Merge 6d809bad0bfe6ea1beb36eabf7c71e2c5f7716e9 into f6ce135608968bfe736040345743dfbc2847cd8b

This commit is contained in:
Fangjun Kuang 2022-05-17 13:00:43 -04:00 committed by GitHub
commit 170768082f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
21 changed files with 3954 additions and 3 deletions

View File

@ -21,4 +21,6 @@ exclude =
.git, .git,
**/data/**, **/data/**,
icefall/shared/make_kn_lm.py, icefall/shared/make_kn_lm.py,
egs/librispeech/ASR/pruned_transducer_stateless5/conformer.py,
egs/librispeech/ASR/pruned_transducer_stateless5/sampling.py,
icefall/__init__.py icefall/__init__.py

View File

@ -19,6 +19,8 @@ The following table lists the differences among them.
| `pruned_transducer_stateless` | Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss | | `pruned_transducer_stateless` | Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss |
| `pruned_transducer_stateless2` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss | | `pruned_transducer_stateless2` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss |
| `pruned_transducer_stateless3` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss + using GigaSpeech as extra training data | | `pruned_transducer_stateless3` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss + using GigaSpeech as extra training data |
| `pruned_transducer_stateless4` | Conformer(modified) | Embedding + Conv1d | Same as pruned_transducer_stateless2 but supports saving averaged model periodically.|
| `pruned_transducer_stateless5` | Conformer(modified) | Embedding + Conv1d | Same as pruned_transducer_stateless3 but with knowledge bank|
The decoder in `transducer_stateless` is modified from the paper The decoder in `transducer_stateless` is modified from the paper

View File

@ -411,7 +411,7 @@ def get_transducer_model(params: AttributeDict) -> nn.Module:
def load_checkpoint_if_available( def load_checkpoint_if_available(
params: AttributeDict, params: AttributeDict,
model: nn.Module, model: nn.Module,
model_avg: nn.Module = None, model_avg: Optional[nn.Module] = None,
optimizer: Optional[torch.optim.Optimizer] = None, optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None, scheduler: Optional[LRSchedulerType] = None,
) -> Optional[Dict[str, Any]]: ) -> Optional[Dict[str, Any]]:

View File

@ -0,0 +1 @@
../pruned_transducer_stateless3/asr_datamodule.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless3/beam_search.py

