Merge changes from pruned_transducer_stateless4->5

This commit is contained in:
Daniel Povey 2022-05-31 13:00:11 +08:00
parent c7cf229f56
commit 1651fe0d42
6 changed files with 569 additions and 123 deletions

View File

@ -20,26 +20,27 @@
# to a single one using model averaging.
"""
Usage:
./pruned_transducer_stateless2/export.py \
--exp-dir ./pruned_transducer_stateless2/exp \
./pruned_transducer_stateless5/export.py \
--exp-dir ./pruned_transducer_stateless5/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10
It will generate a file exp_dir/pretrained.pt
To use the generated file with `pruned_transducer_stateless2/decode.py`,
To use the generated file with `pruned_transducer_stateless5/decode.py`,
you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/librispeech/ASR
./pruned_transducer_stateless2/decode.py \
--exp-dir ./pruned_transducer_stateless2/exp \
./pruned_transducer_stateless5/decode.py \
--exp-dir ./pruned_transducer_stateless5/exp \
--epoch 9999 \
--avg 1 \
--max-duration 100 \
--max-duration 600 \
--decoding-method greedy_search \
--bpe-model data/lang_bpe_500/bpe.model
"""
@ -49,10 +50,11 @@ from pathlib import Path
import sentencepiece as spm
import torch
from train import get_params, get_transducer_model
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
@ -69,7 +71,7 @@ def get_parser():
type=int,
default=28,
help="""It specifies the checkpoint to use for averaging.
Note: Epoch counts from 0.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
@ -92,10 +94,21 @@ def get_parser():
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=False,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless2/exp",
default="pruned_transducer_stateless5/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
@ -124,6 +137,8 @@ def get_parser():
"2 means tri-gram",
)
add_model_arguments(parser)
return parser
@ -131,6 +146,8 @@ def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
assert args.jit is False, "Support torchscript will be added later"
params = get_params()
params.update(vars(args))
@ -152,36 +169,82 @@ def main():
logging.info("About to create model")
model = get_transducer_model(params)
model.to(device)
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg + 1]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.eval()
@ -189,11 +252,6 @@ def main():
model.eval()
if params.jit:
# We won't use the forward() method of the model in C++, so just ignore
# it here.
# Otherwise, one of its arguments is a ragged tensor and is not
# torch scriptabe.
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
logging.info("Using torch.jit.script")
model = torch.jit.script(model)
filename = params.exp_dir / "cpu_jit.pt"

