mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-04 22:54:18 +00:00
check some files
This commit is contained in:
parent
fecceee216
commit
16c6e0207b
@ -15,11 +15,9 @@
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import random
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.optim import Optimizer
|
||||
|
||||
|
||||
@ -59,24 +57,41 @@ class Eve(Optimizer):
|
||||
https://openreview.net/forum?id=ryQu7f-RZ
|
||||
"""
|
||||
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.98), eps=1e-8,
|
||||
weight_decay=1e-3, target_rms=0.1):
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
lr=1e-3,
|
||||
betas=(0.9, 0.98),
|
||||
eps=1e-8,
|
||||
weight_decay=1e-3,
|
||||
target_rms=0.1,
|
||||
):
|
||||
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if not 0.0 <= eps:
|
||||
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||
if not 0.0 <= betas[0] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||
raise ValueError(
|
||||
"Invalid beta parameter at index 0: {}".format(betas[0])
|
||||
)
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||
raise ValueError(
|
||||
"Invalid beta parameter at index 1: {}".format(betas[1])
|
||||
)
|
||||
if not 0 <= weight_decay <= 0.1:
|
||||
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
||||
raise ValueError(
|
||||
"Invalid weight_decay value: {}".format(weight_decay)
|
||||
)
|
||||
if not 0 < target_rms <= 10.0:
|
||||
raise ValueError("Invalid target_rms value: {}".format(target_rms))
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps,
|
||||
weight_decay=weight_decay,
|
||||
target_rms=target_rms)
|
||||
defaults = dict(
|
||||
lr=lr,
|
||||
betas=betas,
|
||||
eps=eps,
|
||||
weight_decay=weight_decay,
|
||||
target_rms=target_rms,
|
||||
)
|
||||
super(Eve, self).__init__(params, defaults)
|
||||
|
||||
def __setstate__(self, state):
|
||||
@ -96,83 +111,98 @@ class Eve(Optimizer):
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
for p in group["params"]:
|
||||
if p.grad is None:
|
||||
continue
|
||||
|
||||
# Perform optimization step
|
||||
grad = p.grad
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError('AdamW does not support sparse gradients')
|
||||
raise RuntimeError(
|
||||
"AdamW does not support sparse gradients"
|
||||
)
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
state['step'] = 0
|
||||
state["step"] = 0
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
state["exp_avg"] = torch.zeros_like(
|
||||
p, memory_format=torch.preserve_format
|
||||
)
|
||||
# Exponential moving average of squared gradient values
|
||||
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
state["exp_avg_sq"] = torch.zeros_like(
|
||||
p, memory_format=torch.preserve_format
|
||||
)
|
||||
|
||||
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||||
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
|
||||
|
||||
beta1, beta2 = group['betas']
|
||||
beta1, beta2 = group["betas"]
|
||||
|
||||
state['step'] += 1
|
||||
bias_correction1 = 1 - beta1 ** state['step']
|
||||
bias_correction2 = 1 - beta2 ** state['step']
|
||||
state["step"] += 1
|
||||
bias_correction1 = 1 - beta1 ** state["step"]
|
||||
bias_correction2 = 1 - beta2 ** state["step"]
|
||||
|
||||
# Decay the first and second moment running average coefficient
|
||||
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
||||
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
||||
denom = (exp_avg_sq.sqrt() * (bias_correction2 ** -0.5)).add_(group['eps'])
|
||||
denom = (exp_avg_sq.sqrt() * (bias_correction2 ** -0.5)).add_(
|
||||
group["eps"]
|
||||
)
|
||||
|
||||
step_size = group['lr'] / bias_correction1
|
||||
target_rms = group['target_rms']
|
||||
weight_decay = group['weight_decay']
|
||||
delta = exp_avg / denom
|
||||
step_size = group["lr"] / bias_correction1
|
||||
target_rms = group["target_rms"]
|
||||
weight_decay = group["weight_decay"]
|
||||
|
||||
if p.numel() > 1:
|
||||
# avoid applying this weight-decay on "scaling factors"
|
||||
# (which are scalar).
|
||||
is_above_target_rms = (p.norm() > (target_rms * (p.numel() ** 0.5)))
|
||||
is_above_target_rms = p.norm() > (
|
||||
target_rms * (p.numel() ** 0.5)
|
||||
)
|
||||
p.mul_(1 - (weight_decay * is_above_target_rms))
|
||||
p.addcdiv_(exp_avg, denom, value=-step_size)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
class LRScheduler(object):
|
||||
"""
|
||||
Base-class for learning rate schedulers where the learning-rate depends on both the
|
||||
batch and the epoch.
|
||||
"""
|
||||
|
||||
def __init__(self, optimizer: Optimizer, verbose: bool = False):
|
||||
# Attach optimizer
|
||||
if not isinstance(optimizer, Optimizer):
|
||||
raise TypeError('{} is not an Optimizer'.format(
|
||||
type(optimizer).__name__))
|
||||
raise TypeError(
|
||||
"{} is not an Optimizer".format(type(optimizer).__name__)
|
||||
)
|
||||
self.optimizer = optimizer
|
||||
self.verbose = verbose
|
||||
|
||||
for group in optimizer.param_groups:
|
||||
group.setdefault('initial_lr', group['lr'])
|
||||
group.setdefault("initial_lr", group["lr"])
|
||||
|
||||
self.base_lrs = [group['initial_lr'] for group in optimizer.param_groups]
|
||||
self.base_lrs = [
|
||||
group["initial_lr"] for group in optimizer.param_groups
|
||||
]
|
||||
|
||||
self.epoch = 0
|
||||
self.batch = 0
|
||||
|
||||
|
||||
def state_dict(self):
|
||||
"""Returns the state of the scheduler as a :class:`dict`.
