diff --git a/egs/ami/SURT/local/add_source_feats.py b/egs/ami/SURT/local/add_source_feats.py new file mode 100755 index 000000000..0917b88a6 --- /dev/null +++ b/egs/ami/SURT/local/add_source_feats.py @@ -0,0 +1,78 @@ +#!/usr/bin/env python3 +# Copyright 2022 Johns Hopkins University (authors: Desh Raj) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file adds source features as temporal arrays to the mixture manifests. +It looks for manifests in the directory data/manifests. +""" +import logging +from pathlib import Path + +import numpy as np +from lhotse import CutSet, LilcomChunkyWriter, load_manifest, load_manifest_lazy +from tqdm import tqdm + + +def add_source_feats(): + src_dir = Path("data/manifests") + output_dir = Path("data/fbank") + + logging.info("Reading mixed cuts") + mixed_cuts_clean = load_manifest_lazy(src_dir / "cuts_train_clean.jsonl.gz") + mixed_cuts_reverb = load_manifest_lazy(src_dir / "cuts_train_reverb.jsonl.gz") + + logging.info("Reading source cuts") + source_cuts = load_manifest(src_dir / "ihm_cuts_train_trimmed.jsonl.gz") + + logging.info("Adding source features to the mixed cuts") + pbar = tqdm(total=len(mixed_cuts_clean), desc="Adding source features") + with CutSet.open_writer( + src_dir / "cuts_train_clean_sources.jsonl.gz" + ) as cut_writer_clean, CutSet.open_writer( + src_dir / "cuts_train_reverb_sources.jsonl.gz" + ) as cut_writer_reverb, LilcomChunkyWriter( + output_dir / "feats_train_clean_sources" + ) as source_feat_writer: + for cut_clean, cut_reverb in zip(mixed_cuts_clean, mixed_cuts_reverb): + assert cut_reverb.id == cut_clean.id + "_rvb" + source_feats = [] + source_feat_offsets = [] + cur_offset = 0 + for sup in sorted( + cut_clean.supervisions, key=lambda s: (s.start, s.speaker) + ): + source_cut = source_cuts[sup.id] + source_feats.append(source_cut.load_features()) + source_feat_offsets.append(cur_offset) + cur_offset += source_cut.num_frames + cut_clean.source_feats = source_feat_writer.store_array( + cut_clean.id, np.concatenate(source_feats, axis=0) + ) + cut_clean.source_feat_offsets = source_feat_offsets + cut_writer_clean.write(cut_clean) + # Also write the reverb cut + cut_reverb.source_feats = cut_clean.source_feats + cut_reverb.source_feat_offsets = cut_clean.source_feat_offsets + cut_writer_reverb.write(cut_reverb) + pbar.update(1) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + logging.basicConfig(format=formatter, level=logging.INFO) + add_source_feats() diff --git a/egs/ami/SURT/local/compute_fbank_aimix.py b/egs/ami/SURT/local/compute_fbank_aimix.py new file mode 100755 index 000000000..91b3a060b --- /dev/null +++ b/egs/ami/SURT/local/compute_fbank_aimix.py @@ -0,0 +1,185 @@ +#!/usr/bin/env python3 +# Copyright 2022 Johns Hopkins University (authors: Desh Raj) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file computes fbank features of the synthetically mixed AMI and ICSI +train set. +It looks for manifests in the directory data/manifests. + +The generated fbank features are saved in data/fbank. +""" +import logging +import random +import warnings +from pathlib import Path + +import torch +import torch.multiprocessing +import torchaudio +from lhotse import ( + AudioSource, + LilcomChunkyWriter, + Recording, + load_manifest, + load_manifest_lazy, +) +from lhotse.audio import set_ffmpeg_torchaudio_info_enabled +from lhotse.cut import MixedCut, MixTrack, MultiCut +from lhotse.features.kaldifeat import ( + KaldifeatFbank, + KaldifeatFbankConfig, + KaldifeatFrameOptions, + KaldifeatMelOptions, +) +from lhotse.utils import fix_random_seed, uuid4 +from tqdm import tqdm + +# Torch's multithreaded behavior needs to be disabled or +# it wastes a lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) +torch.multiprocessing.set_sharing_strategy("file_system") +torchaudio.set_audio_backend("soundfile") +set_ffmpeg_torchaudio_info_enabled(False) + + +def compute_fbank_aimix(): + src_dir = Path("data/manifests") + output_dir = Path("data/fbank") + + sampling_rate = 16000 + num_mel_bins = 80 + + extractor = KaldifeatFbank( + KaldifeatFbankConfig( + frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate), + mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins), + device="cuda", + ) + ) + + logging.info("Reading manifests") + train_cuts = load_manifest_lazy(src_dir / "ai-mix_cuts_clean_full.jsonl.gz") + + # only uses RIRs and noises from REVERB challenge + real_rirs = load_manifest(src_dir / "real-rir_recordings_all.jsonl.gz").filter( + lambda r: "RVB2014" in r.id + ) + noises = load_manifest(src_dir / "iso-noise_recordings_all.jsonl.gz").filter( + lambda r: "RVB2014" in r.id + ) + + # Apply perturbation to the training cuts + logging.info("Applying perturbation to the training cuts") + train_cuts_rvb = train_cuts.map( + lambda c: augment( + c, perturb_snr=True, rirs=real_rirs, noises=noises, perturb_loudness=True + ) + ) + + logging.info("Extracting fbank features for training cuts") + _ = train_cuts.compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / "ai-mix_feats_clean", + manifest_path=src_dir / "cuts_train_clean.jsonl.gz", + batch_duration=5000, + num_workers=4, + storage_type=LilcomChunkyWriter, + overwrite=True, + ) + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + _ = train_cuts_rvb.compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / "ai-mix_feats_reverb", + manifest_path=src_dir / "cuts_train_reverb.jsonl.gz", + batch_duration=5000, + num_workers=4, + storage_type=LilcomChunkyWriter, + overwrite=True, + ) + + +def