for encoder and encoder_embed"""
|
||||
|
||||
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
|
||||
super().__init__()
|
||||
assert len(encoder.chunk_size) == 1, encoder.chunk_size
|
||||
assert len(encoder.left_context_frames) == 1, encoder.left_context_frames
|
||||
self.chunk_size = encoder.chunk_size[0]
|
||||
self.left_context_len = encoder.left_context_frames[0]
|
||||
|
||||
# The encoder_embed subsample features (T - 7) // 2
|
||||
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||
self.pad_length = 7 + 2 * 3
|
||||
|
||||
self.encoder = encoder
|
||||
self.encoder_embed = encoder_embed
|
||||
|
||||
def forward(
|
||||
self, features: Tensor, feature_lengths: Tensor, states: List[Tensor]
|
||||
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||
"""Streaming forward for encoder_embed and encoder.
|
||||
|
||||
Args:
|
||||
features: (N, T, C)
|
||||
feature_lengths: (N,)
|
||||
states: a list of Tensors
|
||||
|
||||
Returns encoder outputs, output lengths, and updated states.
|
||||
"""
|
||||
chunk_size = self.chunk_size
|
||||
left_context_len = self.left_context_len
|
||||
|
||||
cached_embed_left_pad = states[-2]
|
||||
x, x_lens, new_cached_embed_left_pad = self.encoder_embed.streaming_forward(
|
||||
x=features,
|
||||
x_lens=feature_lengths,
|
||||
cached_left_pad=cached_embed_left_pad,
|
||||
)
|
||||
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
|
||||
# processed_mask is used to mask out initial states
|
||||
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||
x.size(0), left_context_len
|
||||
)
|
||||
processed_lens = states[-1] # (batch,)
|
||||
# (batch, left_context_size)
|
||||
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||
# Update processed lengths
|
||||
new_processed_lens = processed_lens + x_lens
|
||||
|
||||
# (batch, left_context_size + chunk_size)
|
||||
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
encoder_states = states[:-2]
|
||||
|
||||
(
|
||||
encoder_out,
|
||||
encoder_out_lens,
|
||||
new_encoder_states,
|
||||
) = self.encoder.streaming_forward(
|
||||
x=x,
|
||||
x_lens=x_lens,
|
||||
states=encoder_states,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
new_states = new_encoder_states + [
|
||||
new_cached_embed_left_pad,
|
||||
new_processed_lens,
|
||||
]
|
||||
return encoder_out, encoder_out_lens, new_states
|
||||
|
||||
@torch.jit.export
|
||||
def get_init_states(
|
||||
self,
|
||||
batch_size: int = 1,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> List[torch.Tensor]:
|
||||
"""
|
||||
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||
states[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
"""
|
||||
states = self.encoder.get_init_states(batch_size, device)
|
||||
|
||||
embed_states = self.encoder_embed.get_init_states(batch_size, device)
|
||||
states.append(embed_states)
|
||||
|
||||
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||
states.append(processed_lens)
|
||||
|
||||
return states
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
# if torch.cuda.is_available():
|
||||
# device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
token_table = k2.SymbolTable.from_file(params.tokens)
|
||||
st_token_table = k2.SymbolTable.from_file(params.st_tokens)
|
||||
params.blank_id = token_table["<blk>"]
|
||||
# params.unk_id = sp.piece_to_id("<unk>")
|
||||
# params.st_unk_id = sp_st.piece_to_id("<unk>")
|
||||
params.blank_st_id = st_token_table["<blk>"]
|
||||
params.vocab_size = num_tokens(token_table) + 1
|
||||
params.vocab_st_size = num_tokens(st_token_table) + 1
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
|
||||
), strict=False
|
||||
)
|
||||
|
||||
model.eval()
|
||||
|
||||
if params.jit is True:
|
||||
convert_scaled_to_non_scaled(model, inplace=True)
|
||||
# We won't use the forward() method of the model in C++, so just ignore
|
||||
# it here.
|
||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||
# torch scriptabe.
|
||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||
|
||||
# Wrap encoder and encoder_embed as a module
|
||||
if params.causal:
|
||||
model.encoder = StreamingEncoderModel(model.encoder, model.encoder_embed)
|
||||
chunk_size = model.encoder.chunk_size
|
||||
left_context_len = model.encoder.left_context_len
|
||||
filename = f"jit_script_chunk_{chunk_size}_left_{left_context_len}.pt"
|
||||
else:
|
||||
model.encoder = EncoderModel(model)
|
||||
filename = "jit_script.pt"
|
||||
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
model.save(str(params.exp_dir / filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torchscript. Export model.state_dict()")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
||||
1
egs/multi_conv_zh_es_ta/ST/hent_srt/joiner.py
Symbolic link
1
egs/multi_conv_zh_es_ta/ST/hent_srt/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../zipformer_multijoiner_st/joiner.py
|
||||
117
egs/multi_conv_zh_es_ta/ST/hent_srt/load_pretrained_model.py
Normal file
117
egs/multi_conv_zh_es_ta/ST/hent_srt/load_pretrained_model.py
Normal file
@ -0,0 +1,117 @@
|
||||
# Copyright 2025 Johns Hopkins University (author: Amir Hussein)
|
||||
|
||||
import logging
|
||||
from typing import Any, Dict, Union
|
||||
|
||||
import torch
|
||||
import torch.nn
|
||||
import torch.optim
|
||||
|
||||
|
||||
def filter_state_dict(
|
||||
dst_state: Dict[str, Union[float, torch.Tensor]],
|
||||
src_state: Dict[str, Union[float, torch.Tensor]],
|
||||
):
|
||||
"""Filter name, size mismatch instances between dicts.
|
||||
|
||||
Args:
|
||||
dst_state: reference state dict for filtering
|
||||
src_state: target state dict for filtering
|
||||
|
||||
"""
|
||||
match_state = {}
|
||||
for key, value in src_state.items():
|
||||
if key in dst_state and (dst_state[key].size() == src_state[key].size()):
|
||||
match_state[key] = value
|
||||
else:
|
||||
if key not in dst_state:
|
||||
logging.warning(
|
||||
f"Filter out {key} from pretrained dict"
|
||||
+ " because of name not found in target dict"
|
||||
)
|
||||
else:
|
||||
logging.warning(
|
||||
f"Filter out {key} from pretrained dict"
|
||||
+ " because of size mismatch"
|
||||
+ f"({dst_state[key].size()}-{src_state[key].size()})"
|
||||
)
|
||||
return match_state
|
||||
|
||||
|
||||
def load_pretrained_model(
|
||||
init_param: str,
|
||||
model: torch.nn.Module,
|
||||
ignore_init_mismatch: bool,
|
||||
map_location: str = "cpu",
|
||||
):
|
||||
"""Load a model state and set it to the model.