|
||||
|
||||
It contains an entry for every variable in self.__dict__ which
|
||||
is not the optimizer.
|
||||
"""
|
||||
return {'base_lrs': self.base_lrs,
|
||||
'epoch': self.epoch,
|
||||
'batch': self.batch}
|
||||
return {
|
||||
"base_lrs": self.base_lrs,
|
||||
"epoch": self.epoch,
|
||||
"batch": self.batch,
|
||||
}
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""Loads the schedulers state.
|
||||
@ -184,8 +214,7 @@ class LRScheduler(object):
|
||||
self.__dict__.update(state_dict)
|
||||
|
||||
def get_last_lr(self) -> List[float]:
|
||||
""" Return last computed learning rate by current scheduler. Will be a list of float.
|
||||
"""
|
||||
"""Return last computed learning rate by current scheduler. Will be a list of float."""
|
||||
return self._last_lr
|
||||
|
||||
def get_lr(self):
|
||||
@ -194,7 +223,6 @@ class LRScheduler(object):
|
||||
# e.g. return [some_formula(self.batch, self.epoch, base_lr) for base_lr in self.base_lrs ]
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def step_batch(self, batch: Optional[int] = None) -> None:
|
||||
# Step the batch index, or just set it. If `batch` is specified, it
|
||||
# must be the batch index from the start of training, i.e. summed over
|
||||
@ -217,24 +245,23 @@ class LRScheduler(object):
|
||||
self.epoch = self.epoch + 1
|
||||
self._set_lrs()
|
||||
|
||||
|
||||
def _set_lrs(self):
|
||||
values = self.get_lr()
|
||||
assert len(values) == len(self.optimizer.param_groups)
|
||||
|
||||
for i, data in enumerate(zip(self.optimizer.param_groups, values)):
|
||||
param_group, lr = data
|
||||
param_group['lr'] = lr
|
||||
param_group["lr"] = lr
|
||||
self.print_lr(self.verbose, i, lr)
|
||||
self._last_lr = [group['lr'] for group in self.optimizer.param_groups]
|
||||
|
||||
self._last_lr = [group["lr"] for group in self.optimizer.param_groups]
|
||||
|
||||
def print_lr(self, is_verbose, group, lr):
|
||||
"""Display the current learning rate.
|
||||
"""
|
||||
"""Display the current learning rate."""
|
||||
if is_verbose:
|
||||
print(f'Epoch={self.epoch}, batch={self.batch}: adjusting learning rate'
|
||||
f' of group {group} to {lr:.4e}.')
|
||||
print(
|
||||
f"Epoch={self.epoch}, batch={self.batch}: adjusting learning rate"
|
||||
f" of group {group} to {lr:.4e}."
|
||||
)
|
||||
|
||||
|
||||
class Eden(LRScheduler):
|
||||
@ -254,18 +281,27 @@ class Eden(LRScheduler):
|
||||
20 to 40 epochs, but may need smaller number if dataset is huge
|
||||
and you will do few epochs.
|
||||
"""
|
||||
def __init__(self, optimizer: Optimizer,
|
||||
lr_batches: Union[int, float],
|
||||
lr_epochs: Union[int, float],
|
||||
verbose: bool = False):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
lr_batches: Union[int, float],
|
||||
lr_epochs: Union[int, float],
|
||||
verbose: bool = False,
|
||||
):
|
||||
super(Eden, self).__init__(optimizer, verbose)
|
||||
self.lr_batches = lr_batches
|
||||
self.lr_epochs = lr_epochs
|
||||
|
||||
def get_lr(self):
|
||||
factor = (((self.batch**2 + self.lr_batches**2) / self.lr_batches**2) ** -0.25 *
|
||||
(((self.epoch**2 + self.lr_epochs**2) / self.lr_epochs**2) ** -0.25))
|
||||
return [ x * factor for x in self.base_lrs ]
|
||||
factor = (
|
||||
(self.batch ** 2 + self.lr_batches ** 2) / self.lr_batches ** 2
|
||||
) ** -0.25 * (
|
||||
((self.epoch ** 2 + self.lr_epochs ** 2) / self.lr_epochs ** 2)
|
||||
** -0.25
|
||||
)
|
||||
return [x * factor for x in self.base_lrs]
|
||||
|
||||
|
||||
def _test_eden():
|
||||
m = torch.nn.Linear(100, 100)
|
||||
@ -290,5 +326,6 @@ def _test_eden():
|
||||
print("last lr = ", scheduler.get_last_lr())
|
||||
print("state dict = ", scheduler.state_dict())
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
_test_eden()
|
||||
|
Loading…
x
Reference in New Issue
Block a user