mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-14 12:32:20 +00:00
Support prefix beam search / shallow fussion / hotwords in librispeech ctc decode
This commit is contained in:
parent
adec8554cd
commit
154ef4cfa5
@ -111,6 +111,7 @@ Usage:
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
@ -129,8 +130,14 @@ from icefall.checkpoint import (
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
|
||||
from icefall.context_graph import ContextGraph, ContextState
|
||||
|
||||
from icefall.decode import (
|
||||
ctc_greedy_search,
|
||||
ctc_prefix_beam_search,
|
||||
ctc_prefix_beam_search_attention_decoder_rescoring,
|
||||
ctc_prefix_beam_search_shallow_fussion,
|
||||
get_lattice,
|
||||
nbest_decoding,
|
||||
nbest_oracle,
|
||||
@ -140,7 +147,11 @@ from icefall.decode import (
|
||||
rescore_with_n_best_list,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
|
||||
from icefall.ngram_lm import NgramLm, NgramLmStateCost
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.lm_wrapper import LmScorer
|
||||
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_texts,
|
||||
@ -255,6 +266,12 @@ def get_parser():
|
||||
lattice, rescore them with the attention decoder.
|
||||
- (9) attention-decoder-rescoring-with-ngram. Extract n paths from the LM
|
||||
rescored lattice, rescore them with the attention decoder.
|
||||
- (10) ctc-prefix-beam-search. Extract n paths with the given beam, the best
|
||||
path of the n paths is the decoding result.
|
||||
- (11) ctc-prefix-beam-search-attention-decoder-rescoring. Extract n paths with
|
||||
the given beam, rescore them with the attention decoder.
|
||||
- (12) ctc-prefix-beam-search-shallow-fussion. Use NNLM shallow fussion during
|
||||
beam search, LODR and hotwords are also supported in this decoding method.
|
||||
""",
|
||||
)
|
||||
|
||||
@ -280,6 +297,23 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nnlm-type",
|
||||
type=str,
|
||||
default="rnn",
|
||||
help="Type of NN lm",
|
||||
choices=["rnn", "transformer"],
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nnlm-scale",
|
||||
type=float,
|
||||
default=0,
|
||||
help="""The scale of the neural network LM, 0 means don't use nnlm shallow fussion.
|
||||
Used only when `--use-shallow-fusion` is set to True.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--hlg-scale",
|
||||
type=float,
|
||||
@ -297,11 +331,52 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--backoff-id",
|
||||
type=int,
|
||||
default=500,
|
||||
help="ID of the backoff symbol in the ngram LM",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lodr-ngram",
|
||||
type=str,
|
||||
help="The path to the lodr ngram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lodr-lm-scale",
|
||||
type=float,
|
||||
default=0,
|
||||
help="The scale of lodr ngram, should be less than 0. 0 means don't use lodr.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-score",
|
||||
type=float,
|
||||
default=0,
|
||||
help="""
|
||||
The bonus score of each token for the context biasing words/phrases.
|
||||
0 means don't use contextual biasing.
|
||||
Used only when --decoding-method is ctc-prefix-beam-search-shallow-fussion.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-file",
|
||||
type=str,
|
||||
default="",
|
||||
help="""
|
||||
The path of the context biasing lists, one word/phrase each line
|
||||
Used only when --decoding-method is ctc-prefix-beam-search-shallow-fussion.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--skip-scoring",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""Skip scoring, but still save the ASR output (for eval sets)."""
|
||||
help="""Skip scoring, but still save the ASR output (for eval sets).""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
@ -314,11 +389,12 @@ def get_decoding_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"frame_shift_ms": 10,
|
||||
"search_beam": 20,
|
||||
"output_beam": 8,
|
||||
"search_beam": 20, # for k2 fsa composition
|
||||
"output_beam": 8, # for k2 fsa composition
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
"beam": 4, # for prefix-beam-search
|
||||
}
|
||||
)
|
||||
return params
|
||||
@ -333,6 +409,9 @@ def decode_one_batch(
|
||||
batch: dict,
|
||||
word_table: k2.SymbolTable,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
NNLM: Optional[LmScorer] = None,
|
||||
LODR_lm: Optional[NgramLm] = None,
|
||||
context_graph: Optional[ContextGraph] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
@ -377,10 +456,7 @@ def decode_one_batch(
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict. Note: If it decodes to nothing, then return None.