View File

@ -1 +0,0 @@
../pruned_transducer_stateless2/__init__.py

View File

@ -18,7 +18,7 @@
import copy
import math
import warnings
from typing import Optional, Tuple
from typing import List, Optional, Tuple
import torch
from encoder_interface import EncoderInterface
@ -61,6 +61,7 @@ class Conformer(EncoderInterface):
dropout: float = 0.1,
layer_dropout: float = 0.075,
cnn_module_kernel: int = 31,
aux_layer_period: int = 3,
) -> None:
super(Conformer, self).__init__()
@ -86,7 +87,11 @@ class Conformer(EncoderInterface):
layer_dropout,
cnn_module_kernel,
)
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
self.encoder = ConformerEncoder(
encoder_layer,
num_encoder_layers,
aux_layers=list(range(0, num_encoder_layers - 1, aux_layer_period)),
)
def forward(
self, x: torch.Tensor, x_lens: torch.Tensor, warmup: float = 1.0
@ -112,13 +117,10 @@ class Conformer(EncoderInterface):
x, pos_emb = self.encoder_pos(x)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
# Caution: We assume the subsampling factor is 4!
# lengths = ((x_lens - 1) // 2 - 1) // 2 # issue an warning
#
# Note: rounding_mode in torch.div() is available only in torch >= 1.8.0
lengths = (((x_lens - 1) >> 1) - 1) >> 1
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# Caution: We assume the subsampling factor is 4!
lengths = ((x_lens - 1) // 2 - 1) // 2
assert x.size(0) == lengths.max().item()
mask = make_pad_mask(lengths)
@ -282,13 +284,30 @@ class ConformerEncoder(nn.Module):
>>> out = conformer_encoder(src, pos_emb)
"""
def __init__(self, encoder_layer: nn.Module, num_layers: int) -> None:
def __init__(
self,
encoder_layer: nn.Module,
num_layers: int,
aux_layers: List[int],
) -> None:
super().__init__()
self.layers = nn.ModuleList(
[copy.deepcopy(encoder_layer) for i in range(num_layers)]
)
self.num_layers = num_layers
assert num_layers - 1 not in aux_layers
self.aux_layers = set(aux_layers + [num_layers - 1])
num_channels = encoder_layer.norm_final.num_channels
self.combiner = RandomCombine(
num_inputs=len(self.aux_layers),
num_channels=num_channels,
final_weight=0.5,
pure_prob=0.333,
stddev=2.0,
)
def forward(
self,
src: Tensor,
@ -315,6 +334,8 @@ class ConformerEncoder(nn.Module):
"""
output = src
outputs = []
for i, mod in enumerate(self.layers):
output = mod(
output,
@ -323,6 +344,10 @@ class ConformerEncoder(nn.Module):
src_key_padding_mask=src_key_padding_mask,
warmup=warmup,
)
if i in self.aux_layers:
outputs.append(output)
output = self.combiner(outputs)
return output
@ -1022,15 +1047,281 @@ class Conv2dSubsampling(nn.Module):
x = self.out_balancer(x)
return x
class RandomCombine(nn.Module):
"""
This module combines a list of Tensors, all with the same shape, to
produce a single output of that same shape which, in training time,
is a random combination of all the inputs; but which in test time
will be just the last input.
if __name__ == "__main__":
All but the last input will have a linear transform before we
randomly combine them; these linear transforms will be initialized
to the identity transform.
The idea is that the list of Tensors will be a list of outputs of multiple
conformer layers. This has a similar effect as iterated loss. (See:
DEJA-VU: DOUBLE FEATURE PRESENTATION AND ITERATED LOSS IN DEEP TRANSFORMER
NETWORKS).
"""
def __init__(
self,
num_inputs: int,
num_channels: int,
final_weight: float = 0.5,
pure_prob: float = 0.5,
stddev: float = 2.0,
) -> None:
"""
Args:
num_inputs:
The number of tensor inputs, which equals the number of layers'
outputs that are fed into this module. E.g. in an 18-layer neural
net if we output layers 16, 12, 18, num_inputs would be 3.
num_channels:
The number of channels on the input, e.g. 512.
final_weight:
The amount of weight or probability we assign to the
final layer when randomly choosing layers or when choosing
continuous layer weights.
pure_prob:
The probability, on each frame, with which we choose
only a single layer to output (rather than an interpolation)
stddev:
A standard deviation that we add to log-probs for computing
randomized weights.
The method of choosing which layers, or combinations of layers, to use,
is conceptually as follows::
With probability `pure_prob`::
With probability `final_weight`: choose final layer,
Else: choose random non-final layer.
Else::
Choose initial log-weights that correspond to assigning
weight `final_weight` to the final layer and equal
weights to other layers; then add Gaussian noise
with variance `stddev` to these log-weights, and normalize
to weights (note: the average weight assigned to the
final layer here will not be `final_weight` if stddev>0).
"""
super().__init__()
assert 0 <= pure_prob <= 1, pure_prob
assert 0 < final_weight < 1, final_weight
assert num_inputs >= 1
self.linear = nn.ModuleList(
[
nn.Linear(num_channels, num_channels, bias=True)
for _ in range(num_inputs - 1)
]
)
self.num_inputs = num_inputs
self.final_weight = final_weight
self.pure_prob = pure_prob
self.stddev = stddev
self.final_log_weight = (
torch.tensor(
(final_weight / (1 - final_weight)) * (self.num_inputs - 1)
)
.log()
.item()
)
self._reset_parameters()
def _reset_parameters(self):
for i in range(len(self.linear)):
nn.init.eye_(self.linear[i].weight)
nn.init.constant_(self.linear[i].bias, 0.0)
def forward(self, inputs: List[Tensor]) -> Tensor:
"""Forward function.
Args:
inputs:
A list of Tensor, e.g. from various layers of a transformer.
All must be the same shape, of (*, num_channels)
Returns:
A Tensor of shape (*, num_channels). In test mode
this is just the final input.
"""
num_inputs = self.num_inputs
assert len(inputs) == num_inputs
if not self.training:
return inputs[-1]
# Shape of weights: (*, num_inputs)
num_channels = inputs[0].shape[-1]
num_frames = inputs[0].numel() // num_channels
mod_inputs = []
for i in range(num_inputs - 1):
mod_inputs.append(self.linear[i](inputs[i]))
mod_inputs.append(inputs[num_inputs - 1])
ndim = inputs[0].ndim
# stacked_inputs: (num_frames, num_channels, num_inputs)
stacked_inputs = torch.stack(mod_inputs, dim=ndim).reshape(
(num_frames, num_channels, num_inputs)
)
# weights: (num_frames, num_inputs)
weights = self._get_random_weights(
inputs[0].dtype, inputs[0].device, num_frames
)
weights = weights.reshape(num_frames, num_inputs, 1)
# ans: (num_frames, num_channels, 1)
ans = torch.matmul(stacked_inputs, weights)
# ans: (*, num_channels)
ans = ans.reshape(*tuple(inputs[0].shape[:-1]), num_channels)
if __name__ == "__main__":
# for testing only...
print("Weights = ", weights.reshape(num_frames, num_inputs))
return ans
def _get_random_weights(
self, dtype: torch.dtype, device: torch.device, num_frames: int
) -> Tensor:
"""Return a tensor of random weights, of shape
`(num_frames, self.num_inputs)`,
Args:
dtype:
The data-type desired for the answer, e.g. float, double.
device:
The device needed for the answer.
num_frames:
The number of sets of weights desired
Returns:
A tensor of shape (num_frames, self.num_inputs), such that
