Support prefix beam search / shallow fussion / hotwords in librispeech ctc decode

This commit is contained in:
pkufool 2024-10-29 15:36:30 +08:00
parent adec8554cd
commit 154ef4cfa5

View File

@ -111,6 +111,7 @@ Usage:
import argparse
import logging
import math
import os
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
@ -129,8 +130,14 @@ from icefall.checkpoint import (
find_checkpoints,
load_checkpoint,
)
from icefall.context_graph import ContextGraph, ContextState
from icefall.decode import (
ctc_greedy_search,
ctc_prefix_beam_search,
ctc_prefix_beam_search_attention_decoder_rescoring,
ctc_prefix_beam_search_shallow_fussion,
get_lattice,
nbest_decoding,
nbest_oracle,
@ -140,7 +147,11 @@ from icefall.decode import (
rescore_with_n_best_list,
rescore_with_whole_lattice,
)
from icefall.ngram_lm import NgramLm, NgramLmStateCost
from icefall.lexicon import Lexicon
from icefall.lm_wrapper import LmScorer
from icefall.utils import (
AttributeDict,
get_texts,
@ -255,6 +266,12 @@ def get_parser():
lattice, rescore them with the attention decoder.
- (9) attention-decoder-rescoring-with-ngram. Extract n paths from the LM
rescored lattice, rescore them with the attention decoder.
- (10) ctc-prefix-beam-search. Extract n paths with the given beam, the best
path of the n paths is the decoding result.
- (11) ctc-prefix-beam-search-attention-decoder-rescoring. Extract n paths with
the given beam, rescore them with the attention decoder.
- (12) ctc-prefix-beam-search-shallow-fussion. Use NNLM shallow fussion during
beam search, LODR and hotwords are also supported in this decoding method.
""",
)
@ -280,6 +297,23 @@ def get_parser():
""",
)
parser.add_argument(
"--nnlm-type",
type=str,
default="rnn",
help="Type of NN lm",
choices=["rnn", "transformer"],
)
parser.add_argument(
"--nnlm-scale",
type=float,
default=0,
help="""The scale of the neural network LM, 0 means don't use nnlm shallow fussion.
Used only when `--use-shallow-fusion` is set to True.
""",
)
parser.add_argument(
"--hlg-scale",
type=float,
@ -297,11 +331,52 @@ def get_parser():
""",
)
parser.add_argument(
"--backoff-id",
type=int,
default=500,
help="ID of the backoff symbol in the ngram LM",
)
parser.add_argument(
"--lodr-ngram",
type=str,
help="The path to the lodr ngram",
)
parser.add_argument(
"--lodr-lm-scale",
type=float,
default=0,
help="The scale of lodr ngram, should be less than 0. 0 means don't use lodr.",
)
parser.add_argument(
"--context-score",
type=float,
default=0,
help="""
The bonus score of each token for the context biasing words/phrases.
0 means don't use contextual biasing.
Used only when --decoding-method is ctc-prefix-beam-search-shallow-fussion.
""",
)
parser.add_argument(
"--context-file",
type=str,
default="",
help="""
The path of the context biasing lists, one word/phrase each line
Used only when --decoding-method is ctc-prefix-beam-search-shallow-fussion.
""",
)
parser.add_argument(
"--skip-scoring",
type=str2bool,
default=False,
help="""Skip scoring, but still save the ASR output (for eval sets)."""
help="""Skip scoring, but still save the ASR output (for eval sets).""",
)
add_model_arguments(parser)
@ -314,11 +389,12 @@ def get_decoding_params() -> AttributeDict:
params = AttributeDict(
{
"frame_shift_ms": 10,
"search_beam": 20,
"output_beam": 8,
"search_beam": 20, # for k2 fsa composition
"output_beam": 8, # for k2 fsa composition
"min_active_states": 30,
"max_active_states": 10000,
"use_double_scores": True,
"beam": 4, # for prefix-beam-search
}
)
return params
@ -333,6 +409,9 @@ def decode_one_batch(
batch: dict,
word_table: k2.SymbolTable,
G: Optional[k2.Fsa] = None,
NNLM: Optional[LmScorer] = None,
LODR_lm: Optional[NgramLm] = None,
context_graph: Optional[ContextGraph] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
@ -377,10 +456,7 @@ def decode_one_batch(
Return the decoding result. See above description for the format of
the returned dict. Note: If it decodes to nothing, then return None.