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,681 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang
# Zengwei Yao)
#
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) greedy search
./pruned_transducer_stateless5/decode-giga.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 100 \
--decoding-method greedy_search
(2) beam search
./pruned_transducer_stateless5/decode-giga.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
(3) modified beam search
./pruned_transducer_stateless5/decode-giga.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
(4) fast beam search
./pruned_transducer_stateless5/decode-giga.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
"""
import argparse
import logging
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import AsrDataModule
from beam_search import (
beam_search,
fast_beam_search_nbest_oracle,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from gigaspeech import GigaSpeech
from gigaspeech_scoring import asr_text_post_processing
from train import get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import (
AttributeDict,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=False,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless5/exp",
help="The experiment dir",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
- fast_beam_search_nbest_oracle
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is
fast_beam_search or fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --decoding-method is
fast_beam_search or fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search or fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame.
Used only when --decoding_method is greedy_search""",
)
parser.add_argument(
"--num-paths",
type=int,
default=100,
help="""Number of paths for computed nbest oracle WER
when the decoding method is fast_beam_search_nbest_oracle.
""",
)
parser.add_argument(
"--nbest-scale",
type=float,
default=0.5,
help="""Scale applied to lattice scores when computing nbest paths.
Used only when the decoding_method is fast_beam_search_nbest_oracle.
""",
)
return parser
def post_processing(
results: List[Tuple[List[List[str]], List[List[str]]]],
) -> List[Tuple[List[List[str]], List[List[str]]]]:
new_results = []
for ref, hyp in results:
new_ref = asr_text_post_processing(" ".join(ref)).split()
new_hyp = asr_text_post_processing(" ".join(hyp)).split()
new_results.append((new_ref, new_hyp))
return new_results
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
batch: dict,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if greedy_search is used, it would be "greedy_search"
If beam search with a beam size of 7 is used, it would be
"beam_7"
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is
fast_beam_search or fast_beam_search_nbest_oracle.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
"""
device = model.device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
encoder_out, encoder_out_lens = model.encoder(
x=feature, x_lens=feature_lens
)
hyps = []
if params.decoding_method == "fast_beam_search":
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "fast_beam_search_nbest_oracle":
hyp_tokens = fast_beam_search_nbest_oracle(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
ref_texts=sp.encode(supervisions["text"]),
nbest_scale=params.nbest_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif (
params.decoding_method == "greedy_search"
and params.max_sym_per_frame == 1
):
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
batch_size = encoder_out.size(0)
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.decoding_method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyps.append(sp.decode(hyp).split())
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
elif params.decoding_method == "fast_beam_search":
return {
(
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}"
): hyps
}
elif params.decoding_method == "fast_beam_search_nbest_oracle":
return {
(
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}_"
f"num_paths_{params.num_paths}_"
f"nbest_scale_{params.nbest_scale}"
): hyps
}
else:
return {f"beam_size_{params.beam_size}": hyps}
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
if params.decoding_method == "greedy_search":
log_interval = 100
else:
log_interval = 2
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
hyps_dict = decode_one_batch(
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
batch=batch,
)
for name, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for hyp_words, ref_text in zip(hyps, texts):
ref_words = ref_text.split()
this_batch.append((ref_words, hyp_words))
results[name].extend(this_batch)
num_cuts += len(texts)
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(
f"batch {batch_str}, cuts processed until now is {num_cuts}"
)
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = (
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = post_processing(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = (
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = (
params.res_dir
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
AsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
assert params.decoding_method in (
"greedy_search",
"beam_search",
"fast_beam_search",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
)
params.res_dir = params.exp_dir / "giga" / params.decoding_method
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if params.decoding_method == "fast_beam_search":
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
elif params.decoding_method == "fast_beam_search_nbest_oracle":
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
params.suffix += f"-num-paths-{params.num_paths}"
params.suffix += f"-nbest-scale-{params.nbest_scale}"
elif "beam_search" in params.decoding_method:
params.suffix += (
f"-{params.decoding_method}-beam-size-{params.beam_size}"
)
else:
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.unk_id()
params.vocab_size = sp.get_piece_size()
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
assert params.iter == 0 and params.avg > 0
start = params.epoch - params.avg
assert start >= 1
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
model.device = device
model.unk_id = params.unk_id
# In beam_search.py, we are using model.decoder() and model.joiner(),
# so we have to switch to the branch for the GigaSpeech dataset.
model.decoder = model.decoder_giga
model.joiner = model.joiner_giga
if params.decoding_method in (
"fast_beam_search",
"fast_beam_search_nbest_oracle",
):
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
else:
decoding_graph = None
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
asr_datamodule = AsrDataModule(args)
gigaspeech = GigaSpeech(manifest_dir=args.manifest_dir)
test_cuts = gigaspeech.test_cuts()
dev_cuts = gigaspeech.dev_cuts()
test_dl = asr_datamodule.test_dataloaders(test_cuts)
dev_dl = asr_datamodule.test_dataloaders(dev_cuts)
test_sets = ["test", "dev"]
test_sets_dl = [test_dl, dev_dl]
for test_set, dl in zip(test_sets, test_sets_dl):