`ans.sum(dim=1)` is all ones.
"""
pure_prob = self.pure_prob
if pure_prob == 0.0:
return self._get_random_mixed_weights(dtype, device, num_frames)
elif pure_prob == 1.0:
return self._get_random_pure_weights(dtype, device, num_frames)
else:
p = self._get_random_pure_weights(dtype, device, num_frames)
m = self._get_random_mixed_weights(dtype, device, num_frames)
return torch.where(
torch.rand(num_frames, 1, device=device) < self.pure_prob, p, m
)
def _get_random_pure_weights(
self, dtype: torch.dtype, device: torch.device, num_frames: int
):
"""Return a tensor of random one-hot weights, of shape
`(num_frames, self.num_inputs)`,
Args:
dtype:
The data-type desired for the answer, e.g. float, double.
device:
The device needed for the answer.
num_frames:
The number of sets of weights desired.
Returns:
A one-hot tensor of shape `(num_frames, self.num_inputs)`, with
exactly one weight equal to 1.0 on each frame.
"""
final_prob = self.final_weight
# final contains self.num_inputs - 1 in all elements
final = torch.full((num_frames,), self.num_inputs - 1, device=device)
# nonfinal contains random integers in [0..num_inputs - 2], these are for non-final weights.
nonfinal = torch.randint(
self.num_inputs - 1, (num_frames,), device=device
)
indexes = torch.where(
torch.rand(num_frames, device=device) < final_prob, final, nonfinal
)
ans = torch.nn.functional.one_hot(
indexes, num_classes=self.num_inputs
).to(dtype=dtype)
return ans
def _get_random_mixed_weights(
self, dtype: torch.dtype, device: torch.device, num_frames: int
):
"""Return a tensor of random one-hot weights, of shape
`(num_frames, self.num_inputs)`,
Args:
dtype:
The data-type desired for the answer, e.g. float, double.
device:
The device needed for the answer.
num_frames:
The number of sets of weights desired.
Returns:
A tensor of shape (num_frames, self.num_inputs), which elements
in [0..1] that sum to one over the second axis, i.e.
`ans.sum(dim=1)` is all ones.
"""
logprobs = (
torch.randn(num_frames, self.num_inputs, dtype=dtype, device=device)
* self.stddev
)
logprobs[:, -1] += self.final_log_weight
return logprobs.softmax(dim=1)
def _test_random_combine(final_weight: float, pure_prob: float, stddev: float):
print(
f"_test_random_combine: final_weight={final_weight}, pure_prob={pure_prob}, stddev={stddev}"
)
num_inputs = 3
num_channels = 50
m = RandomCombine(
num_inputs=num_inputs,
num_channels=num_channels,
final_weight=final_weight,
pure_prob=pure_prob,
stddev=stddev,
)
x = [torch.ones(3, 4, num_channels) for _ in range(num_inputs)]
y = m(x)
assert y.shape == x[0].shape
assert torch.allclose(y, x[0]) # .. since actually all ones.
def _test_random_combine_main():
_test_random_combine(0.999, 0, 0.0)
_test_random_combine(0.5, 0, 0.0)
_test_random_combine(0.999, 0, 0.0)
_test_random_combine(0.5, 0, 0.3)
_test_random_combine(0.5, 1, 0.3)
_test_random_combine(0.5, 0.5, 0.3)
def _test_conformer_main():
feature_dim = 50
c = Conformer(num_features=feature_dim, d_model=128, nhead=4)
batch_size = 5
seq_len = 20
feature_dim = 50
# Just make sure the forward pass runs.
c = Conformer(
num_features=feature_dim, d_model=128, nhead=4
)
batch_size = 5
seq_len = 20
# Just make sure the forward pass runs.
f = c(
torch.randn(batch_size, seq_len, feature_dim),
torch.full((batch_size,), seq_len, dtype=torch.int64),
warmup=0.5,
)
f # to remove flake8 warnings
if __name__ == "__main__":
_test_conformer_main()
_test_random_combine_main()