augment(cut, perturb_snr=False, rirs=None, noises=None, perturb_loudness=False): + """ + Given a mixed cut, this function optionally applies the following augmentations: + - Perturbing the SNRs of the tracks (in range [-5, 5] dB) + - Reverberation using a randomly selected RIR + - Adding noise + - Perturbing the loudness (in range [-20, -25] dB) + """ + out_cut = cut.drop_features() + + # Perturb the SNRs (optional) + if perturb_snr: + snrs = [random.uniform(-5, 5) for _ in range(len(cut.tracks))] + for i, (track, snr) in enumerate(zip(out_cut.tracks, snrs)): + if i == 0: + # Skip the first track since it is the reference + continue + track.snr = snr + + # Reverberate the cut (optional) + if rirs is not None: + # Select an RIR at random + rir = random.choice(rirs) + # Select a channel at random + rir_channel = random.choice(list(range(rir.num_channels))) + # Reverberate the cut + out_cut = out_cut.reverb_rir(rir_recording=rir, rir_channels=[rir_channel]) + + # Add noise (optional) + if noises is not None: + # Select a noise recording at random + noise = random.choice(noises).to_cut() + if isinstance(noise, MultiCut): + noise = noise.to_mono()[0] + # Select an SNR at random + snr = random.uniform(10, 30) + # Repeat the noise to match the duration of the cut + noise = repeat_cut(noise, out_cut.duration) + out_cut = MixedCut( + id=out_cut.id, + tracks=[ + MixTrack(cut=out_cut, type="MixedCut"), + MixTrack(cut=noise, type="DataCut", snr=snr), + ], + ) + + # Perturb the loudness (optional) + if perturb_loudness: + target_loudness = random.uniform(-20, -25) + out_cut = out_cut.normalize_loudness(target_loudness, mix_first=True) + return out_cut + + +def repeat_cut(cut, duration): + while cut.duration < duration: + cut = cut.mix(cut, offset_other_by=cut.duration) + return cut.truncate(duration=duration) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + logging.basicConfig(format=formatter, level=logging.INFO) + + fix_random_seed(42) + compute_fbank_aimix() diff --git a/egs/ami/SURT/local/compute_fbank_ami.py b/egs/ami/SURT/local/compute_fbank_ami.py new file mode 100755 index 000000000..351b41765 --- /dev/null +++ b/egs/ami/SURT/local/compute_fbank_ami.py @@ -0,0 +1,94 @@ +#!/usr/bin/env python3 +# Copyright 2022 Johns Hopkins University (authors: Desh Raj) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file computes fbank features of the AMI dataset. +We compute features for full recordings (i.e., without trimming to supervisions). +This way we can create arbitrary segmentations later. + +The generated fbank features are saved in data/fbank. +""" +import logging +import math +from pathlib import Path + +import torch +import torch.multiprocessing +from lhotse import CutSet, LilcomChunkyWriter +from lhotse.features.kaldifeat import ( + KaldifeatFbank, + KaldifeatFbankConfig, + KaldifeatFrameOptions, + KaldifeatMelOptions, +) +from lhotse.recipes.utils import read_manifests_if_cached + +# Torch's multithreaded behavior needs to be disabled or +# it wastes a lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) +torch.multiprocessing.set_sharing_strategy("file_system") + + +def compute_fbank_ami(): + src_dir = Path("data/manifests") + output_dir = Path("data/fbank") + + sampling_rate = 16000 + num_mel_bins = 80 + + extractor = KaldifeatFbank( + KaldifeatFbankConfig( + frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate), + mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins), + device="cuda", + ) + ) + + logging.info("Reading manifests") + manifests = {} + for part in ["ihm-mix", "sdm", "mdm8-bf"]: + manifests[part] = read_manifests_if_cached( + dataset_parts=["train", "dev", "test"], + output_dir=src_dir, + prefix=f"ami-{part}", + suffix="jsonl.gz", + ) + + for part in ["ihm-mix", "sdm", "mdm8-bf"]: + for split in ["train", "dev", "test"]: + logging.info(f"Processing {part} {split}") + cuts = CutSet.from_manifests( + **manifests[part][split] + ).compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / f"ami-{part}_{split}_feats", + manifest_path=src_dir / f"cuts_ami-{part}_{split}.jsonl.gz", + batch_duration=5000, + num_workers=4, + storage_type=LilcomChunkyWriter, + ) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + logging.basicConfig(format=formatter, level=logging.INFO) + + compute_fbank_ami() diff --git a/egs/ami/SURT/local/compute_fbank_icsi.py b/egs/ami/SURT/local/compute_fbank_icsi.py new file mode 100755 index 000000000..4e2ff3f3b --- /dev/null +++ b/egs/ami/SURT/local/compute_fbank_icsi.py @@ -0,0 +1,95 @@ +#!/usr/bin/env python3 +# Copyright 2022 Johns Hopkins University (authors: Desh Raj) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file computes fbank features of the ICSI dataset. +We compute features for full recordings (i.e., without trimming to supervisions). +This way we can create arbitrary segmentations later. + +The generated fbank features are saved in data/fbank. +""" +import logging +import math +from pathlib import Path + +import torch +import torch.multiprocessing +from lhotse import CutSet, LilcomChunkyWriter +from lhotse.features.kaldifeat import ( + KaldifeatFbank, + KaldifeatFbankConfig, + KaldifeatFrameOptions, + KaldifeatMelOptions, +) +from lhotse.recipes.utils import read_manifests_if_cached + +# Torch's multithreaded behavior needs to be disabled or +# it wastes a lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) +torch.multiprocessing.set_sharing_strategy("file_system") + + +def