diff --git a/egs/librispeech/ASR/incremental_transf/.conformer.py.swp b/egs/librispeech/ASR/incremental_transf/.conformer.py.swp index 716a29e38..0f797d3e6 100644 Binary files a/egs/librispeech/ASR/incremental_transf/.conformer.py.swp and b/egs/librispeech/ASR/incremental_transf/.conformer.py.swp differ diff --git a/egs/librispeech/ASR/incremental_transf/.identity_train.py.swp b/egs/librispeech/ASR/incremental_transf/.identity_train.py.swp index fd2fc5d12..3fcaabe90 100644 Binary files a/egs/librispeech/ASR/incremental_transf/.identity_train.py.swp and b/egs/librispeech/ASR/incremental_transf/.identity_train.py.swp differ diff --git a/egs/librispeech/ASR/incremental_transf/conformer.py b/egs/librispeech/ASR/incremental_transf/conformer.py index 787dbda85..a60e7f0b5 100644 --- a/egs/librispeech/ASR/incremental_transf/conformer.py +++ b/egs/librispeech/ASR/incremental_transf/conformer.py @@ -462,15 +462,6 @@ class Tempformer(EncoderInterface): if subsampling_factor != 4: raise NotImplementedError("Support only 'subsampling_factor=4'.") - # self.encoder_embed converts the input of shape (N, T, num_features) - # to the shape (N, T//subsampling_factor, d_model). - # That is, it does two things simultaneously: - # (1) subsampling: T -> T//subsampling_factor - # (2) embedding: num_features -> d_model - self.encoder_embed = Conv2dSubsampling(num_features, d_model) - - self.encoder_pos = RelPositionalEncoding(d_model, dropout) - self.encoder_layers = num_encoder_layers self.d_model = d_model self.cnn_module_kernel = cnn_module_kernel