View File

@ -19,36 +19,36 @@
"""
Usage:
(1) greedy search
./pruned_transducer_stateless4/decode.py \
--epoch 30 \
./pruned_transducer_stateless7/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless4/exp \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--decoding-method greedy_search
(2) beam search (not recommended)
./pruned_transducer_stateless4/decode.py \
--epoch 30 \
./pruned_transducer_stateless7/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless4/exp \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--decoding-method beam_search \
--beam-size 4
(3) modified beam search
./pruned_transducer_stateless4/decode.py \
--epoch 30 \
./pruned_transducer_stateless7/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless4/exp \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--decoding-method modified_beam_search \
--beam-size 4
(4) fast beam search
./pruned_transducer_stateless4/decode.py \
--epoch 30 \
./pruned_transducer_stateless7/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless4/exp \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--decoding-method fast_beam_search \
--beam 4 \
@ -75,7 +75,7 @@ from beam_search import (
greedy_search_batch,
modified_beam_search,
)
from train import get_params, get_transducer_model
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
@ -139,7 +139,7 @@ def get_parser():
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless4/exp",
default="pruned_transducer_stateless7/exp",
help="The experiment dir",
)
@ -212,6 +212,8 @@ def get_parser():
Used only when --decoding_method is greedy_search""",
)
add_model_arguments(parser)
return parser
@ -302,7 +304,7 @@ def decode_one_batch(
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i + 1, :encoder_out_lens[i]]
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.decoding_method == "greedy_search":
hyp = greedy_search(
@ -374,7 +376,7 @@ def decode_dataset(
if params.decoding_method == "greedy_search":
log_interval = 50
else:
log_interval = 10
log_interval = 20
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):

