Add data preparation for the MuST-C corpus

This commit is contained in:
Fangjun Kuang 2023-05-31 21:06:52 +08:00
parent 1ce9a8b3c4
commit 14c938aa07
14 changed files with 365 additions and 8 deletions

View File

@ -107,7 +107,7 @@ fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
# to $dl_dir/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/compute_fbank_musan.py

View File

@ -0,0 +1,148 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
"""
This file computes fbank features of the MuST-C dataset.
It looks for manifests in the directory "in_dir" and write
generated features to "out_dir".
"""
import argparse
import logging
from pathlib import Path
import torch
from lhotse import (
CutSet,
Fbank,
FbankConfig,
FeatureSet,
LilcomChunkyWriter,
load_manifest,
)
from icefall.utils import str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--in-dir",
type=Path,
required=True,
help="Input manifest directory",
)
parser.add_argument(
"--out-dir",
type=Path,
required=True,
help="Output directory where generated fbank features are saved.",
)
parser.add_argument(
"--tgt-lang",
type=str,
required=True,
help="Target language, e.g., zh, de, fr.",
)
parser.add_argument(
"--num-jobs",
type=int,
default=1,
help="Number of jobs for computing features",
)
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="""Perturb speed with factor 0.9 and 1.1 on train subset.""",
)
return parser.parse_args()
def compute_fbank_must_c(
in_dir: Path,
out_dir: Path,
tgt_lang: str,
num_jobs: int,
perturb_speed: bool,
):
out_dir.mkdir(parents=True, exist_ok=True)
extractor = Fbank(FbankConfig(num_mel_bins=80))
parts = ["dev", "tst-COMMON", "tst-HE", "train"]
prefix = "must_c"
suffix = "jsonl.gz"
for p in parts:
logging.info(f"Processing {p}")
cuts_path = f"{out_dir}/{prefix}_feats_en-{tgt_lang}_{p}"
if perturb_speed and p == "train":
cuts_path += "_sp"
cuts_path += ".jsonl.gz"
if Path(cuts_path).is_file():
logging.info(f"{cuts_path} exists - skipping")
continue
recordings_filename = in_dir / f"{prefix}_recordings_en-{tgt_lang}_{p}.jsonl.gz"
supervisions_filename = (
in_dir / f"{prefix}_supervisions_en-{tgt_lang}_{p}_norm_rm.jsonl.gz"
)
assert recordings_filename.is_file(), recordings_filename
assert supervisions_filename.is_file(), supervisions_filename
cut_set = CutSet.from_manifests(
recordings=load_manifest(recordings_filename),
supervisions=load_manifest(supervisions_filename),
)
if perturb_speed and p == "train":
logging.info("Speed perturbing for the train dataset")
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
storage_path = f"{out_dir}/{prefix}_feats_en-{tgt_lang}_{p}_sp"
else:
storage_path = f"{out_dir}/{prefix}_feats_en-{tgt_lang}_{p}"
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=storage_path,
num_jobs=num_jobs,
storage_type=LilcomChunkyWriter,
)
logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)
logging.info(f"Saved to {cuts_path}")
def main():
args = get_args()
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
logging.info(vars(args))
assert args.in_dir.is_dir(), args.in_dir
compute_fbank_must_c(
in_dir=args.in_dir,
out_dir=args.out_dir,
tgt_lang=args.tgt_lang,
num_jobs=args.num_jobs,
perturb_speed=args.perturb_speed,
)
if __name__ == "__main__":
main()

34
egs/must_c/ST/local/get_text.py Executable file
View File

@ -0,0 +1,34 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
"""
This file prints the text field of supervisions from cutset to the console
"""
import argparse
from lhotse import load_manifest_lazy
from pathlib import Path
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"manifest",
type=Path,
help="Input manifest",
)
return parser.parse_args()
def main():
args = get_args()
assert args.manifest.is_file(), args.manifest
cutset = load_manifest_lazy(args.manifest)
for c in cutset:
for sup in c.supervisions:
print(sup.text)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,48 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
"""
This file generates words.txt from the given transcript file.
"""
import argparse
from pathlib import Path
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"transcript",
type=Path,
help="Input transcript file",
)
return parser.parse_args()
def main():
args = get_args()
assert args.transcript.is_file(), args.transcript
word_set = set()
with open(args.transcript) as f:
for line in f:
words = line.strip().split()
for w in words:
word_set.add(w)
# Note: reserved* should be keep in sync with ./local/prepare_lang_bpe.py
reserved1 = ["<eps>", "!SIL", "<SPOKEN_NOISE>", "<UNK>"]
reserved2 = ["#0", "<s>", "</s>"]
for w in reserved1 + reserved2:
assert w not in word_set, w
words = sorted(list(word_set))
words = reserved1 + words + reserved2
for i, w in enumerate(words):
print(w, i)
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/prepare_lang.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/prepare_lang_bpe.py