|
||||
|
||||
Args:
|
||||
init_param: <file_path>:<src_key>:<dst_key>:<exclude_Keys>
|
||||
|
||||
Examples:
|
||||
>>> load_pretrained_model("somewhere/model.pth", model)
|
||||
>>> load_pretrained_model("somewhere/model.pth:decoder:decoder", model)
|
||||
>>> load_pretrained_model("somewhere/model.pth:decoder:decoder:", model)
|
||||
>>> load_pretrained_model(
|
||||
... "somewhere/model.pth:decoder:decoder:decoder.embed", model
|
||||
... )
|
||||
>>> load_pretrained_model("somewhere/decoder.pth::decoder", model)
|
||||
"""
|
||||
sps = init_param.split(":", 4)
|
||||
if len(sps) == 4:
|
||||
path, src_key, dst_key, excludes = sps
|
||||
elif len(sps) == 3:
|
||||
path, src_key, dst_key = sps
|
||||
excludes = None
|
||||
elif len(sps) == 2:
|
||||
path, src_key = sps
|
||||
dst_key, excludes = None, None
|
||||
else:
|
||||
(path,) = sps
|
||||
src_key, dst_key, excludes = None, None, None
|
||||
if src_key == "":
|
||||
src_key = None
|
||||
if dst_key == "":
|
||||
dst_key = None
|
||||
|
||||
if dst_key is None:
|
||||
obj = model
|
||||
else:
|
||||
|
||||
def get_attr(obj: Any, key: str):
|
||||
"""Get an nested attribute.
|
||||
|
||||
>>> class A(torch.nn.Module):
|
||||
... def __init__(self):
|
||||
... super().__init__()
|
||||
... self.linear = torch.nn.Linear(10, 10)
|
||||
>>> a = A()
|
||||
>>> assert A.linear.weight is get_attr(A, 'linear.weight')
|
||||
|
||||
"""
|
||||
|
||||
if key.strip() == "":
|
||||
return obj
|
||||
for k in key.split("."):
|
||||
obj = getattr(obj, k)
|
||||
return obj
|
||||
|
||||
obj = get_attr(model, dst_key)
|
||||
|
||||
src_state = torch.load(path, map_location=map_location)
|
||||
|
||||
if excludes is not None:
|
||||
for e in excludes.split(","):
|
||||
src_state = {k: v for k, v in src_state.items() if not k.startswith(e)}
|
||||
if src_key is not None:
|
||||
src_state['model'] = {
|
||||
k[len(src_key) + 1 :]: v
|
||||
for k, v in src_state['model'].items()
|
||||
if k.startswith(src_key)
|
||||
}
|
||||
dst_state = obj.state_dict()
|
||||
if ignore_init_mismatch:
|
||||
src_state = filter_state_dict(dst_state, src_state['model'])
|
||||
dst_state.update(src_state)
|
||||
obj.load_state_dict(dst_state)
|
||||
811
egs/multi_conv_zh_es_ta/ST/hent_srt/model.py
Normal file
811
egs/multi_conv_zh_es_ta/ST/hent_srt/model.py
Normal file
@ -0,0 +1,811 @@
|
||||
# Copyright 2025 Johns Hopkins University (author: Amir Hussein)
|
||||
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from lhotse.dataset import SpecAugment
|
||||
import torch.nn as nn
|
||||
from encoder_interface import EncoderInterface
|
||||
from scaling import ScaledLinear
|
||||
from icefall.utils import add_sos, make_pad_mask, time_warp
|
||||
|
||||
|
||||
class HENT_SRT(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
encoder_embed: nn.Module,
|
||||
encoder: EncoderInterface,
|
||||
decoder: Optional[nn.Module] = None,
|
||||
joiner: Optional[nn.Module] = None,
|
||||
st_joiner: Optional[nn.Module] = None,
|
||||
st_decoder: Optional[nn.Module] = None,
|
||||
st_encoder: Optional[nn.Module] = None,
|
||||
encoder_dim: int = 384,
|
||||
st_encoder_dim: int = 384,
|
||||
decoder_dim: int = 512,
|
||||
vocab_size: int = 500,
|
||||
st_vocab_size: int = 500,
|
||||
use_transducer: bool = True,
|
||||
use_ctc: bool = False,
|
||||
use_st_ctc: bool = False,
|
||||
use_hat: bool = False,
|
||||
use_lstm_pred:bool=False,
|
||||
):
|
||||
"""A multitask Transducer ASR-ST model with seperate joiners and predictors but shared acoustic encoder.
|
||||
|
||||
- Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks (http://imagine.enpc.fr/~obozinsg/teaching/mva_gm/papers/ctc.pdf)
|
||||
- Sequence Transduction with Recurrent Neural Networks (https://arxiv.org/pdf/1211.3711.pdf)
|
||||
- Pruned RNN-T for fast, memory-efficient ASR training (https://arxiv.org/pdf/2206.13236.pdf)
|
||||
|
||||
Args:
|
||||
encoder_embed:
|
||||
It is a Convolutional 2D subsampling module. It converts
|
||||
an input of shape (N, T, idim) to an output of of shape
|
||||
(N, T', odim), where T' = (T-3)//2-2 = (T-7)//2.
|
||||
encoder:
|
||||
It is the transcription network in the paper. Its accepts
|
||||
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
|
||||
It returns two tensors: `logits` of shape (N, T, encoder_dim) and
|
||||
`logit_lens` of shape (N,).
|
||||
decoder:
|
||||
It is the prediction network in the paper. Its input shape
|
||||
is (N, U) and its output shape is (N, U, decoder_dim).
|
||||
It should contain one attribute: `blank_id`.
|
||||
It is used when use_transducer is True.
|
||||
joiner:
|
||||
It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim).
|
||||
Its output shape is (N, T, U, vocab_size). Note that its output contains
|
||||
unnormalized probs, i.e., not processed by log-softmax.
|
||||
It is used when use_transducer is True.
|
||||
use_transducer:
|
||||
Whether use transducer head. Default: True.