"""
if HLG is not None:
device = HLG.device
else:
device = H.device
device = params.device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
@ -411,6 +487,51 @@ def decode_one_batch(
key = "ctc-greedy-search"
return {key: hyps}
if params.decoding_method == "ctc-prefix-beam-search":
token_ids = ctc_prefix_beam_search(
ctc_output=ctc_output, encoder_out_lens=encoder_out_lens
)
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
hyps = bpe_model.decode(token_ids)
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
hyps = [s.split() for s in hyps]
key = "prefix-beam-search"
return {key: hyps}
if params.decoding_method == "ctc-prefix-beam-search-attention-decoder-rescoring":
best_path_dict = ctc_prefix_beam_search_attention_decoder_rescoring(
ctc_output=ctc_output,
attention_decoder=model.attention_decoder,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
ans = dict()
for a_scale_str, token_ids in best_path_dict.items():
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
hyps = bpe_model.decode(token_ids)
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
hyps = [s.split() for s in hyps]
ans[a_scale_str] = hyps
return ans
if params.decoding_method == "ctc-prefix-beam-search-shallow-fussion":
token_ids = ctc_prefix_beam_search_shallow_fussion(
ctc_output=ctc_output,
encoder_out_lens=encoder_out_lens,
NNLM=NNLM,
LODR_lm=LODR_lm,
LODR_lm_scale=params.lodr_lm_scale,
context_graph=context_graph,
)
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
hyps = bpe_model.decode(token_ids)
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
hyps = [s.split() for s in hyps]
key = "prefix-beam-search-shallow-fussion"
return {key: hyps}
supervision_segments = torch.stack(
(
supervisions["sequence_idx"],
@ -584,6 +705,9 @@ def decode_dataset(
bpe_model: Optional[spm.SentencePieceProcessor],
word_table: k2.SymbolTable,
G: Optional[k2.Fsa] = None,
NNLM: Optional[LmScorer] = None,
LODR_lm: Optional[NgramLm] = None,
context_graph: Optional[ContextGraph] = None,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
@ -634,6 +758,9 @@ def decode_dataset(
batch=batch,
word_table=word_table,
G=G,
NNLM=NNLM,
LODR_lm=LODR_lm,
context_graph=context_graph,
)
for name, hyps in hyps_dict.items():
@ -664,9 +791,7 @@ def save_asr_output(
"""
for key, results in results_dict.items():
recogs_filename = (
params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
)
recogs_filename = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
results = sorted(results)
store_transcripts(filename=recogs_filename, texts=results)
@ -680,7 +805,8 @@ def save_wer_results(
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
):
if params.decoding_method in (
"attention-decoder-rescoring-with-ngram", "whole-lattice-rescoring"
"attention-decoder-rescoring-with-ngram",
"whole-lattice-rescoring",
):