results_dict = decode_dataset(
dl=dl,
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
)
save_results(
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,663 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang
# Zengwei Yao)
#
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) greedy search
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 100 \
--decoding-method greedy_search
(2) beam search
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
(3) modified beam search
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
(4) fast beam search
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
"""
import argparse
import logging
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import AsrDataModule
from beam_search import (
beam_search,
fast_beam_search_nbest_oracle,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from librispeech import LibriSpeech
from train import get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import (
AttributeDict,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=False,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless5/exp",
help="The experiment dir",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
- fast_beam_search_nbest_oracle
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is
fast_beam_search or fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --decoding-method is
fast_beam_search or fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search or fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame.
Used only when --decoding_method is greedy_search""",
)
parser.add_argument(
"--num-paths",
type=int,
default=100,
help="""Number of paths for computed nbest oracle WER
when the decoding method is fast_beam_search_nbest_oracle.
""",
)
parser.add_argument(
"--nbest-scale",
type=float,
default=0.5,
help="""Scale applied to lattice scores when computing nbest paths.
Used only when the decoding_method is fast_beam_search_nbest_oracle.
""",
)
return parser
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
batch: dict,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if greedy_search is used, it would be "greedy_search"
If beam search with a beam size of 7 is used, it would be
"beam_7"
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is
fast_beam_search or fast_beam_search_nbest_oracle.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
"""
device = model.device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
encoder_out, encoder_out_lens = model.encoder(
x=feature, x_lens=feature_lens
)
hyps = []
if params.decoding_method == "fast_beam_search":
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "fast_beam_search_nbest_oracle":
hyp_tokens = fast_beam_search_nbest_oracle(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
ref_texts=sp.encode(supervisions["text"]),
nbest_scale=params.nbest_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif (
params.decoding_method == "greedy_search"
and params.max_sym_per_frame == 1
):
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
batch_size = encoder_out.size(0)
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.decoding_method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyps.append(sp.decode(hyp).split())
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
elif params.decoding_method == "fast_beam_search":
return {
(
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}"
): hyps
}
elif params.decoding_method == "fast_beam_search_nbest_oracle":
return {
(
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}_"
f"num_paths_{params.num_paths}_"
f"nbest_scale_{params.nbest_scale}"
): hyps
}
else:
return {f"beam_size_{params.beam_size}": hyps}
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
if params.decoding_method == "greedy_search":
log_interval = 100
else:
log_interval = 2
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
hyps_dict = decode_one_batch(
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
batch=batch,
)
for name, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for hyp_words, ref_text in zip(hyps, texts):
ref_words = ref_text.split()
this_batch.append((ref_words, hyp_words))
results[name].extend(this_batch)
num_cuts += len(texts)
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(
f"batch {batch_str}, cuts processed until now is {num_cuts}"
)
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = (
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = (
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = (
params.res_dir
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
AsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
assert params.decoding_method in (
"greedy_search",
"beam_search",
"fast_beam_search",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
)
params.res_dir = params.exp_dir / params.decoding_method
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if params.decoding_method == "fast_beam_search":
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
elif params.decoding_method == "fast_beam_search_nbest_oracle":
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
params.suffix += f"-num-paths-{params.num_paths}"
params.suffix += f"-nbest-scale-{params.nbest_scale}"
elif "beam_search" in params.decoding_method:
params.suffix += (
f"-{params.decoding_method}-beam-size-{params.beam_size}"
)
else:
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.unk_id()
params.vocab_size = sp.get_piece_size()
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
assert params.iter == 0 and params.avg > 0
start = params.epoch - params.avg
assert start >= 1
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
model.device = device
model.unk_id = params.unk_id
if params.decoding_method in (
"fast_beam_search",
"fast_beam_search_nbest_oracle",
):
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
else:
decoding_graph = None
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
asr_datamodule = AsrDataModule(args)
librispeech = LibriSpeech(manifest_dir=args.manifest_dir)
test_clean_cuts = librispeech.test_clean_cuts()
test_other_cuts = librispeech.test_other_cuts()
test_clean_dl = asr_datamodule.test_dataloaders(test_clean_cuts)
test_other_dl = asr_datamodule.test_dataloaders(test_other_cuts)
test_sets = ["test-clean", "test-other"]
test_dl = [test_clean_dl, test_other_dl]
for test_set, test_dl in zip(test_sets, test_dl):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
)
save_results(
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../pruned_transducer_stateless3/decoder.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless3/encoder_interface.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless3/gigaspeech.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless3/gigaspeech_scoring.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless3/joiner.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless3/librispeech.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless3/model.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless3/optim.py