|
||||
use_ctc:
|
||||
Whether use CTC head. Default: False.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
assert (
|
||||
use_transducer or use_ctc
|
||||
), f"At least one of them should be True, but got use_transducer={use_transducer}, use_ctc={use_ctc}"
|
||||
|
||||
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||
|
||||
self.encoder_embed = encoder_embed
|
||||
self.encoder = encoder
|
||||
self.use_hat = use_hat
|
||||
self.use_lstm_pred = use_lstm_pred
|
||||
self.use_transducer = use_transducer
|
||||
if use_transducer:
|
||||
# Modules for Transducer head
|
||||
assert decoder is not None
|
||||
assert hasattr(decoder, "blank_id")
|
||||
assert joiner is not None
|
||||
|
||||
self.decoder = decoder
|
||||
self.joiner = joiner
|
||||
|
||||
self.st_joiner = st_joiner
|
||||
self.st_decoder = st_decoder
|
||||
self.st_encoder = st_encoder
|
||||
|
||||
self.simple_am_proj = ScaledLinear(
|
||||
encoder_dim, vocab_size, initial_scale=0.25
|
||||
)
|
||||
self.simple_lm_proj = ScaledLinear(
|
||||
decoder_dim, vocab_size, initial_scale=0.25
|
||||
)
|
||||
|
||||
self.simple_st_am_proj = ScaledLinear(
|
||||
st_encoder_dim, st_vocab_size, initial_scale=0.25
|
||||
)
|
||||
self.simple_st_lm_proj = ScaledLinear(
|
||||
decoder_dim, st_vocab_size, initial_scale=0.25
|
||||
)
|
||||
else:
|
||||
assert decoder is None
|
||||
assert joiner is None
|
||||
|
||||
self.use_ctc = use_ctc
|
||||
self.use_st_ctc = use_st_ctc
|
||||
if self.use_ctc:
|
||||
# Modules for CTC head
|
||||
self.ctc_output = nn.Sequential(
|
||||
nn.Dropout(p=0.1),
|
||||
nn.Linear(encoder_dim, vocab_size),
|
||||
nn.LogSoftmax(dim=-1),
|
||||
)
|
||||
if self.use_st_ctc:
|
||||
# Modules for CTC head
|
||||
self.st_ctc_output = nn.Sequential(
|
||||
nn.Dropout(p=0.1),
|
||||
nn.Linear(st_encoder_dim, st_vocab_size),
|
||||
nn.LogSoftmax(dim=-1),
|
||||
)
|
||||
|
||||
def forward_encoder(
|
||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute encoder outputs.
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C).
|
||||
x_lens:
|
||||
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||
before padding.
|
||||
|
||||
Returns:
|
||||
encoder_out:
|
||||
Encoder output, of shape (N, T, C).
|
||||
encoder_out_lens:
|
||||
Encoder output lengths, of shape (N,).
|
||||
"""
|
||||
# logging.info(f"Memory allocated at entry: {torch.cuda.memory_allocated() // 1000000}M")
|
||||
x, x_lens = self.encoder_embed(x, x_lens)
|
||||
# logging.info(f"Memory allocated after encoder_embed: {torch.cuda.memory_allocated() // 1000000}M")
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
|
||||
encoder_out, encoder_out_lens, st_input = self.encoder(x, x_lens, src_key_padding_mask)
|
||||
if self.st_encoder is not None:
|
||||
st_src_key_padding_mask = make_pad_mask(encoder_out_lens)
|
||||
|
||||
st_encoder_out, st_encoder_out_lens = self.st_encoder(
|
||||
st_input, x_lens, src_key_padding_mask
|
||||
)
|
||||
st_encoder_out = st_encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
else:
|
||||
st_encoder_out_lens = None
|
||||
st_encoder_out = None
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
assert torch.all(encoder_out_lens > 0), (x_lens, encoder_out_lens)
|
||||
return encoder_out, encoder_out_lens, st_encoder_out, st_encoder_out_lens
|
||||
|
||||
def forward_st_ctc(
|
||||
self,
|
||||
st_encoder_out: torch.Tensor,
|
||||
st_encoder_out_lens: torch.Tensor,
|
||||
targets: torch.Tensor,
|
||||
target_lengths: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
"""Compute CTC loss.
|
||||
Args:
|
||||
encoder_out:
|
||||
Encoder output, of shape (N, T, C).
|
||||
encoder_out_lens:
|
||||
Encoder output lengths, of shape (N,).
|
||||
targets:
|
||||
Target Tensor of shape (sum(target_lengths)). The targets are assumed
|
||||
to be un-padded and concatenated within 1 dimension.
|
||||
"""
|
||||
# Compute CTC log-prob
|
||||
ctc_output = self.st_ctc_output(st_encoder_out) # (N, T, C)
|
||||
|
||||
ctc_loss = torch.nn.functional.ctc_loss(
|
||||
log_probs=ctc_output.permute(1, 0, 2), # (T, N, C)
|
||||
targets=targets,
|
||||
input_lengths=st_encoder_out_lens,
|
||||
target_lengths=target_lengths,
|
||||
reduction="sum",
|
||||
)
|
||||
return ctc_loss
|
||||
|
||||
def forward_ctc(
|
||||
self,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
targets: torch.Tensor,
|
||||
target_lengths: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
"""Compute CTC loss.
|
||||
Args:
|
||||
encoder_out:
|
||||
Encoder output, of shape (N, T, C).
|
||||
encoder_out_lens:
|
||||
Encoder output lengths, of shape (N,).
|
||||
targets:
|
||||
Target Tensor of shape (sum(target_lengths)). The targets are assumed
|
||||
to be un-padded and concatenated within 1 dimension.
|
||||
"""
|
||||
# Compute CTC log-prob
|
||||
ctc_output = self.ctc_output(encoder_out) # (N, T, C)
|
||||
|
||||
ctc_loss = torch.nn.functional.ctc_loss(
|
||||
log_probs=ctc_output.permute(1, 0, 2), # (T, N, C)
|
||||
targets=targets,
|
||||
input_lengths=encoder_out_lens,
|
||||
target_lengths=target_lengths,
|
||||
reduction="sum",
|
||||
)
|
||||
return ctc_loss
|
||||
|
||||
def forward_cr_ctc(
|
||||
self,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
targets: torch.Tensor,
|
||||
target_lengths: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute CTC loss with consistency regularization loss.
|
||||
Args:
|
||||
encoder_out:
|
||||
Encoder output, of shape (2 * N, T, C).
|
||||
encoder_out_lens:
|
||||
Encoder output lengths, of shape (2 * N,).
|
||||
targets:
|
||||
Target Tensor of shape (2 * sum(target_lengths)). The targets are assumed
|
||||
to be un-padded and concatenated within 1 dimension.