|
||||
"""
|
||||
if HLG is not None:
|
||||
device = HLG.device
|
||||
else:
|
||||
device = H.device
|
||||
device = params.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
@ -411,6 +487,51 @@ def decode_one_batch(
|
||||
key = "ctc-greedy-search"
|
||||
return {key: hyps}
|
||||
|
||||
if params.decoding_method == "ctc-prefix-beam-search":
|
||||
token_ids = ctc_prefix_beam_search(
|
||||
ctc_output=ctc_output, encoder_out_lens=encoder_out_lens
|
||||
)
|
||||
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||
hyps = bpe_model.decode(token_ids)
|
||||
|
||||
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||
hyps = [s.split() for s in hyps]
|
||||
key = "prefix-beam-search"
|
||||
return {key: hyps}
|
||||
|
||||
if params.decoding_method == "ctc-prefix-beam-search-attention-decoder-rescoring":
|
||||
best_path_dict = ctc_prefix_beam_search_attention_decoder_rescoring(
|
||||
ctc_output=ctc_output,
|
||||
attention_decoder=model.attention_decoder,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
ans = dict()
|
||||
for a_scale_str, token_ids in best_path_dict.items():
|
||||
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||
hyps = bpe_model.decode(token_ids)
|
||||
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||
hyps = [s.split() for s in hyps]
|
||||
ans[a_scale_str] = hyps
|
||||
return ans
|
||||
|
||||
if params.decoding_method == "ctc-prefix-beam-search-shallow-fussion":
|
||||
token_ids = ctc_prefix_beam_search_shallow_fussion(
|
||||
ctc_output=ctc_output,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
NNLM=NNLM,
|
||||
LODR_lm=LODR_lm,
|
||||
LODR_lm_scale=params.lodr_lm_scale,
|
||||
context_graph=context_graph,
|
||||
)
|
||||
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||
hyps = bpe_model.decode(token_ids)
|
||||
|
||||
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||
hyps = [s.split() for s in hyps]
|
||||
key = "prefix-beam-search-shallow-fussion"
|
||||
return {key: hyps}
|
||||
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
supervisions["sequence_idx"],
|
||||
@ -584,6 +705,9 @@ def decode_dataset(
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
word_table: k2.SymbolTable,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
NNLM: Optional[LmScorer] = None,
|
||||
LODR_lm: Optional[NgramLm] = None,
|
||||
context_graph: Optional[ContextGraph] = None,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
@ -634,6 +758,9 @@ def decode_dataset(
|
||||
batch=batch,
|
||||
word_table=word_table,
|
||||
G=G,
|
||||
NNLM=NNLM,
|
||||
LODR_lm=LODR_lm,
|
||||
context_graph=context_graph,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
@ -664,9 +791,7 @@ def save_asr_output(
|
||||
"""
|
||||
for key, results in results_dict.items():
|
||||
|
||||
recogs_filename = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
|
||||
)
|
||||
recogs_filename = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
|
||||
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recogs_filename, texts=results)
|
||||
@ -680,7 +805,8 @@ def save_wer_results(
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
):
|
||||
if params.decoding_method in (
|
||||
"attention-decoder-rescoring-with-ngram", "whole-lattice-rescoring"
|
||||
"attention-decoder-rescoring-with-ngram",
|
||||
"whole-lattice-rescoring",
|
||||
):