View File

@ -0,0 +1,293 @@
#!/usr/bin/env python3
# This was copied from /ceph-dan/torch-sampling/torch_sampling/sampling_ref.py,
# its git history is there.
import timeit
import torch
from torch import Tensor
from torch import nn
from torch.cuda.amp import GradScaler, custom_fwd, custom_bwd
from typing import Tuple, Optional
from scaling import ScaledLinear
import random
from torch_scheduled_sampling import sample_combined
# The main exports of this file are the module KnowledgeBaseLookup and the
# function create_knowledge_base.
def create_knowledge_base(M: int, N: int, D: int) -> nn.Parameter:
std = 0.1
a = (3 ** 0.5) * std # this sqrt(3) thing is intended to get variance of
# 0.1 from uniform distribution
ans = nn.Parameter(torch.ones(M ** N, D))
nn.init.uniform_(ans, -a, a)
return ans
def join_indexes(indexes: Tensor, M: int) -> Tensor:
"""
Combines N-tuples of indexes into single indexes that can be used for
lookup in the knowledge base. Args:
indexes: tensor of torch.int64 of shape (*, K, N), with elements in
{0..M-1}
M: the size of the original softmaxes, is upper bound on elements
in indexes
Returns:
joined_indexes: of shape (*, K), joined_indexes[...,k] equals
joined_indexes[...,0,k] + joined_indexes[...,1,k]*(M**1) ... + joined_indexes[...,1,k]*(M**(N-1))]
"""
N = indexes.shape[-1]
n_powers = M ** torch.arange(N, device=indexes.device) # [ 1, M, ..., M**(N-1) ]
return (indexes * n_powers).sum(dim=-1)
# Note, we don't use this, we
def weighted_matrix_lookup(weights: Tensor,
indexes: Tensor,
knowledge_base: Tensor) -> Tensor:
"""
Weighted combination of specified rows of a matrix.
weights: Tensor of shape (*, K), can contain any value but probably in [0..1].
indexes: Tensor of shape (*, K), with elements in [0..C-1]
knowledge_base: Tensor of shape (C-1, D), whose rows we'll be looking up
Returns:
tensor of shape (*, D), containing weighted sums of rows of
`knowledge_base`
"""
if True:
return WeightedMatrixLookupFunction.apply(weights, indexes, knowledge_base)
else:
# simpler but less memory-efficient implementation
lookup = torch.index_select(knowledge_base, dim=0, index=indexes.flatten())
D = knowledge_base.shape[-1]
weights = weights.unsqueeze(-2) # (*, 1, K)
lookup = lookup.reshape(*indexes.shape, D) # (*, K, D)
ans = torch.matmul(weights, lookup) # ans: (*, 1, D)
ans = ans.squeeze(-2)
assert list(ans.shape) == list(weights.shape[:-2]) + [D]
return ans
class WeightedMatrixLookupFunction(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, weights: Tensor, indexes: Tensor, knowledge_base: Tensor) -> Tensor:
"""
Weighted combination of specified rows of a matrix.
weights: Tensor of shape (*, K), can contain any value but probably in [0..1].
indexes: Tensor of shape (*, K), with elements in [0..C-1]
knowledge_base: Tensor of shape (C, D), whose rows we'll be looking up
Returns:
tensor of shape (*, D), containing weighted sums of rows of
`knowledge_base`
"""
# if random.random() < 0.001:
# print("dtype[1] = ", weights.dtype)
ctx.save_for_backward(weights.detach(), indexes.detach(),
knowledge_base.detach())
with torch.no_grad():
lookup = torch.index_select(knowledge_base, dim=0, index=indexes.flatten())
D = knowledge_base.shape[-1]
weights = weights.unsqueeze(-2) # (*, 1, K)
lookup = lookup.reshape(*indexes.shape, D) # (*, K, D)
ans = torch.matmul(weights, lookup) # ans: (*, 1, D)
ans = ans.squeeze(-2) #(*, D)
return ans
@staticmethod
@custom_bwd
def backward(ctx, ans_grad: Tensor) -> Tuple[Tensor, None, Tensor]:
# ans_grad: (*, D)
weights, indexes, knowledge_base = ctx.saved_tensors
knowledge_base.requires_grad = True
dtype = ans_grad.dtype
ans_grad = ans_grad.to(weights.dtype)
assert weights.requires_grad == False
D = knowledge_base.shape[-1]
with torch.enable_grad():
# we'll use torch's autograd to differentiate this operation, which
# is nontrivial [and anyway we need `lookup` to compute weight grad.
# We don't save `lookup` because it's large, that is the reason
# we override Torch autograd.
lookup = torch.index_select(knowledge_base, dim=0, index=indexes.flatten())
lookup = lookup.reshape(*indexes.shape, D) # (*, K, D)
weights = weights.unsqueeze(-1) # (*, K, 1)
# forward pass: was:
## ans = torch.matmul(weights, lookup)
## ans: (*, 1, D)
## ans = ans.squeeze(-2) # ans, ans_grad: (*, D)
weights_grad = torch.matmul(lookup, # (*, K, D)
ans_grad.unsqueeze(-1)) # (*, D, 1)
weights_grad = weights_grad.squeeze(-1) # (*, K, 1) -> (*, K)
lookup_grad = weights * ans_grad.unsqueeze(-2) # (*, K, 1) * (*, 1, D) = (*, K, D)
lookup.backward(gradient=lookup_grad)
return weights_grad.to(dtype), None, knowledge_base.grad.to(dtype)
class KnowledgeBaseLookup(nn.Module):
"""
Create knowledge-base lookup module. (The knowledge-base parameter, which is
large, is shared between these modules).
Args:
M: int, softmax size, e.g. in [32..128]
N: int, number of softmaxes, in [2..3]
D: int, embedding dimension in knowledge base, e.g. 256
K: number of samples (affects speed/accuracy tradeoff), e.g. 16.
embedding_dim: the dimension to project from and to, e.g. the
d_model of the conformer.
"""
def __init__(self, M: int, N: int, D: int,
K: int, embedding_dim: int,
knowledge_base: nn.Parameter):
super(KnowledgeBaseLookup, self).__init__()
self.knowledge_base = knowledge_base # shared!
self.in_proj = ScaledLinear(embedding_dim, M * N,
initial_scale=1.0)
# initial_scale = 4.0 because the knowlege_base activations are
# quite small -- if we use our optimizer they'll have stddev <= 0.1.
self.out_proj = ScaledLinear(D, embedding_dim,
initial_scale = 4.0)
self.M = M
self.N = N
self.K = K
def forward(self, x: Tensor) -> Tensor:
"""
Forward function that does knowledge-base lookup.
Args:
x: input, of shape (*, E) where E is embedding_dim
as passed to constructor
y: output of knowledge-base lookup, of shape (*, E)
# TODO: later we can try multiplying by a projection of x or something like that.
"""
assert torch.all(x - x == 0)
x = self.in_proj(x) # now (*, M*N)
assert torch.all(x - x == 0)
x = x.reshape(*x.shape[:-1], self.N, self.M) # now (*, N, M)
x = x.log_softmax(dim=-1) # now normalized logprobs, dim= (*, N, M)
assert torch.all(x - x == 0)
if random.random() < 0.001:
entropy = (x * x.exp()).sum(dim=-1).mean()
# print("Entropy = ", entropy)
# only need 'combined_indexes', call them 'indexes'.
_, indexes, weights = sample_combined(x, self.K, input_is_log=True)
x = weighted_matrix_lookup(weights, indexes, self.knowledge_base) # now (*, D)
x = self.out_proj(x) # now (*, self.embedding_dim)
return x
def _test_knowledge_base_lookup():
K = 16
N = 2
M = 128
D = 256
E = 255
knowledge_base: nn.Parameter = create_knowledge_base(M, N, D)
m = KnowledgeBaseLookup(M, N, D, K, E, knowledge_base)
B = 30
T = 40
x = torch.randn(B, T, E)
x.requires_grad = True
y = m(x)
assert y.shape == x.shape
y.sum().backward() # make sure backward doesn't crash..
print("y = ", y)
print("x.grad = ", x.grad)
print("knowlege_base.grad norm = ", knowledge_base.grad.norm())
dtype = torch.float32
device = torch.device('cuda')