|
||||
"""
|
||||
# Compute CTC loss
|
||||
ctc_output = self.ctc_output(encoder_out) # (2 * N, T, C)
|
||||
ctc_loss = torch.nn.functional.ctc_loss(
|
||||
log_probs=ctc_output.permute(1, 0, 2), # (T, 2 * N, C)
|
||||
targets=targets.cpu(),
|
||||
input_lengths=encoder_out_lens.cpu(),
|
||||
target_lengths=target_lengths.cpu(),
|
||||
reduction="none",
|
||||
)
|
||||
ctc_loss_is_finite = torch.isfinite(ctc_loss)
|
||||
ctc_loss = ctc_loss[ctc_loss_is_finite]
|
||||
ctc_loss = ctc_loss.sum()
|
||||
|
||||
# Compute consistency regularization loss
|
||||
exchanged_targets = ctc_output.detach().chunk(2, dim=0)
|
||||
exchanged_targets = torch.cat(
|
||||
[exchanged_targets[1], exchanged_targets[0]], dim=0
|
||||
) # exchange: [x1, x2] -> [x2, x1]
|
||||
cr_loss = nn.functional.kl_div(
|
||||
input=ctc_output,
|
||||
target=exchanged_targets,
|
||||
reduction="none",
|
||||
log_target=True,
|
||||
) # (2 * N, T, C)
|
||||
length_mask = make_pad_mask(encoder_out_lens).unsqueeze(-1)
|
||||
cr_loss = cr_loss.masked_fill(length_mask, 0.0).sum()
|
||||
|
||||
return ctc_loss, cr_loss
|
||||
|
||||
def forward_st_cr_ctc(
|
||||
self,
|
||||
st_encoder_out: torch.Tensor,
|
||||
st_encoder_out_lens: torch.Tensor,
|
||||
st_targets: torch.Tensor,
|
||||
st_target_lengths: torch.Tensor,
|
||||
# encoder_out: torch.Tensor,
|
||||
# encoder_out_lens: torch.Tensor,
|
||||
# targets: torch.Tensor,
|
||||
# target_lengths: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute CTC loss with consistency regularization loss.
|
||||
Args:
|
||||
encoder_out:
|
||||
Encoder output, of shape (2 * N, T, C).
|
||||
encoder_out_lens:
|
||||
Encoder output lengths, of shape (2 * N,).
|
||||
targets:
|
||||
Target Tensor of shape (2 * sum(target_lengths)). The targets are assumed
|
||||
to be un-padded and concatenated within 1 dimension.
|
||||
"""
|
||||
# Compute CTC loss
|
||||
st_ctc_output = self.st_ctc_output(st_encoder_out) # (2 * N, T, C)
|
||||
st_ctc_loss = torch.nn.functional.ctc_loss(
|
||||
log_probs=st_ctc_output.permute(1, 0, 2), # (T, 2 * N, C)
|
||||
targets=st_targets.cpu(),
|
||||
input_lengths=st_encoder_out_lens.cpu(),
|
||||
target_lengths=st_target_lengths.cpu(),
|
||||
reduction="none",
|
||||
)
|
||||
st_ctc_loss_is_finite = torch.isfinite(st_ctc_loss)
|
||||
st_ctc_loss = st_ctc_loss[st_ctc_loss_is_finite]
|
||||
st_ctc_loss = st_ctc_loss.sum()
|
||||
# ctc_output = self.ctc_output(encoder_out) # (2 * N, T, C)
|
||||
# ctc_loss = torch.nn.functional.ctc_loss(
|
||||
# log_probs=ctc_output.permute(1, 0, 2), # (T, 2 * N, C)
|
||||
# targets=targets.cpu(),
|
||||
# input_lengths=encoder_out_lens.cpu(),
|
||||
# target_lengths=target_lengths.cpu(),
|
||||
# reduction="sum",
|
||||
# )
|
||||
|
||||
# if not torch.isfinite(st_ctc_loss):
|
||||
# breakpoint()
|
||||
|
||||
# Compute consistency regularization loss
|
||||
exchanged_targets = st_ctc_output.detach().chunk(2, dim=0)
|
||||
exchanged_targets = torch.cat(
|
||||
[exchanged_targets[1], exchanged_targets[0]], dim=0
|
||||
) # exchange: [x1, x2] -> [x2, x1]
|
||||
cr_loss = nn.functional.kl_div(
|
||||
input=st_ctc_output,
|
||||
target=exchanged_targets,
|
||||
reduction="none",
|
||||
log_target=True,
|
||||
) # (2 * N, T, C)
|
||||
length_mask = make_pad_mask(st_encoder_out_lens).unsqueeze(-1)
|
||||
cr_loss = cr_loss.masked_fill(length_mask, 0.0).sum()
|
||||
|
||||
return st_ctc_loss, cr_loss
|
||||
|
||||
def forward_st_transducer(
|
||||
self,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
st_encoder_out: torch.Tensor,
|
||||
st_encoder_out_lens: torch.Tensor,
|
||||
y: k2.RaggedTensor,
|
||||
y_lens: torch.Tensor,
|
||||
st_y: k2.RaggedTensor,
|
||||
st_y_lens: torch.Tensor,
|
||||
prune_range: int = 5,
|
||||
st_prune_range: int = 10,
|
||||
am_scale: float = 0.0,
|
||||
lm_scale: float = 0.0,
|
||||
) -> Union[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor, Tensor]]:
|
||||
"""Compute Transducer loss.
|
||||
Args:
|
||||
encoder_out:
|
||||
Encoder output, of shape (N, T, C).
|
||||
encoder_out_lens:
|
||||
Encoder output lengths, of shape (N,).
|
||||
y:
|
||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||
utterance.
|
||||
prune_range:
|
||||
The prune range for rnnt loss, it means how many symbols(context)
|
||||
we are considering for each frame to compute the loss.
|
||||
am_scale:
|
||||
The scale to smooth the loss with am (output of encoder network)
|
||||
part
|
||||
lm_scale:
|
||||
The scale to smooth the loss with lm (output of predictor network)
|
||||
part
|
||||
"""
|
||||
# Now for the decoder, i.e., the prediction network
|
||||
|
||||
|
||||
blank_id = self.decoder.blank_id
|
||||
st_blank_id = self.st_decoder.blank_id
|
||||
sos_y = add_sos(y, sos_id=blank_id)
|
||||
st_sos_y = add_sos(st_y, sos_id=st_blank_id)