|
||||
# Set it to False since there are too many logs.
|
||||
enable_log = False
|
||||
@ -721,6 +847,7 @@ def save_wer_results(
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
LmScorer.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
@ -735,8 +862,11 @@ def main():
|
||||
set_caching_enabled(True) # lhotse
|
||||
|
||||
assert params.decoding_method in (
|
||||
"ctc-greedy-search",
|
||||
"ctc-decoding",
|
||||
"ctc-greedy-search",
|
||||
"ctc-prefix-beam-search",
|
||||
"ctc-prefix-beam-search-attention-decoder-rescoring",
|
||||
"ctc-prefix-beam-search-shallow-fussion",
|
||||
"1best",
|
||||
"nbest",
|
||||
"nbest-rescoring",
|
||||
@ -762,6 +892,16 @@ def main():
|
||||
params.suffix += f"_chunk-{params.chunk_size}"
|
||||
params.suffix += f"_left-context-{params.left_context_frames}"
|
||||
|
||||
if "prefix-beam-search" in params.decoding_method:
|
||||
params.suffix += f"_beam-{params.beam}"
|
||||
if params.decoding_method == "ctc-prefix-beam-search-shallow-fussion":
|
||||
if params.nnlm_scale != 0:
|
||||
params.suffix += f"_nnlm-scale-{params.nnlm_scale}"
|
||||
if params.lodr_lm_scale != 0:
|
||||
params.suffix += f"_lodr-scale-{params.lodr_lm_scale}"
|
||||
if params.context_score != 0:
|
||||
params.suffix += f"_context_score-{params.context_score}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "_use-averaged-model"
|
||||
|
||||
@ -771,6 +911,7 @@ def main():
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
params.device = device
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
logging.info(params)
|
||||
@ -786,14 +927,24 @@ def main():
|
||||
params.sos_id = 1
|
||||
|
||||
if params.decoding_method in [
|
||||
"ctc-greedy-search", "ctc-decoding", "attention-decoder-rescoring-no-ngram"
|
||||
"ctc-decoding",
|
||||
"ctc-greedy-search",
|
||||
"ctc-prefix-beam-search",
|
||||
"ctc-prefix-beam-search-attention-decoder-rescoring",
|
||||
"ctc-prefix-beam-search-shallow-fussion",
|
||||
"attention-decoder-rescoring-no-ngram",
|
||||
]:
|
||||
HLG = None
|
||||
H = k2.ctc_topo(
|
||||
max_token=max_token_id,
|
||||
modified=False,
|
||||
device=device,
|
||||
)
|
||||
H = None
|
||||
if params.decoding_method in [
|
||||
"ctc-decoding",
|
||||
"attention-decoder-rescoring-no-ngram",
|
||||
]:
|
||||
H = k2.ctc_topo(
|
||||
max_token=max_token_id,
|
||||
modified=False,
|
||||
device=device,
|
||||
)
|
||||
bpe_model = spm.SentencePieceProcessor()
|
||||
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
||||
else:
|
||||
@ -844,7 +995,8 @@ def main():
|
||||
G = k2.Fsa.from_dict(d)
|
||||
|
||||
if params.decoding_method in [
|
||||
"whole-lattice-rescoring", "attention-decoder-rescoring-with-ngram"
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder-rescoring-with-ngram",
|
||||
]:
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
@ -858,6 +1010,51 @@ def main():
|
||||
else:
|
||||
G = None
|
||||
|
||||
# only load the neural network LM if required
|
||||
NNLM = None
|
||||
if (
|
||||
params.decoding_method == "ctc-prefix-beam-search-shallow-fussion"
|
||||
and params.nnlm_scale != 0
|
||||
):
|
||||
NNLM = LmScorer(
|
||||
lm_type=params.nnlm_type,
|
||||
params=params,
|
||||
device=device,
|
||||
lm_scale=params.nnlm_scale,
|
||||
)
|
||||
NNLM.to(device)
|
||||
NNLM.eval()
|
||||
|
||||
LODR_lm = None
|
||||
if (
|
||||
params.decoding_method == "ctc-prefix-beam-search-shallow-fussion"
|
||||
and params.lodr_lm_scale != 0
|
||||
):
|
||||
assert os.path.exists(
|
||||
params.lodr_ngram
|
||||
), f"LODR ngram does not exists, given path : {params.lodr_ngram}"
|
||||
logging.info(f"Loading LODR (token level lm): {params.lodr_ngram}")
|
||||
LODR_lm = NgramLm(
|
||||
params.lodr_ngram,
|
||||
backoff_id=params.backoff_id,
|
||||
is_binary=False,
|
||||
)
|
||||
logging.info(f"num states: {LODR_lm.lm.num_states}")
|
||||
|
||||
context_graph = None
|
||||
if (
|
||||
params.decoding_method == "ctc-prefix-beam-search-shallow-fussion"
|
||||
and params.context_score != 0
|
||||
):
|
||||
assert os.path.exists(
|
||||
params.context_file
|
||||
), f"context_file does not exists, given path : {params.context_file}"
|
||||
contexts = []
|
||||
for line in open(params.context_file).readlines():
|
||||
contexts.append(bpe_model.encode(line.strip()))
|
||||
context_graph = ContextGraph(params.context_score)
|
||||
context_graph.build(contexts)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
@ -967,6 +1164,9 @@ def main():
|
||||
bpe_model=bpe_model,
|
||||
word_table=lexicon.word_table,
|
||||
G=G,
|
||||
NNLM=NNLM,
|
||||
LODR_lm=LODR_lm,
|
||||
context_graph=context_graph,
|
||||
)
|
||||
|
||||
save_asr_output(
|
||||
|
Loading…
x
Reference in New Issue
Block a user