train_pairs = [ (torch.randn(B, T, E, device=device, dtype=dtype), torch.randn(B, T, E, device=device, dtype=dtype)) for _ in range(10) ]
from optim import Eve
optimizer = Eve(m.parameters(), lr=0.005, eps=1.0e-04)
m = m.to(device).to(dtype)
start = timeit.default_timer()
# Epoch 0, batch 0, loss 1.0109944343566895
# Epoch 10, batch 0, loss 1.0146660804748535
# Epoch 20, batch 0, loss 1.0119813680648804
# Epoch 30, batch 0, loss 1.0105408430099487
# Epoch 40, batch 0, loss 1.0077732801437378
# Epoch 50, batch 0, loss 1.0050103664398193
# Epoch 60, batch 0, loss 1.0033129453659058
# Epoch 70, batch 0, loss 1.0014232397079468
# Epoch 80, batch 0, loss 0.9977912306785583
# Epoch 90, batch 0, loss 0.8274348974227905
# Epoch 100, batch 0, loss 0.3368612825870514
# Epoch 110, batch 0, loss 0.11323091387748718
# Time taken: 17.591704960912466
for epoch in range(150):
for n, (x,y) in enumerate(train_pairs):
y_out = m(x)
loss = ((y_out - y)**2).mean() * 100.0
if n % 10 == 0 and epoch % 10 == 0:
print(f"Epoch {epoch}, batch {n}, loss {loss.item()}")
loss.backward()
optimizer.step()
optimizer.zero_grad()
stop = timeit.default_timer()
print('Time taken: ', stop - start)
def _test_knowledge_base_lookup_autocast():
K = 16
N = 2
M = 128
D = 256
E = 255
knowledge_base: nn.Parameter = create_knowledge_base(M, N, D)
m = KnowledgeBaseLookup(M, N, D, K, E, knowledge_base)
B = 30
T = 40
x = torch.randn(B, T, E)
x.requires_grad = True
y = m(x)
assert y.shape == x.shape
y.sum().backward() # make sure backward doesn't crash..
print("y = ", y)
print("x.grad = ", x.grad)
print("knowlege_base.grad norm = ", knowledge_base.grad.norm())
device = torch.device('cuda')
train_pairs = [ (torch.randn(B, T, E, device=device), torch.randn(B, T, E, device=device)) for _ in range(10) ]
from optim import Eve
optimizer = Eve(m.parameters(), lr=0.005, eps=1.0e-04)
m = m.to(device)
scaler = GradScaler(enabled=True)
start = timeit.default_timer()
for epoch in range(150):
for n, (x,y) in enumerate(train_pairs):
y_out = m(x)
with torch.cuda.amp.autocast(enabled=True):
loss = ((y_out - y)**2).mean() * 100.0
if n % 10 == 0 and epoch % 10 == 0:
print(f"Epoch {epoch}, batch {n}, loss {loss.item()}")
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
stop = timeit.default_timer()
print('Time taken: ', stop - start)
if __name__ == '__main__':
_test_knowledge_base_lookup()
_test_knowledge_base_lookup_autocast()

View File

@ -0,0 +1 @@
../pruned_transducer_stateless3/scaling.py

View File

@ -0,0 +1,44 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./pruned_transducer_stateless5/test_model.py
"""
from train import get_params, get_transducer_model
def test_model():
params = get_params()
params.vocab_size = 500
params.blank_id = 0
params.context_size = 2
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
def main():
test_model()
if __name__ == "__main__":
main()

File diff suppressed because it is too large Load Diff

View File

@ -346,7 +346,7 @@ def remove_checkpoints(
for c in to_remove: for c in to_remove:
os.remove(c) os.remove(c)
@torch.no_grad()
def update_averaged_model( def update_averaged_model(
params: Dict[str, Tensor], params: Dict[str, Tensor],
model_cur: Union[nn.Module, DDP], model_cur: Union[nn.Module, DDP],
@ -442,7 +442,7 @@ def average_checkpoints_with_averaged_model(
return avg return avg
@torch.no_grad()
def average_state_dict( def average_state_dict(
state_dict_1: Dict[str, Tensor], state_dict_1: Dict[str, Tensor],
state_dict_2: Dict[str, Tensor], state_dict_2: Dict[str, Tensor],