|
||||
|
||||
# sos_y_padded: [B, S + 1], start with SOS.
|
||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||
st_sos_y_padded = st_sos_y.pad(mode="constant", padding_value=st_blank_id)
|
||||
|
||||
# decoder_out: [B, S + 1, decoder_dim]
|
||||
decoder_out = self.decoder(sos_y_padded)
|
||||
if self.use_lstm_pred:
|
||||
st_decoder_out, _ = self.st_decoder(st_sos_y_padded)
|
||||
else:
|
||||
st_decoder_out = self.st_decoder(st_sos_y_padded)
|
||||
|
||||
# Note: y does not start with SOS
|
||||
# y_padded : [B, S]
|
||||
y_padded = y.pad(mode="constant", padding_value=0)
|
||||
|
||||
y_padded = y_padded.to(torch.int64)
|
||||
boundary = torch.zeros(
|
||||
(encoder_out.size(0), 4),
|
||||
dtype=torch.int64,
|
||||
device=encoder_out.device,
|
||||
)
|
||||
boundary[:, 2] = y_lens
|
||||
boundary[:, 3] = encoder_out_lens
|
||||
|
||||
st_y_padded = st_y.pad(mode="constant", padding_value=0)
|
||||
|
||||
st_y_padded = st_y_padded.to(torch.int64)
|
||||
st_boundary = torch.zeros(
|
||||
(encoder_out.size(0), 4),
|
||||
dtype=torch.int64,
|
||||
device=encoder_out.device,
|
||||
)
|
||||
st_boundary[:, 2] = st_y_lens
|
||||
st_boundary[:, 3] = st_encoder_out_lens
|
||||
|
||||
lm = self.simple_lm_proj(decoder_out)
|
||||
am = self.simple_am_proj(encoder_out)
|
||||
|
||||
st_lm = self.simple_st_lm_proj(st_decoder_out)
|
||||
st_am = self.simple_st_am_proj(st_encoder_out)
|
||||
|
||||
# if self.training and random.random() < 0.25:
|
||||
# lm = penalize_abs_values_gt(lm, 100.0, 1.0e-04)
|
||||
# if self.training and random.random() < 0.25:
|
||||
# am = penalize_abs_values_gt(am, 30.0, 1.0e-04)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
||||
lm=lm.float(),
|
||||
am=am.float(),
|
||||
symbols=y_padded,
|
||||
termination_symbol=blank_id,
|
||||
lm_only_scale=lm_scale,
|
||||
am_only_scale=am_scale,
|
||||
boundary=boundary,
|
||||
reduction="sum",
|
||||
return_grad=True,
|
||||
)
|
||||
st_simple_loss, (st_px_grad, st_py_grad) = k2.rnnt_loss_smoothed(
|
||||
lm=st_lm.float(),
|
||||
am=st_am.float(),
|
||||
symbols=st_y_padded,
|
||||
termination_symbol=st_blank_id,
|
||||
lm_only_scale=lm_scale,
|
||||
am_only_scale=am_scale,
|
||||
boundary=st_boundary,
|
||||
reduction="sum",
|
||||
return_grad=True,
|
||||
)
|
||||
|
||||
|
||||
# am_pruned : [B, T, prune_range, encoder_dim]
|
||||
# lm_pruned : [B, T, prune_range, decoder_dim]
|
||||
|
||||
# ranges : [B, T, prune_range]
|
||||
ranges = k2.get_rnnt_prune_ranges(
|
||||
px_grad=px_grad,
|
||||
py_grad=py_grad,
|
||||
boundary=boundary,
|
||||
s_range=prune_range,
|
||||
)
|
||||
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
||||
am=self.joiner.encoder_proj(encoder_out),
|
||||
lm=self.joiner.decoder_proj(decoder_out),
|
||||
ranges=ranges,
|
||||
)
|
||||
# project_input=False since we applied the decoder's input projections
|
||||
# prior to do_rnnt_pruning (this is an optimization for speed).
|
||||
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
pruned_loss = k2.rnnt_loss_pruned(
|
||||
logits=logits.float(),
|
||||
symbols=y_padded,
|
||||
ranges=ranges,
|
||||
termination_symbol=blank_id,
|
||||
boundary=boundary,
|
||||
reduction="sum",
|
||||
use_hat_loss=self.use_hat,
|
||||
)
|
||||
# logits : [B, T, prune_range, vocab_size]
|
||||
|
||||
st_ranges = k2.get_rnnt_prune_ranges(
|
||||
px_grad=st_px_grad,
|
||||
py_grad=st_py_grad,
|
||||
boundary=st_boundary,
|
||||
s_range=st_prune_range,
|
||||
)
|
||||
st_am_pruned, st_lm_pruned = k2.do_rnnt_pruning(
|
||||
am=self.st_joiner.encoder_proj(st_encoder_out),
|
||||
lm=self.st_joiner.decoder_proj(st_decoder_out),
|
||||
ranges=st_ranges,
|
||||
)
|
||||
|
||||
st_logits = self.st_joiner(st_am_pruned, st_lm_pruned, project_input=False)
|
||||
# Compute HAT loss for st
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
pruned_st_loss = k2.rnnt_loss_pruned(
|
||||
logits=st_logits.float(),
|
||||
symbols=st_y.pad(mode="constant", padding_value=blank_id).to(torch.int64),
|
||||
ranges=st_ranges,
|
||||
termination_symbol=st_blank_id,
|
||||
boundary=st_boundary,
|
||||
reduction="sum",
|
||||
use_hat_loss=self.use_hat,
|
||||
)
|
||||
|
||||
return simple_loss, st_simple_loss, pruned_loss, pruned_st_loss
|
||||
|
||||
|
||||
def forward_transducer(
|
||||
self,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
y: k2.RaggedTensor,
|
||||
y_lens: torch.Tensor,
|
||||
prune_range: int = 5,
|
||||
am_scale: float = 0.0,
|
||||
lm_scale: float = 0.0,
|
||||
) -> Union[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor, Tensor]]:
|
||||
"""Compute Transducer loss.
|
||||
Args:
|
||||
encoder_out:
|
||||
Encoder output, of shape (N, T, C).
|
||||
encoder_out_lens:
|
||||
Encoder output lengths, of shape (N,).
|
||||
y:
|
||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||
utterance.
|
||||
prune_range:
|
||||
The prune range for rnnt loss, it means how many symbols(context)
|
||||
we are considering for each frame to compute the loss.
|
||||
am_scale:
|
||||
The scale to smooth the loss with am (output of encoder network)
|
||||
part
|
||||
lm_scale:
|
||||
The scale to smooth the loss with lm (output of predictor network)
|
||||
part
|
||||
"""
|
||||
# Now for the decoder, i.e., the prediction network
|
||||
|
||||
|
||||
blank_id = self.decoder.blank_id
|
||||
sos_y = add_sos(y, sos_id=blank_id)