View File

@ -1,4 +1,5 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
"""
This script normalizes transcripts from supervisions.
@ -11,11 +12,13 @@ Usage:
import argparse
import logging
import re
from pathlib import Path
from functools import partial
from pathlib import Path
from normalize_punctuation import normalize_punctuation
from lhotse.recipes.utils import read_manifests_if_cached
from normalize_punctuation import normalize_punctuation
from remove_non_native_characters import remove_non_native_characters
from remove_punctuation import remove_punctuation
def get_args():
@ -39,6 +42,9 @@ def preprocess_must_c(manifest_dir: Path, tgt_lang: str):
print(manifest_dir)
normalize_punctuation_lang = partial(normalize_punctuation, lang=tgt_lang)
remove_non_native_characters_lang = partial(
remove_non_native_characters, lang=tgt_lang
)
prefix = "must_c"
suffix = "jsonl.gz"
@ -66,7 +72,10 @@ def preprocess_must_c(manifest_dir: Path, tgt_lang: str):
supervisions = manifests[name]["supervisions"]
supervisions = supervisions.transform_text(normalize_punctuation_lang)
supervisions = supervisions.transform_text(remove_punctuation)
supervisions = supervisions.transform_text(lambda x: x.lower())
supervisions = supervisions.transform_text(remove_non_native_characters_lang)
supervisions = supervisions.transform_text(lambda x: re.sub(" +", " ", x))
supervisions.to_file(dst_name)

View File

@ -0,0 +1,21 @@
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
import re
def remove_non_native_characters(s: str, lang: str):
if lang == "de":
# ä -> ae
# ö -> oe
# ü -> ue
# ß -> ss
s = re.sub("ä", "ae", s)
s = re.sub("ö", "oe", s)
s = re.sub("ü", "ue", s)
s = re.sub("ß", "ss", s)
# keep only a-z and spaces
# note: ' is removed
s = re.sub(r"[^a-z\s]", "", s)
return s

View File

@ -1,4 +1,5 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
from normalize_punctuation import normalize_punctuation

View File

@ -0,0 +1,26 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
from remove_non_native_characters import remove_non_native_characters
def test_remove_non_native_characters():
s = "Ich heiße xxx好的01 fangjun".lower()
n = remove_non_native_characters(s, lang="de")
assert n == "ich heisse xxx fangjun", n
s = 'äÄ'.lower()
n = remove_non_native_characters(s, lang="de")
assert n == 'aeae', n
s = 'öÖ'.lower()
n = remove_non_native_characters(s, lang="de")
assert n == 'oeoe', n
s = 'üÜ'.lower()
n = remove_non_native_characters(s, lang="de")
assert n == 'ueue', n
if __name__ == "__main__":
test_remove_non_native_characters()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/train_bpe_model.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/validate_bpe_lexicon.py

View File

@ -6,7 +6,7 @@ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=10
stage=-1
stage=0
stop_stage=100
version=v1.0
@ -101,8 +101,73 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Text normalization"
./local/preprocess_must_c.py \
--manifest-dir ./data/manifests/$version/ \
--tgt-lang $tgt_lang
log "Stage 3: Text normalization for $version with target language $tgt_lang"
if [ ! -f ./data/manifests/$version/.$tgt_lang.norm.done ]; then
./local/preprocess_must_c.py \
--manifest-dir ./data/manifests/$version/ \
--tgt-lang $tgt_lang
touch ./data/manifests/$version/.$tgt_lang.norm.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute fbank for $version with target language $tgt_lang"
mkdir -p data/fbank/$version/
if [ ! -e data/fbank/$version/.$tgt_lang.done ]; then
./local/compute_fbank_must_c.py \
--in-dir ./data/manifests/$version/ \
--out-dir ./data/fbank/$version/ \
--tgt-lang $tgt_lang \
--num-jobs $nj
./local/compute_fbank_must_c.py \
--in-dir ./data/manifests/$version/ \
--out-dir ./data/fbank/$version/ \
--tgt-lang $tgt_lang \
--num-jobs $nj \
--perturb-speed 1
touch data/fbank/$version/.$tgt_lang.done
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare BPE based lang for $version with target language $tgt_lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}/$version/$tgt_lang/
mkdir -p $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
./local/get_text.py ./data/fbank/$version/must_c_feats_en-${tgt_lang}_train.jsonl.gz > $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/words.txt ]; then
./local/get_words.py $lang_dir/transcript_words.txt > $lang_dir/words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bpe.model
fi
done
fi