compute_fbank_icsi(): + src_dir = Path("data/manifests") + output_dir = Path("data/fbank") + + sampling_rate = 16000 + num_mel_bins = 80 + + extractor = KaldifeatFbank( + KaldifeatFbankConfig( + frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate), + mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins), + device="cuda", + ) + ) + + logging.info("Reading manifests") + manifests = {} + for part in ["ihm-mix", "sdm"]: + manifests[part] = read_manifests_if_cached( + dataset_parts=["train"], + output_dir=src_dir, + prefix=f"icsi-{part}", + suffix="jsonl.gz", + ) + + for part in ["ihm-mix", "sdm"]: + for split in ["train"]: + logging.info(f"Processing {part} {split}") + cuts = CutSet.from_manifests( + **manifests[part][split] + ).compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / f"icsi-{part}_{split}_feats", + manifest_path=src_dir / f"cuts_icsi-{part}_{split}.jsonl.gz", + batch_duration=5000, + num_workers=4, + storage_type=LilcomChunkyWriter, + overwrite=True, + ) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + logging.basicConfig(format=formatter, level=logging.INFO) + + compute_fbank_icsi() diff --git a/egs/ami/SURT/local/compute_fbank_ihm.py b/egs/ami/SURT/local/compute_fbank_ihm.py new file mode 100755 index 000000000..56f54aa21 --- /dev/null +++ b/egs/ami/SURT/local/compute_fbank_ihm.py @@ -0,0 +1,101 @@ +#!/usr/bin/env python3 +# Copyright 2022 Johns Hopkins University (authors: Desh Raj) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file computes fbank features of the trimmed sub-segments which will be +used for simulating the training mixtures. + +The generated fbank features are saved in data/fbank. +""" +import logging +import math +from pathlib import Path + +import torch +import torch.multiprocessing +import torchaudio +from lhotse import CutSet, LilcomChunkyWriter, load_manifest +from lhotse.audio import set_ffmpeg_torchaudio_info_enabled +from lhotse.features.kaldifeat import ( + KaldifeatFbank, + KaldifeatFbankConfig, + KaldifeatFrameOptions, + KaldifeatMelOptions, +) +from lhotse.recipes.utils import read_manifests_if_cached +from tqdm import tqdm + +# Torch's multithreaded behavior needs to be disabled or +# it wastes a lot of CPU and slow things down. +# Do this outside of main() in case it needs to take effect +# even when we are not invoking the main (e.g. when spawning subprocesses). +torch.set_num_threads(1) +torch.set_num_interop_threads(1) +torch.multiprocessing.set_sharing_strategy("file_system") +torchaudio.set_audio_backend("soundfile") +set_ffmpeg_torchaudio_info_enabled(False) + + +def compute_fbank_ihm(): + src_dir = Path("data/manifests") + output_dir = Path("data/fbank") + + sampling_rate = 16000 + num_mel_bins = 80 + + extractor = KaldifeatFbank( + KaldifeatFbankConfig( + frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate), + mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins), + device="cuda", + ) + ) + + logging.info("Reading manifests") + manifests = {} + for data in ["ami", "icsi"]: + manifests[data] = read_manifests_if_cached( + dataset_parts=["train"], + output_dir=src_dir, + types=["recordings", "supervisions"], + prefix=f"{data}-ihm", + suffix="jsonl.gz", + ) + + logging.info("Computing features") + for data in ["ami", "icsi"]: + cs = CutSet.from_manifests(**manifests[data]["train"]) + cs = cs.trim_to_supervisions(keep_overlapping=False) + cs = cs.normalize_loudness(target=-23.0, affix_id=False) + cs = cs + cs.perturb_speed(0.9) + cs.perturb_speed(1.1) + _ = cs.compute_and_store_features_batch( + extractor=extractor, + storage_path=output_dir / f"{data}-ihm_train_feats", + manifest_path=src_dir / f"{data}-ihm_cuts_train.jsonl.gz", + batch_duration=5000, + num_workers=4, + storage_type=LilcomChunkyWriter, + overwrite=True, + ) + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + logging.basicConfig(format=formatter, level=logging.INFO) + + compute_fbank_ihm() diff --git a/egs/ami/SURT/local/prepare_ami_train_cuts.py b/egs/ami/SURT/local/prepare_ami_train_cuts.py new file mode 100755 index 000000000..72fced70d --- /dev/null +++ b/egs/ami/SURT/local/prepare_ami_train_cuts.py @@ -0,0 +1,146 @@ +#!/usr/bin/env python3 +# Copyright 2022 Johns Hopkins University (authors: Desh Raj) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file creates AMI train segments. +""" +import logging +import math +from pathlib import Path + +import torch +import torch.multiprocessing +from lhotse import LilcomChunkyWriter, load_manifest_lazy +from lhotse.cut import Cut, CutSet +from lhotse.utils import EPSILON, add_durations +from tqdm import tqdm + + +def cut_into_windows(cuts: CutSet, duration: float): + """ + This function takes a CutSet and cuts each cut into windows of roughly + `duration` seconds. By roughly, we mean that we try to adjust for the last supervision + that exceeds the duration, or is shorter than the duration. + """ + res = [] + with tqdm() as pbar: + for cut in cuts: + pbar.update(1) + sups = cut.index_supervisions()[cut.id] + sr = cut.sampling_rate + start = 0.0 + end = duration + num_tries = 0 + while start < cut.duration and num_tries < 2: + # Find the supervision that are cut by the window endpoint + hitlist = [iv for iv in sups.at(end) if iv.begin < end] + # If there are no supervisions, we are done + if not hitlist: + res.append( + cut.truncate( + offset=start, + duration=add_durations(end, -start, sampling_rate=sr), + keep_excessive_supervisions=False, + ) + ) + # Update the start and end for the next window + start = end + end = add_durations(end, duration, sampling_rate=sr) + else: + # find ratio of durations cut by the window endpoint + ratios = [ + add_durations(end, -iv.end, sampling_rate=sr) / iv.length() + for iv in hitlist + ] + # we retain the supervisions that have >50% of their duration + # in the window, and discard the others + retained = [] + discarded = [] + for iv, ratio in zip(hitlist, ratios): + if ratio > 0.5: + retained.append(iv) + else: + discarded.append(iv) + cur_end = max(iv.end for iv in retained) if retained else end + res.append( + cut.truncate( + offset=start, + duration=add_durations(cur_end, -start, sampling_rate=sr), + keep_excessive_supervisions=False, + ) + ) + # For the next window, we start at the earliest discarded supervision + next_start = min(iv.begin for iv in discarded) if discarded else end + next_end = add_durations(next_start, duration, sampling_rate=sr) + # It may happen that next_start is the same as start, in which case + # we will advance the window anyway + if next_start == start: + logging.warning( + f"Next start is the same as start: {next_start} == {start} for cut {cut.id}" + ) + start = end + EPSILON + end = add_durations(start, duration, sampling_rate=sr) + num_tries += 1 + else: + start = next_start + end = next_end + return CutSet.from_cuts(res) + + +def prepare_train_cuts(): + src_dir = Path("data/manifests") + + logging.info("Loading the manifests") + train_cuts_ihm = load_manifest_lazy( + src_dir / "cuts_ami-ihm-mix_train.jsonl.gz" + ).map(lambda c: c.with_id(f"{c.id}_ihm-mix")) + train_cuts_sdm = load_manifest_lazy(src_dir / "cuts_ami-sdm_train.jsonl.gz").map( + lambda c: c.with_id(f"{c.id}_sdm") + ) + train_cuts_mdm = load_manifest_lazy( + src_dir / "cuts_ami-mdm8-bf_train.jsonl.gz" + ).map(lambda c: c.with_id(f"{c.id}_mdm8-bf")) + + # Combine all cuts into one CutSet + train_cuts = train_cuts_ihm + train_cuts_sdm + train_cuts_mdm + + train_cuts_1 = train_cuts.trim_to_supervision_groups(max_pause=0.5) + train_cuts_2 = train_cuts.trim_to_supervision_groups(max_pause=0.0) + + # Combine the two segmentations + train_all = train_cuts_1 + train_cuts_2 + + # At this point, some of the cuts may be very long. We will cut them into windows of + # roughly 30 seconds. + logging.info("Cutting the segments into windows of 30 seconds") + train_all_30 = cut_into_windows(train_all, duration=30.0) + logging.info(f"Number of cuts after cutting into windows: {len(train_all_30)}") + + # Show statistics + train_all.describe(full=True) + + # Save the cuts + logging.info("Saving the cuts") + train_all.to_file(src_dir / "cuts_train_ami.jsonl.gz") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + logging.basicConfig(format=formatter, level=logging.INFO) + + prepare_train_cuts() diff --git a/egs/ami/SURT/local/prepare_icsi_train_cuts.py b/egs/ami/SURT/local/prepare_icsi_train_cuts.py new file mode 100755 index 000000000..818e26bfb --- /dev/null +++ b/egs/ami/SURT/local/prepare_icsi_train_cuts.py @@ -0,0 +1,67 @@ +#!/usr/bin/env python3 +# Copyright 2022 Johns Hopkins University (authors: Desh Raj) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This file creates ICSI train segments. +""" +import logging +from pathlib import Path + +from lhotse import load_manifest_lazy +from prepare_ami_train_cuts import cut_into_windows + + +def prepare_train_cuts(): + src_dir = Path("data/manifests") + + logging.info("Loading the manifests") + train_cuts_ihm = load_manifest_lazy( + src_dir / "cuts_icsi-ihm-mix_train.jsonl.gz" + ).map(lambda c: c.with_id(f"{c.id}_ihm-mix")) + train_cuts_sdm = load_manifest_lazy(src_dir / "cuts_icsi-sdm_train.jsonl.gz").map( + lambda c: c.with_id(f"{c.id}_sdm") + ) + + # Combine all cuts into one CutSet + train_cuts = train_cuts_ihm + train_cuts_sdm + + train_cuts_1 = train_cuts.trim_to_supervision_groups(max_pause=0.5) + train_cuts_2 = train_cuts.trim_to_supervision_groups(max_pause=0.0) + + # Combine the two segmentations + train_all = train_cuts_1 + train_cuts_2 + + # At this point, some of the cuts may be very long. We will cut them into windows of + # roughly 30 seconds. + logging.info("Cutting the segments into windows of 30 seconds") + train_all_30 = cut_into_windows(train_all, duration=30.0) + logging.info(f"Number of cuts after cutting into windows: {len(train_all_30)}") + + # Show statistics + train_all.describe(full=True) + + # Save the cuts + logging.info("Saving the cuts") + train_all.to_file(src_dir / "cuts_train_icsi.jsonl.gz") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + logging.basicConfig(format=formatter, level=logging.INFO) + + prepare_train_cuts() diff --git a/egs/ami/SURT/local/prepare_lang.py b/egs/ami/SURT/local/prepare_lang.py new file mode 100755 index 000000000..d913756a1 --- /dev/null +++ b/egs/ami/SURT/local/prepare_lang.py @@ -0,0 +1,413 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This script takes as input a lexicon file "data/lang_phone/lexicon.txt" +consisting of words and tokens (i.e., phones) and does the following: + +1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt + +2. Generate tokens.txt, the token table mapping a token to a unique integer. + +3. Generate words.txt, the word table mapping a word to a unique integer. + +4. Generate L.pt, in k2 format. It can be loaded by + + d = torch.load("L.pt") + lexicon = k2.Fsa.from_dict(d) + +5. Generate L_disambig.pt, in k2 format. +""" +import argparse +import math +from collections import defaultdict +from pathlib import Path +from typing import Any, Dict, List, Tuple + +import k2 +import torch + +from icefall.lexicon import read_lexicon, write_lexicon +from icefall.utils import str2bool + +Lexicon = List[Tuple[str, List[str]]] + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--lang-dir", + type=str, + help="""Input and output directory. + It should contain a file lexicon.txt. + Generated files by this script are saved into this directory. + """, + ) + + parser.add_argument( + "--debug", + type=str2bool, + default=False, + help="""True for debugging, which will generate + a visualization of the lexicon FST. + + Caution: If your lexicon contains hundreds of thousands + of lines, please set it to False! + """, + ) + + return parser.parse_args() + + +def write_mapping(filename: str, sym2id: Dict[str, int]) -> None: + """Write a symbol to ID mapping to a file. + + Note: + No need to implement `read_mapping` as it can be done + through :func:`k2.SymbolTable.from_file`. + + Args: + filename: + Filename to save the mapping. + sym2id: + A dict mapping symbols to IDs. + Returns: + Return None. + """ + with open(filename, "w", encoding="utf-8") as f: + for sym, i in sym2id.items(): + f.write(f"{sym} {i}\n") + + +def get_tokens(lexicon: Lexicon) -> List[str]: + """Get tokens from a lexicon. + + Args: + lexicon: + It is the return value of :func:`read_lexicon`. + Returns: + Return a list of unique tokens. + """ + ans = set() + for _, tokens in lexicon: + ans.update(tokens) + sorted_ans = sorted(list(ans)) + return sorted_ans + + +def get_words(lexicon: Lexicon) -> List[str]: + """Get words from a lexicon. + + Args: + lexicon: + It is the return value of :func:`read_lexicon`. + Returns: + Return a list of unique words. + """ + ans = set() + for word, _ in lexicon: + ans.add(word) + sorted_ans = sorted(list(ans)) + return sorted_ans + + +def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]: + """It adds pseudo-token disambiguation symbols #1, #2 and so on + at the ends of tokens to ensure that all pronunciations are different, + and that none is a prefix of another. + + See also add_lex_disambig.pl from kaldi. + + Args: + lexicon: + It is returned by :func:`read_lexicon`. + Returns: + Return a tuple with two elements: + + - The output lexicon with disambiguation symbols + - The ID of the max disambiguation symbol that appears + in the lexicon + """ + + # (1) Work out the count of each token-sequence in the + # lexicon. + count = defaultdict(int) + for _, tokens in lexicon: + count[" ".join(tokens)] += 1 + + # (2) For each left sub-sequence of each token-sequence, note down + # that it exists (for identifying prefixes of longer strings). + issubseq = defaultdict(int) + for _, tokens in lexicon: + tokens = tokens.copy() + tokens.pop() + while tokens: + issubseq[" ".join(tokens)] = 1 + tokens.pop() + + # (3) For each entry in the lexicon: + # if the token sequence is unique and is not a + # prefix of another word, no disambig symbol. + # Else output #1, or #2, #3, ... if the same token-seq + # has already been assigned a disambig symbol. + ans = [] + + # We start with #1 since #0 has its own purpose + first_allowed_disambig = 1 + max_disambig = first_allowed_disambig - 1 + last_used_disambig_symbol_of = defaultdict(int) + + for word, tokens in lexicon: + tokenseq = " ".join(tokens) + assert tokenseq != "" + if issubseq[tokenseq] == 0 and count[tokenseq] == 1: + ans.append((word, tokens)) + continue + + cur_disambig = last_used_disambig_symbol_of[tokenseq] + if cur_disambig == 0: + cur_disambig = first_allowed_disambig + else: + cur_disambig += 1 + + if cur_disambig > max_disambig: + max_disambig = cur_disambig + last_used_disambig_symbol_of[tokenseq] = cur_disambig + tokenseq += f" #{cur_disambig}" + ans.append((word, tokenseq.split())) + return ans, max_disambig + + +def generate_id_map(symbols: List[str]) -> Dict[str, int]: + """Generate ID maps, i.e., map a symbol to a unique ID. + + Args: + symbols: + A list of unique symbols. + Returns: + A dict containing the mapping between symbols and IDs. + """ + return {sym: i for i, sym in enumerate(symbols)} + + +def add_self_loops( + arcs: List[List[Any]], disambig_token: int, disambig_word: int +) -> List[List[Any]]: + """Adds self-loops to states of an FST to propagate disambiguation symbols + through it. They are added on each state with non-epsilon output symbols + on at least one arc out of the state. + + See also fstaddselfloops.pl from Kaldi. One difference is that + Kaldi uses OpenFst style FSTs and it has multiple final states. + This function uses k2 style FSTs and it does not need to add self-loops + to the final state. + + The input label of a self-loop is `disambig_token`, while the output + label is `disambig_word`. + + Args: + arcs: + A list-of-list. The sublist contains + `[src_state, dest_state, label, aux_label, score]` + disambig_token: + It is the token ID of the symbol `#0`. + disambig_word: + It is the word ID of the symbol `#0`. + + Return: + Return new `arcs` containing self-loops. + """ + states_needs_self_loops = set() + for arc in arcs: + src, dst, ilabel, olabel, score = arc + if olabel != 0: + states_needs_self_loops.add(src) + + ans = [] + for s in states_needs_self_loops: + ans.append([s, s, disambig_token, disambig_word, 0]) + + return arcs + ans + + +def lexicon_to_fst( + lexicon: Lexicon, + token2id: Dict[str, int], + word2id: Dict[str, int], + sil_token: str = "SIL", + sil_prob: float = 0.5, + need_self_loops: bool = False, +) -> k2.Fsa: + """Convert a lexicon to an FST (in k2 format) with optional silence at + the beginning and end of each word. + + Args: + lexicon: + The input lexicon. See also :func:`read_lexicon` + token2id: + A dict mapping tokens to IDs. + word2id: + A dict mapping words to IDs. + sil_token: + The silence token. + sil_prob: + The probability for adding a silence at the beginning and end + of the word. + need_self_loops: + If True, add self-loop to states with non-epsilon output symbols + on at least one arc out of the state. The input label for this + self loop is `token2id["#0"]` and the output label is `word2id["#0"]`. + Returns: + Return an instance of `k2.Fsa` representing the given lexicon. + """ + assert sil_prob > 0.0 and sil_prob < 1.0 + # CAUTION: we use score, i.e, negative cost. + sil_score = math.log(sil_prob) + no_sil_score = math.log(1.0 - sil_prob) + + start_state = 0 + loop_state = 1 # words enter and leave from here + sil_state = 2 # words terminate here when followed by silence; this state + # has a silence transition to loop_state. + next_state = 3 # the next un-allocated state, will be incremented as we go. + arcs = [] + + assert token2id[""] == 0 + assert word2id[""] == 0 + + eps = 0 + + sil_token = token2id[sil_token] + + arcs.append([start_state, loop_state, eps, eps, no_sil_score]) + arcs.append([start_state, sil_state, eps, eps, sil_score]) + arcs.append([sil_state, loop_state, sil_token, eps, 0]) + + for word, tokens in lexicon: + assert len(tokens) > 0, f"{word} has no pronunciations" + cur_state = loop_state + + word = word2id[word] + tokens = [token2id[i] for i in tokens] + + for i in range(len(tokens) - 1): + w = word if i == 0 else eps + arcs.append([cur_state, next_state, tokens[i], w, 0]) + + cur_state = next_state + next_state += 1 + + # now for the last token of this word + # It has two out-going arcs, one to the loop state, + # the other one to the sil_state. + i = len(tokens) - 1 + w = word if i == 0 else eps + arcs.append([cur_state, loop_state, tokens[i], w, no_sil_score]) + arcs.append([cur_state, sil_state, tokens[i], w, sil_score]) + + if need_self_loops: + disambig_token = token2id["#0"] + disambig_word = word2id["#0"] + arcs = add_self_loops( + arcs, + disambig_token=disambig_token, + disambig_word=disambig_word, + ) + + final_state = next_state + arcs.append([loop_state, final_state, -1, -1, 0]) + arcs.append([final_state]) + + arcs = sorted(arcs, key=lambda arc: arc[0]) + arcs = [[str(i) for i in arc] for arc in arcs] + arcs = [" ".join(arc) for arc in arcs] + arcs = "\n".join(arcs) + + fsa = k2.Fsa.from_str(arcs, acceptor=False) + return fsa + + +def main(): + args = get_args() + lang_dir = Path(args.lang_dir) + lexicon_filename = lang_dir / "lexicon.txt" + sil_token = "SIL" + sil_prob = 0.5 + + lexicon = read_lexicon(lexicon_filename) + tokens = get_tokens(lexicon) + words = get_words(lexicon) + + lexicon_disambig, max_disambig = add_disambig_symbols(lexicon) + + for i in range(max_disambig + 1): + disambig = f"#{i}" + assert disambig not in tokens + tokens.append(f"#{i}") + + assert "" not in tokens + tokens = [""] + tokens + + assert "" not in words + assert "#0" not in words + assert "" not in words + assert "" not in words + + words = [""] + words + ["#0", "", ""] + + token2id = generate_id_map(tokens) + word2id = generate_id_map(words) + + write_mapping(lang_dir / "tokens.txt", token2id) + write_mapping(lang_dir / "words.txt", word2id) + write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig) + + L = lexicon_to_fst( + lexicon, + token2id=token2id, + word2id=word2id, + sil_token=sil_token, + sil_prob=sil_prob, + ) + + L_disambig = lexicon_to_fst( + lexicon_disambig, + token2id=token2id, + word2id=word2id, + sil_token=sil_token, + sil_prob=sil_prob, + need_self_loops=True, + ) + torch.save(L.as_dict(), lang_dir / "L.pt") + torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt") + + if args.debug: + labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt") + aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt") + + L.labels_sym = labels_sym + L.aux_labels_sym = aux_labels_sym + L.draw(f"{lang_dir / 'L.svg'}", title="L.pt") + + L_disambig.labels_sym = labels_sym + L_disambig.aux_labels_sym = aux_labels_sym + L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt") + + +if __name__ == "__main__": + main() diff --git a/egs/ami/SURT/local/prepare_lang_bpe.py b/egs/ami/SURT/local/prepare_lang_bpe.py new file mode 100755 index 000000000..2a2d9c219 --- /dev/null +++ b/egs/ami/SURT/local/prepare_lang_bpe.py @@ -0,0 +1,266 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang) + +""" + +This script takes as input `lang_dir`, which should contain:: + + - lang_dir/bpe.model, + - lang_dir/words.txt + +and generates the following files in the directory `lang_dir`: + + - lexicon.txt + - lexicon_disambig.txt + - L.pt + - L_disambig.pt + - tokens.txt +""" + +import argparse +from pathlib import Path +from typing import Dict, List, Tuple + +import k2 +import sentencepiece as spm +import torch +from prepare_lang import ( + Lexicon, + add_disambig_symbols, + add_self_loops, + write_lexicon, + write_mapping, +) + +from icefall.utils import str2bool + + +def lexicon_to_fst_no_sil( + lexicon: Lexicon, + token2id: Dict[str, int], + word2id: Dict[str, int], + need_self_loops: bool = False, +) -> k2.Fsa: + """Convert a lexicon to an FST (in k2 format). + + Args: + lexicon: + The input lexicon. See also :func:`read_lexicon` + token2id: + A dict mapping