|
||||
|
||||
# sos_y_padded: [B, S + 1], start with SOS.
|
||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||
|
||||
# decoder_out: [B, S + 1, decoder_dim]
|
||||
decoder_out = self.decoder(sos_y_padded)
|
||||
|
||||
# Note: y does not start with SOS
|
||||
# y_padded : [B, S]
|
||||
y_padded = y.pad(mode="constant", padding_value=0)
|
||||
|
||||
y_padded = y_padded.to(torch.int64)
|
||||
boundary = torch.zeros(
|
||||
(encoder_out.size(0), 4),
|
||||
dtype=torch.int64,
|
||||
device=encoder_out.device,
|
||||
)
|
||||
boundary[:, 2] = y_lens
|
||||
boundary[:, 3] = encoder_out_lens
|
||||
lm = self.simple_lm_proj(decoder_out)
|
||||
am = self.simple_am_proj(encoder_out)
|
||||
|
||||
# if self.training and random.random() < 0.25:
|
||||
# lm = penalize_abs_values_gt(lm, 100.0, 1.0e-04)
|
||||
# if self.training and random.random() < 0.25:
|
||||
# am = penalize_abs_values_gt(am, 30.0, 1.0e-04)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
||||
lm=lm.float(),
|
||||
am=am.float(),
|
||||
symbols=y_padded,
|
||||
termination_symbol=blank_id,
|
||||
lm_only_scale=lm_scale,
|
||||
am_only_scale=am_scale,
|
||||
boundary=boundary,
|
||||
reduction="sum",
|
||||
return_grad=True,
|
||||
)
|
||||
|
||||
|
||||
# am_pruned : [B, T, prune_range, encoder_dim]
|
||||
# lm_pruned : [B, T, prune_range, decoder_dim]
|
||||
|
||||
# ranges : [B, T, prune_range]
|
||||
ranges = k2.get_rnnt_prune_ranges(
|
||||
px_grad=px_grad,
|
||||
py_grad=py_grad,
|
||||
boundary=boundary,
|
||||
s_range=prune_range,
|
||||
)
|
||||
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
||||
am=self.joiner.encoder_proj(encoder_out),
|
||||
lm=self.joiner.decoder_proj(decoder_out),
|
||||
ranges=ranges,
|
||||
)
|
||||
# project_input=False since we applied the decoder's input projections
|
||||
# prior to do_rnnt_pruning (this is an optimization for speed).
|
||||
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
pruned_loss = k2.rnnt_loss_pruned(
|
||||
logits=logits.float(),
|
||||
symbols=y_padded,
|
||||
ranges=ranges,
|
||||
termination_symbol=blank_id,
|
||||
boundary=boundary,
|
||||
reduction="sum",
|
||||
use_hat_loss=self.use_hat,
|
||||
)
|
||||
# logits : [B, T, prune_range, vocab_size]
|
||||
return simple_loss, pruned_loss
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
y: k2.RaggedTensor,
|
||||
st_y: k2.RaggedTensor,
|
||||
prune_range: int = 5,
|
||||
st_prune_range: int =10,
|
||||
am_scale: float = 0.0,
|
||||
lm_scale: float = 0.0,
|
||||
use_st_cr_ctc: bool = False,
|
||||
use_asr_cr_ctc: bool = False,
|
||||
use_spec_aug: bool = False,
|
||||
spec_augment: Optional[SpecAugment] = None,
|
||||
supervision_segments: Optional[torch.Tensor] = None,
|
||||
time_warp_factor: Optional[int] = 80,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C).
|
||||
x_lens:
|
||||
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||
before padding.
|
||||
y:
|
||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||
utterance.
|
||||
prune_range:
|
||||
The prune range for rnnt loss, it means how many symbols(context)
|
||||
we are considering for each frame to compute the loss.
|
||||
am_scale:
|
||||
The scale to smooth the loss with am (output of encoder network)
|
||||
part
|
||||
lm_scale:
|
||||
The scale to smooth the loss with lm (output of predictor network)
|
||||
part
|
||||
use_cr_ctc:
|
||||
Whether use consistency-regularized CTC.
|
||||
use_spec_aug:
|
||||
Whether apply spec-augment manually, used only if use_cr_ctc is True.
|
||||
spec_augment:
|
||||
The SpecAugment instance that returns time masks,
|
||||
used only if use_cr_ctc is True.
|
||||
supervision_segments:
|
||||
An int tensor of shape ``(S, 3)``. ``S`` is the number of
|
||||
supervision segments that exist in ``features``.
|
||||
Used only if use_cr_ctc is True.
|
||||
time_warp_factor:
|
||||
Parameter for the time warping; larger values mean more warping.
|
||||
Set to ``None``, or less than ``1``, to disable.
|
||||
Used only if use_cr_ctc is True.
|
||||
|
||||
Returns:
|
||||
Return the transducer losses and CTC loss,
|
||||
in form of (simple_loss, pruned_loss, ctc_loss)
|
||||
|
||||
Note:
|
||||
Regarding am_scale & lm_scale, it will make the loss-function one of
|
||||
the form:
|
||||
lm_scale * lm_probs + am_scale * am_probs +
|
||||
(1-lm_scale-am_scale) * combined_probs
|
||||
"""
|
||||
assert x.ndim == 3, x.shape
|
||||
assert x_lens.ndim == 1, x_lens.shape
|
||||
assert y.num_axes == 2, y.num_axes
|
||||
assert st_y.num_axes == 2, st_y.num_axes
|
||||
assert x.size(0) == x_lens.size(0) == y.dim0, (x.shape, x_lens.shape, y.dim0)
|
||||
device = x.device
|
||||
if use_st_cr_ctc or use_asr_cr_ctc:
|
||||
assert self.use_ctc or self.use_st_ctc
|
||||
if use_spec_aug:
|
||||
assert spec_augment is not None and spec_augment.time_warp_factor < 1
|
||||
# Apply time warping before input duplicating
|
||||
assert supervision_segments is not None
|
||||
x = time_warp(
|
||||
x,
|
||||
time_warp_factor=time_warp_factor,
|
||||
supervision_segments=supervision_segments,
|
||||
)
|
||||
# Independently apply frequency masking and time masking to the two copies
|
||||
x = spec_augment(x.repeat(2, 1, 1))
|
||||
else:
|
||||
x = x.repeat(2, 1, 1)
|
||||