View File

@ -23,27 +23,42 @@ To run this file, do:
python ./pruned_transducer_stateless4/test_model.py
"""
import torch
from train import get_params, get_transducer_model
def test_model():
def test_model_1():
params = get_params()
params.vocab_size = 500
params.blank_id = 0
params.context_size = 2
params.unk_id = 2
params.num_encoder_layers = 24
params.dim_feedforward = 1536 # 384 * 4
params.encoder_dim = 384
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
# See Table 1 from https://arxiv.org/pdf/2005.08100.pdf
def test_model_M():
params = get_params()
params.vocab_size = 500
params.blank_id = 0
params.context_size = 2
params.num_encoder_layers = 18
params.dim_feedforward = 1024
params.encoder_dim = 256
params.nhead = 4
params.decoder_dim = 512
params.joiner_dim = 512
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
torch.jit.script(model)
def main():
test_model()
# test_model_1()
test_model_M()
if __name__ == "__main__":

View File

@ -1,8 +1,8 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
# Wei Kang,
# Mingshuang Luo,)
# Zengwei Yao)
# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang,
# Wei Kang,
# Mingshuang Luo,)
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
@ -22,22 +22,22 @@ Usage:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./pruned_transducer_stateless4/train.py \
./pruned_transducer_stateless7/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--exp-dir pruned_transducer_stateless2/exp \
--exp-dir pruned_transducer_stateless7/exp \
--full-libri 1 \
--max-duration 300
# For mix precision training:
./pruned_transducer_stateless4/train.py \
./pruned_transducer_stateless7/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir pruned_transducer_stateless2/exp \
--exp-dir pruned_transducer_stateless7/exp \
--full-libri 1 \
--max-duration 550
@ -88,6 +88,53 @@ LRSchedulerType = Union[
]
def add_model_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
"--num-encoder-layers",
type=int,
default=24,
help="Number of conformer encoder layers..",
)
parser.add_argument(
"--dim-feedforward",
type=int,
default=1536,
help="Feedforward dimension of the conformer encoder layer.",
)
parser.add_argument(
"--nhead",
type=int,
default=8,
help="Number of attention heads in the conformer encoder layer.",
)
parser.add_argument(
"--encoder-dim",
type=int,
default=384,
help="Attention dimension in the conformer encoder layer.",
)
parser.add_argument(
"--decoder-dim",
type=int,
default=512,
help="Embedding dimension in the decoder model.",
)
parser.add_argument(
"--joiner-dim",
type=int,
default=512,
help="""Dimension used in the joiner model.
Outputs from the encoder and decoder model are projected
to this dimension before adding.
""",
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
@ -143,7 +190,7 @@ def get_parser():
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless2/exp",
default="pruned_transducer_stateless7/exp",
help="""The experiment dir.
It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
@ -161,16 +208,16 @@ def get_parser():
"--initial-lr",
type=float,
default=0.003,
help="""The initial learning rate. This value should not need to be
changed.""",
help="The initial learning rate. This value should not need "
"to be changed.",
)
parser.add_argument(
"--lr-batches",
type=float,
default=5000,
help="""Number of steps that affects how rapidly the learning rate decreases.
We suggest not to change this.""",
help="""Number of steps that affects how rapidly the learning rate
decreases. We suggest not to change this.""",
)
parser.add_argument(
@ -240,7 +287,7 @@ def get_parser():
parser.add_argument(
"--save-every-n",
type=int,
default=8000,
default=4000,
help="""Save checkpoint after processing this number of batches"
periodically. We save checkpoint to exp-dir/ whenever
params.batch_idx_train % save_every_n == 0. The checkpoint filename
@ -253,7 +300,7 @@ def get_parser():
parser.add_argument(
"--keep-last-k",
type=int,
default=20,
default=30,
help="""Only keep this number of checkpoints on disk.
For instance, if it is 3, there are only 3 checkpoints
in the exp-dir with filenames `checkpoint-xxx.pt`.
@ -281,6 +328,8 @@ def get_parser():
help="Whether to use half precision training.",
)
add_model_arguments(parser)
return parser
@ -341,14 +390,6 @@ def get_params() -> AttributeDict:
# parameters for conformer
"feature_dim": 80,
"subsampling_factor": 4,
"encoder_dim": 512,
"nhead": 8,
"dim_feedforward": 2048,
"num_encoder_layers": 12,
# parameters for decoder
"decoder_dim": 512,
# parameters for joiner
"joiner_dim": 512,
# parameters for Noam
"model_warm_step": 3000, # arg given to model, not for lrate
"env_info": get_env_info(),
@ -704,27 +745,31 @@ def train_one_epoch(
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
with torch.cuda.amp.autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
sp=sp,
batch=batch,
is_training=True,
warmup=(params.batch_idx_train / params.model_warm_step),
)
# summary stats
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
sp=sp,
batch=batch,
is_training=True,
warmup=(params.batch_idx_train / params.model_warm_step),
)
# summary stats
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
# NOTE: We use reduction==sum and loss is computed over utterances
# in the batch and there is no normalization to it so far.
scaler.scale(loss).backward()
scheduler.step_batch(params.batch_idx_train)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
# NOTE: We use reduction==sum and loss is computed over utterances
# in the batch and there is no normalization to it so far.
scaler.scale(loss).backward()
scheduler.step_batch(params.batch_idx_train)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
except: # noqa
display_and_save_batch(batch, params=params, sp=sp)
raise
if params.print_diagnostics and batch_idx == 30:
if params.print_diagnostics and batch_idx == 5:
return
if (
@ -888,7 +933,10 @@ def run(rank, world_size, args):
scheduler.load_state_dict(checkpoints["scheduler"])
if params.print_diagnostics:
diagnostic = diagnostics.attach_diagnostics(model)
opts = diagnostics.TensorDiagnosticOptions(
2 ** 22
) # allow 4 megabytes per sub-module
diagnostic = diagnostics.attach_diagnostics(model, opts)
librispeech = LibriSpeechAsrDataModule(args)
@ -986,6 +1034,38 @@ def run(rank, world_size, args):
cleanup_dist()
def display_and_save_batch(
batch: dict,
params: AttributeDict,
sp: spm.SentencePieceProcessor,
) -> None:
"""Display the batch statistics and save the batch into disk.
Args:
batch:
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
for the content in it.
params:
Parameters for training. See :func:`get_params`.
sp:
The BPE model.
"""
from lhotse.utils import uuid4
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
logging.info(f"Saving batch to {filename}")
torch.save(batch, filename)
supervisions = batch["supervisions"]
features = batch["inputs"]
logging.info(f"features shape: {features.shape}")
y = sp.encode(supervisions["text"], out_type=int)
num_tokens = sum(len(i) for i in y)
logging.info(f"num tokens: {num_tokens}")
def scan_pessimistic_batches_for_oom(
model: Union[nn.Module, DDP],
train_dl: torch.utils.data.DataLoader,
@ -1017,7 +1097,7 @@ def scan_pessimistic_batches_for_oom(
loss.backward()
optimizer.step()
optimizer.zero_grad()
except RuntimeError as e:
except Exception as e:
if "CUDA out of memory" in str(e):
logging.error(
"Your GPU ran out of memory with the current "
@ -1026,6 +1106,7 @@ def scan_pessimistic_batches_for_oom(
f"Failing criterion: {criterion} "
f"(={crit_values[criterion]}) ..."
)
display_and_save_batch(batch, params=params, sp=sp)
raise