tokens to IDs. + word2id: + A dict mapping words to IDs. + need_self_loops: + If True, add self-loop to states with non-epsilon output symbols + on at least one arc out of the state. The input label for this + self loop is `token2id["#0"]` and the output label is `word2id["#0"]`. + Returns: + Return an instance of `k2.Fsa` representing the given lexicon. + """ + loop_state = 0 # words enter and leave from here + next_state = 1 # the next un-allocated state, will be incremented as we go + + arcs = [] + + # The blank symbol is defined in local/train_bpe_model.py + assert token2id[""] == 0 + assert word2id[""] == 0 + + eps = 0 + + for word, pieces in lexicon: + assert len(pieces) > 0, f"{word} has no pronunciations" + cur_state = loop_state + + word = word2id[word] + pieces = [token2id[i] for i in pieces] + + for i in range(len(pieces) - 1): + w = word if i == 0 else eps + arcs.append([cur_state, next_state, pieces[i], w, 0]) + + cur_state = next_state + next_state += 1 + + # now for the last piece of this word + i = len(pieces) - 1 + w = word if i == 0 else eps + arcs.append([cur_state, loop_state, pieces[i], w, 0]) + + if need_self_loops: + disambig_token = token2id["#0"] + disambig_word = word2id["#0"] + arcs = add_self_loops( + arcs, + disambig_token=disambig_token, + disambig_word=disambig_word, + ) + + final_state = next_state + arcs.append([loop_state, final_state, -1, -1, 0]) + arcs.append([final_state]) + + arcs = sorted(arcs, key=lambda arc: arc[0]) + arcs = [[str(i) for i in arc] for arc in arcs] + arcs = [" ".join(arc) for arc in arcs] + arcs = "\n".join(arcs) + + fsa = k2.Fsa.from_str(arcs, acceptor=False) + return fsa + + +def generate_lexicon( + model_file: str, words: List[str], oov: str +) -> Tuple[Lexicon, Dict[str, int]]: + """Generate a lexicon from a BPE model. + + Args: + model_file: + Path to a sentencepiece model. + words: + A list of strings representing words. + oov: + The out of vocabulary word in lexicon. + Returns: + Return a tuple with two elements: + - A dict whose keys are words and values are the corresponding + word pieces. + - A dict representing the token symbol, mapping from tokens to IDs. + """ + sp = spm.SentencePieceProcessor() + sp.load(str(model_file)) + + # Convert word to word piece IDs instead of word piece strings + # to avoid OOV tokens. + words_pieces_ids: List[List[int]] = sp.encode(words, out_type=int) + + # Now convert word piece IDs back to word piece strings. + words_pieces: List[List[str]] = [sp.id_to_piece(ids) for ids in words_pieces_ids] + + lexicon = [] + for word, pieces in zip(words, words_pieces): + lexicon.append((word, pieces)) + + lexicon.append((oov, ["▁", sp.id_to_piece(sp.unk_id())])) + + token2id: Dict[str, int] = {sp.id_to_piece(i): i for i in range(sp.vocab_size())} + + return lexicon, token2id + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--lang-dir", + type=str, + help="""Input and output directory. + It should contain the bpe.model and words.txt + """, + ) + + parser.add_argument( + "--oov", + type=str, + default="", + help="The out of vocabulary word in lexicon.", + ) + + parser.add_argument( + "--debug", + type=str2bool, + default=False, + help="""True for debugging, which will generate + a visualization of the lexicon FST. + + Caution: If your lexicon contains hundreds of thousands + of lines, please set it to False! + + See "test/test_bpe_lexicon.py" for usage. + """, + ) + + return parser.parse_args() + + +def main(): + args = get_args() + lang_dir = Path(args.lang_dir) + model_file = lang_dir / "bpe.model" + + word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt") + + words = word_sym_table.symbols + + excluded = ["", "!SIL", "", args.oov, "#0", "", ""] + + for w in excluded: + if w in words: + words.remove(w) + + lexicon, token_sym_table = generate_lexicon(model_file, words, args.oov) + + lexicon_disambig, max_disambig = add_disambig_symbols(lexicon) + + next_token_id = max(token_sym_table.values()) + 1 + for i in range(max_disambig + 1): + disambig = f"#{i}" + assert disambig not in token_sym_table + token_sym_table[disambig] = next_token_id + next_token_id += 1 + + word_sym_table.add("#0") + word_sym_table.add("") + word_sym_table.add("") + + write_mapping(lang_dir / "tokens.txt", token_sym_table) + + write_lexicon(lang_dir / "lexicon.txt", lexicon) + write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig) + + L = lexicon_to_fst_no_sil( + lexicon, + token2id=token_sym_table, + word2id=word_sym_table, + ) + + L_disambig = lexicon_to_fst_no_sil( + lexicon_disambig, + token2id=token_sym_table, + word2id=word_sym_table, + need_self_loops=True, + ) + torch.save(L.as_dict(), lang_dir / "L.pt") + torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt") + + if args.debug: + labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt") + aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt") + + L.labels_sym = labels_sym + L.aux_labels_sym = aux_labels_sym + L.draw(f"{lang_dir / 'L.svg'}", title="L.pt") + + L_disambig.labels_sym = labels_sym + L_disambig.aux_labels_sym = aux_labels_sym + L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt") + + +if __name__ == "__main__": + main() diff --git a/egs/ami/SURT/local/train_bpe_model.py b/egs/ami/SURT/local/train_bpe_model.py new file mode 100755 index 000000000..43142aee4 --- /dev/null +++ b/egs/ami/SURT/local/train_bpe_model.py @@ -0,0 +1,100 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +# You can install sentencepiece via: +# +# pip