x_lens = x_lens.repeat(2)
|
||||
y = k2.ragged.cat([y, y], axis=0)
|
||||
if self.st_joiner != None and self.use_st_ctc:
|
||||
st_y = k2.ragged.cat([st_y, st_y], axis=0)
|
||||
# Compute encoder outputs
|
||||
encoder_out, encoder_out_lens, st_encoder_out, st_encoder_out_lens = self.forward_encoder(x, x_lens)
|
||||
|
||||
row_splits = y.shape.row_splits(1)
|
||||
y_lens = row_splits[1:] - row_splits[:-1]
|
||||
st_row_splits = st_y.shape.row_splits(1)
|
||||
st_y_lens = st_row_splits[1:] - st_row_splits[:-1]
|
||||
|
||||
if self.use_transducer:
|
||||
# Compute transducer loss
|
||||
if self.st_joiner != None:
|
||||
simple_loss, st_simple_loss, pruned_loss, st_pruned_loss = self.forward_st_transducer(
|
||||
st_encoder_out=st_encoder_out,
|
||||
st_encoder_out_lens=st_encoder_out_lens,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
y=y.to(x.device),
|
||||
y_lens=y_lens,
|
||||
st_y=st_y.to(x.device),
|
||||
st_y_lens=st_y_lens,
|
||||
prune_range=st_prune_range,
|
||||
am_scale=am_scale,
|
||||
lm_scale=lm_scale,
|
||||
)
|
||||
if use_asr_cr_ctc:
|
||||
simple_loss = simple_loss * 0.5
|
||||
pruned_loss = pruned_loss * 0.5
|
||||
if use_st_cr_ctc:
|
||||
st_simple_loss = st_simple_loss * 0.5
|
||||
st_pruned_loss = st_pruned_loss * 0.5
|
||||
else:
|
||||
simple_loss, pruned_loss = self.forward_transducer(
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
y=y.to(x.device),
|
||||
y_lens=y_lens,
|
||||
prune_range=prune_range,
|
||||
am_scale=am_scale,
|
||||
lm_scale=lm_scale,
|
||||
)
|
||||
if use_asr_cr_ctc:
|
||||
simple_loss = simple_loss * 0.5
|
||||
pruned_loss = pruned_loss * 0.5
|
||||
st_simple_loss, st_pruned_loss = torch.empty(0), torch.empty(0)
|
||||
else:
|
||||
simple_loss = torch.empty(0)
|
||||
pruned_loss = torch.empty(0)
|
||||
|
||||
if self.use_ctc:
|
||||
# Compute CTC loss
|
||||
targets = y.values
|
||||
if not use_asr_cr_ctc:
|
||||
ctc_loss = self.forward_ctc(
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
targets=targets,
|
||||
target_lengths=y_lens,
|
||||
)
|
||||
cr_loss = torch.empty(0)
|
||||
else:
|
||||
ctc_loss, cr_loss = self.forward_cr_ctc(
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
targets=targets,
|
||||
target_lengths=y_lens,
|
||||
)
|
||||
ctc_loss = ctc_loss * 0.5
|
||||
cr_loss = cr_loss * 0.5
|
||||
else:
|
||||
ctc_loss = torch.empty(0)
|
||||
cr_loss = torch.empty(0)
|
||||
if self.use_st_ctc:
|
||||
# Compute CTC loss
|
||||
st_targets = st_y.values
|
||||
if not use_st_cr_ctc:
|
||||
st_ctc_loss = self.forward_st_ctc(
|
||||
st_encoder_out=st_encoder_out,
|
||||
st_encoder_out_lens=st_encoder_out_lens,
|
||||
targets=st_targets,
|
||||
target_lengths=st_y_lens,
|
||||
)
|
||||
st_cr_loss = torch.empty(0)
|
||||
else:
|
||||
st_ctc_loss, st_cr_loss = self.forward_st_cr_ctc(
|
||||
st_encoder_out=st_encoder_out,
|
||||
st_encoder_out_lens=st_encoder_out_lens,
|
||||
st_targets=st_targets,
|
||||
st_target_lengths=st_y_lens,
|
||||
# encoder_out=encoder_out,
|
||||
# encoder_out_lens=encoder_out_lens,
|
||||
# targets=targets,
|
||||
# target_lengths=y_lens,
|
||||
)
|
||||
st_ctc_loss = st_ctc_loss * 0.5
|
||||
st_cr_loss = st_cr_loss * 0.5
|
||||
else:
|
||||
st_ctc_loss = torch.empty(0)
|
||||
st_cr_loss = torch.empty(0)
|
||||
|
||||
return simple_loss, st_simple_loss, pruned_loss, st_pruned_loss, ctc_loss, st_ctc_loss, cr_loss, st_cr_loss
|
||||
1
egs/multi_conv_zh_es_ta/ST/hent_srt/optim.py
Symbolic link
1
egs/multi_conv_zh_es_ta/ST/hent_srt/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../zipformer_multijoiner_st/optim.py
|
||||
1
egs/multi_conv_zh_es_ta/ST/hent_srt/profile.py
Symbolic link
1
egs/multi_conv_zh_es_ta/ST/hent_srt/profile.py
Symbolic link
@ -0,0 +1 @@
|
||||
../zipformer_multijoiner_st/profile.py
|
||||
1
egs/multi_conv_zh_es_ta/ST/hent_srt/scaling.py
Symbolic link
1
egs/multi_conv_zh_es_ta/ST/hent_srt/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../zipformer_multijoiner_st/scaling.py
|
||||
1
egs/multi_conv_zh_es_ta/ST/hent_srt/scaling_converter.py
Symbolic link
1
egs/multi_conv_zh_es_ta/ST/hent_srt/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
||||
../zipformer_multijoiner_st/scaling_converter.py
|
||||
244
egs/multi_conv_zh_es_ta/ST/hent_srt/streaming_beam_search.py
Normal file
244
egs/multi_conv_zh_es_ta/ST/hent_srt/streaming_beam_search.py
Normal file
@ -0,0 +1,244 @@
|
||||
# Copyright 2025 Johns Hopkins University (author: Amir Hussein)
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import warnings
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from beam_search import Hypothesis, HypothesisList, get_hyps_shape
|
||||
from decode_stream import DecodeStream
|
||||
|
||||
from icefall.decode import one_best_decoding
|
||||
from icefall.utils import get_texts
|
||||
|
||||
|
||||
def greedy_search_st(
|
||||
model: nn.Module,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_st: torch.Tensor,
|
||||
max_sym_per_frame: int,
|
||||
streams: List[DecodeStream],
|
||||
st_blank_penalty: float = 0.0,
|
||||
) -> None:
|
||||
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The transducer model.
|
||||
encoder_out:
|
||||
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
||||
streams:
|
||||
A list of Stream objects.