# Set it to False since there are too many logs.
enable_log = False
@ -721,6 +847,7 @@ def save_wer_results(
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
LmScorer.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
args.lang_dir = Path(args.lang_dir)
@ -735,8 +862,11 @@ def main():
set_caching_enabled(True) # lhotse
assert params.decoding_method in (
"ctc-greedy-search",
"ctc-decoding",
"ctc-greedy-search",
"ctc-prefix-beam-search",
"ctc-prefix-beam-search-attention-decoder-rescoring",
"ctc-prefix-beam-search-shallow-fussion",
"1best",
"nbest",
"nbest-rescoring",
@ -762,6 +892,16 @@ def main():
params.suffix += f"_chunk-{params.chunk_size}"
params.suffix += f"_left-context-{params.left_context_frames}"
if "prefix-beam-search" in params.decoding_method:
params.suffix += f"_beam-{params.beam}"
if params.decoding_method == "ctc-prefix-beam-search-shallow-fussion":
if params.nnlm_scale != 0:
params.suffix += f"_nnlm-scale-{params.nnlm_scale}"
if params.lodr_lm_scale != 0:
params.suffix += f"_lodr-scale-{params.lodr_lm_scale}"
if params.context_score != 0:
params.suffix += f"_context_score-{params.context_score}"
if params.use_averaged_model:
params.suffix += "_use-averaged-model"
@ -771,6 +911,7 @@ def main():
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
params.device = device
logging.info(f"Device: {device}")
logging.info(params)
@ -786,14 +927,24 @@ def main():
params.sos_id = 1
if params.decoding_method in [
"ctc-greedy-search", "ctc-decoding", "attention-decoder-rescoring-no-ngram"
"ctc-decoding",
"ctc-greedy-search",
"ctc-prefix-beam-search",
"ctc-prefix-beam-search-attention-decoder-rescoring",
"ctc-prefix-beam-search-shallow-fussion",
"attention-decoder-rescoring-no-ngram",
]:
HLG = None
H = k2.ctc_topo(
max_token=max_token_id,
modified=False,
device=device,
)
H = None
if params.decoding_method in [
"ctc-decoding",
"attention-decoder-rescoring-no-ngram",
]:
H = k2.ctc_topo(
max_token=max_token_id,
modified=False,
device=device,
)
bpe_model = spm.SentencePieceProcessor()
bpe_model.load(str(params.lang_dir / "bpe.model"))
else:
@ -844,7 +995,8 @@ def main():
G = k2.Fsa.from_dict(d)
if params.decoding_method in [
"whole-lattice-rescoring", "attention-decoder-rescoring-with-ngram"
"whole-lattice-rescoring",
"attention-decoder-rescoring-with-ngram",
]:
# Add epsilon self-loops to G as we will compose
# it with the whole lattice later
@ -858,6 +1010,51 @@ def main():
else:
G = None
# only load the neural network LM if required
NNLM = None
if (
params.decoding_method == "ctc-prefix-beam-search-shallow-fussion"
and params.nnlm_scale != 0
):
NNLM = LmScorer(
lm_type=params.nnlm_type,
params=params,
device=device,
lm_scale=params.nnlm_scale,
)
NNLM.to(device)
NNLM.eval()
LODR_lm = None
if (
params.decoding_method == "ctc-prefix-beam-search-shallow-fussion"
and params.lodr_lm_scale != 0
):
assert os.path.exists(
params.lodr_ngram
), f"LODR ngram does not exists, given path : {params.lodr_ngram}"
logging.info(f"Loading LODR (token level lm): {params.lodr_ngram}")
LODR_lm = NgramLm(
params.lodr_ngram,
backoff_id=params.backoff_id,
is_binary=False,
)
logging.info(f"num states: {LODR_lm.lm.num_states}")
context_graph = None
if (
params.decoding_method == "ctc-prefix-beam-search-shallow-fussion"
and params.context_score != 0
):
assert os.path.exists(
params.context_file
), f"context_file does not exists, given path : {params.context_file}"
contexts = []
for line in open(params.context_file).readlines():
contexts.append(bpe_model.encode(line.strip()))
context_graph = ContextGraph(params.context_score)
context_graph.build(contexts)
logging.info("About to create model")
model = get_model(params)
@ -967,6 +1164,9 @@ def main():
bpe_model=bpe_model,
word_table=lexicon.word_table,
G=G,
NNLM=NNLM,
LODR_lm=LODR_lm,
context_graph=context_graph,
)
save_asr_output(