|
||||
"""
|
||||
assert len(streams) == encoder_out_st.size(0)
|
||||
assert encoder_out_st.ndim == 3
|
||||
# ST
|
||||
blank_id_st = model.st_decoder.blank_id
|
||||
context_size_st = model.st_decoder.context_size
|
||||
unk_id_st = getattr(model, "unk_id", blank_id_st)
|
||||
device = model.device
|
||||
T = encoder_out_st.size(1)
|
||||
# ASR
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
unk_id = getattr(model, "unk_id", blank_id_st)
|
||||
|
||||
#ST
|
||||
|
||||
decoder_input_st = torch.tensor(
|
||||
[stream.hyp_st[-context_size_st:] for stream in streams],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
# decoder_out is of shape (N, 1, decoder_out_dim)
|
||||
decoder_out_st = model.st_decoder(decoder_input_st, need_pad=False)
|
||||
decoder_out_st = model.st_joiner.decoder_proj(decoder_out_st)
|
||||
|
||||
# ASR
|
||||
decoder_input = torch.tensor(
|
||||
[stream.hyp_asr[-context_size:] for stream in streams],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
# Maximum symbols per utterance.
|
||||
max_sym_per_utt = 10000
|
||||
# symbols per frame
|
||||
sym_per_frame = 0
|
||||
|
||||
# symbols per utterance decoded so far
|
||||
sym_per_utt = 0
|
||||
t = 0
|
||||
# for t in range(T):
|
||||
while t < T and sym_per_utt < max_sym_per_utt:
|
||||
if sym_per_frame >= max_sym_per_frame:
|
||||
sym_per_frame = 0
|
||||
t += 1
|
||||
continue
|
||||
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
|
||||
# current_encoder_out_st = encoder_out_st[:, t : t + 1, :] # noqa
|
||||
current_encoder_out_st = encoder_out_st[:, t : t + 1, :].unsqueeze(2)
|
||||
|
||||
st_logits = model.st_joiner(
|
||||
current_encoder_out_st,
|
||||
decoder_out_st.unsqueeze(1),
|
||||
project_input=False,
|
||||
)
|
||||
# logits'shape (batch_size, vocab_size)
|
||||
st_logits = st_logits.squeeze(1).squeeze(1)
|
||||
if st_blank_penalty != 0.0:
|
||||
st_logits[:, 0] -= st_blank_penalty
|
||||
|
||||
assert st_logits.ndim == 2, st_logits.shape
|
||||
y_st = st_logits.argmax(dim=1).tolist()
|
||||
for i, v in enumerate(y_st):
|
||||
if v not in (blank_id_st, unk_id_st):
|
||||
streams[i].hyp_st.append(v)
|
||||
|
||||
# update decoder output
|
||||
# decoder_input_st = torch.tensor(
|
||||
# [stream.hyp_st[-context_size_st:].reshape(
|
||||
# 1, context_size_st) for stream in streams],
|
||||
# device=device,
|
||||
# dtype=torch.int64,
|
||||
# )
|
||||
decoder_input_st = torch.stack([
|
||||
torch.tensor(stream.hyp_st[-context_size_st:], device=device, dtype=torch.int64)
|
||||
for stream in streams]).reshape(len(streams), context_size_st)
|
||||
|
||||
decoder_out_st = model.st_decoder(
|
||||
decoder_input_st,
|
||||
need_pad=False,
|
||||
)
|
||||
decoder_out_st = model.st_joiner.decoder_proj(decoder_out_st)
|
||||
sym_per_utt += 1
|
||||
sym_per_frame += 1
|
||||
else:
|
||||
sym_per_frame = 0
|
||||
t += 1
|
||||
|
||||
|
||||
def modified_beam_search(
|
||||
model: nn.Module,
|
||||
encoder_out: torch.Tensor,
|
||||
streams: List[DecodeStream],
|
||||
num_active_paths: int = 4,
|
||||
blank_penalty: float = 0.0,
|
||||
) -> None:
|
||||
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The RNN-T model.
|
||||
encoder_out:
|
||||
A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of
|
||||
the encoder model.
|
||||
streams:
|
||||
A list of stream objects.
|
||||
num_active_paths:
|
||||
Number of active paths during the beam search.
|
||||
"""
|
||||
assert encoder_out.ndim == 3, encoder_out.shape
|
||||
assert len(streams) == encoder_out.size(0)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
device = next(model.parameters()).device
|
||||
batch_size = len(streams)
|
||||
T = encoder_out.size(1)
|
||||
|
||||
B = [stream.hyps for stream in streams]
|
||||
|
||||
for t in range(T):
|
||||
current_encoder_out = encoder_out[:, t].unsqueeze(1).unsqueeze(1)
|
||||
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
||||
|
||||
hyps_shape = get_hyps_shape(B).to(device)
|
||||
|
||||
A = [list(b) for b in B]
|
||||
B = [HypothesisList() for _ in range(batch_size)]
|
||||
|
||||
ys_log_probs = torch.stack(
|
||||
[hyp.log_prob.reshape(1) for hyps in A for hyp in hyps], dim=0
|
||||
) # (num_hyps, 1)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (num_hyps, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
# decoder_out is of shape (num_hyps, 1, 1, decoder_output_dim)
|
||||
|
||||
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
||||
# as index, so we use `to(torch.int64)` below.
|
||||
current_encoder_out = torch.index_select(
|
||||
current_encoder_out,
|
||||
dim=0,
|
||||
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||
) # (num_hyps, encoder_out_dim)
|
||||
|
||||
logits = model.joiner(current_encoder_out, decoder_out, project_input=False)
|
||||
# logits is of shape (num_hyps, 1, 1, vocab_size)
|
||||
|
||||
logits = logits.squeeze(1).squeeze(1)
|
||||
|
||||
if blank_penalty != 0.0:
|
||||
logits[:, 0] -= blank_penalty
|
||||
|
||||
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs.add_(ys_log_probs)
|
||||
|
||||
vocab_size = log_probs.size(-1)
|
||||
|
||||
log_probs = log_probs.reshape(-1)
|
||||
|
||||
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||
)
|
||||
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
|
||||
|
||||
for i in range(batch_size):
|
||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(num_active_paths)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||
|
||||
for k in range(len(topk_hyp_indexes)):
|
||||
hyp_idx = topk_hyp_indexes[k]
|
||||
hyp = A[i][hyp_idx]
|
||||
|
||||
new_ys = hyp.ys[:]
|
||||
new_token = topk_token_indexes[k]
|
||||
if new_token != blank_id:
|
||||
new_ys.append(new_token)
|
||||
|
||||
new_log_prob = topk_log_probs[k]
|
||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||
B[i].add(new_hyp)
|
||||
|
||||
for i in range(batch_size):
|
||||
streams[i].hyps = B[i]
|
||||
1
egs/multi_conv_zh_es_ta/ST/hent_srt/subsampling.py
Symbolic link
1
egs/multi_conv_zh_es_ta/ST/hent_srt/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../zipformer_multijoiner_st/subsampling.py
|
||||
1921
egs/multi_conv_zh_es_ta/ST/hent_srt/train.py
Executable file
1921
egs/multi_conv_zh_es_ta/ST/hent_srt/train.py
Executable file
File diff suppressed because it is too large
Load Diff
2449
egs/multi_conv_zh_es_ta/ST/hent_srt/zipformer.py
Normal file
2449
egs/multi_conv_zh_es_ta/ST/hent_srt/zipformer.py
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user