install sentencepiece +# +# Due to an issue reported in +# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030 +# +# Please install a version >=0.1.96 + +import argparse +import shutil +from pathlib import Path + +import sentencepiece as spm + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--lang-dir", + type=str, + help="""Input and output directory. + The generated bpe.model is saved to this directory. + """, + ) + + parser.add_argument( + "--transcript", + type=str, + help="Training transcript.", + ) + + parser.add_argument( + "--vocab-size", + type=int, + help="Vocabulary size for BPE training", + ) + + return parser.parse_args() + + +def main(): + args = get_args() + vocab_size = args.vocab_size + lang_dir = Path(args.lang_dir) + + model_type = "unigram" + + model_prefix = f"{lang_dir}/{model_type}_{vocab_size}" + train_text = args.transcript + character_coverage = 1.0 + input_sentence_size = 100000000 + + user_defined_symbols = ["", ""] + unk_id = len(user_defined_symbols) + # Note: unk_id is fixed to 2. + # If you change it, you should also change other + # places that are using it. + + model_file = Path(model_prefix + ".model") + if not model_file.is_file(): + spm.SentencePieceTrainer.train( + input=train_text, + vocab_size=vocab_size, + model_type=model_type, + model_prefix=model_prefix, + input_sentence_size=input_sentence_size, + character_coverage=character_coverage, + user_defined_symbols=user_defined_symbols, + unk_id=unk_id, + bos_id=-1, + eos_id=-1, + ) + else: + print(f"{model_file} exists - skipping") + return + + shutil.copyfile(model_file, f"{lang_dir}/bpe.model") + + +if __name__ == "__main__": + main() diff --git a/egs/ami/SURT/prepare.sh b/egs/ami/SURT/prepare.sh new file mode 100755 index 000000000..ea4e5baf2 --- /dev/null +++ b/egs/ami/SURT/prepare.sh @@ -0,0 +1,195 @@ +#!/usr/bin/env bash + +set -eou pipefail + +stage=-1 +stop_stage=100 + +# We assume dl_dir (download dir) contains the following +# directories and files. If not, they will be downloaded +# by this script automatically. +# +# - $dl_dir/ami +# You can find audio and transcripts for AMI in this path. +# +# - $dl_dir/icsi +# You can find audio and transcripts for ICSI in this path. +# +# - $dl_dir/rirs_noises +# This directory contains the RIRS_NOISES corpus downloaded from https://openslr.org/28/. +# +dl_dir=$PWD/download + +. shared/parse_options.sh || exit 1 + +# All files generated by this script are saved in "data". +# You can safely remove "data" and rerun this script to regenerate it. +mkdir -p data +vocab_size=500 + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +log "dl_dir: $dl_dir" + +if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then + log "Stage 0: Download data" + + # If you have pre-downloaded it to /path/to/amicorpus, + # you can create a symlink + # + # ln -sfv /path/to/amicorpus $dl_dir/amicorpus + # + if [ ! -d $dl_dir/amicorpus ]; then + for mic in ihm ihm-mix sdm mdm8-bf; do + lhotse download ami --mic $mic $dl_dir/amicorpus + done + fi + + # If you have pre-downloaded it to /path/to/icsi, + # you can create a symlink + # + # ln -sfv /path/to/icsi $dl_dir/icsi + # + if [ ! -d $dl_dir/icsi ]; then + lhotse download icsi $dl_dir/icsi + fi + + # If you have pre-downloaded it to /path/to/rirs_noises, + # you can create a symlink + # + # ln -sfv /path/to/rirs_noises $dl_dir/ + # + if [ ! -d $dl_dir/rirs_noises ]; then + lhotse download rirs_noises $dl_dir + fi +fi + +if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then + log "Stage 1: Prepare AMI manifests" + # We assume that you have downloaded the AMI corpus + # to $dl_dir/amicorpus. We perform text normalization for the transcripts. + mkdir -p data/manifests + for mic in ihm ihm-mix sdm mdm8-bf; do + log "Preparing AMI manifest for $mic" + lhotse prepare ami --mic $mic --max-words-per-segment 30 --merge-consecutive $dl_dir/amicorpus data/manifests/ + done +fi + +if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then + log "Stage 2: Prepare ICSI manifests" + # We assume that you have downloaded the ICSI corpus + # to $dl_dir/icsi. We perform text normalization for the transcripts. + mkdir -p data/manifests + log "Preparing ICSI manifest" + for mic in ihm ihm-mix sdm; do + lhotse prepare icsi --mic $mic $dl_dir/icsi data/manifests/ + done +fi + +if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then + log "Stage 3: Prepare RIRs" + # We assume that you have downloaded the RIRS_NOISES corpus + # to $dl_dir/rirs_noises + lhotse prepare rir-noise -p real_rir -p iso_noise $dl_dir/rirs_noises data/manifests +fi + +if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then + log "Stage 3: Extract features for AMI and ICSI recordings" + python local/compute_fbank_ami.py + python local/compute_fbank_icsi.py +fi + +if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then + log "Stage 5: Create sources for simulating mixtures" + # In the following script, we speed-perturb the IHM recordings and extract features. + python local/compute_fbank_ihm.py + lhotse combine data/manifests/ami-ihm_cuts_train.jsonl.gz \ + data/manifests/icsi-ihm_cuts_train.jsonl.gz - |\ + lhotse cut trim-to-alignments --type word --max-pause 0.5 - - |\ + lhotse filter 'duration<=12.0' - - |\ + shuf | gzip -c > data/manifests/ihm_cuts_train_trimmed.jsonl.gz +fi + +if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then + log "Stage 6: Create training mixtures" + lhotse workflows simulate-meetings \ + --method conversational \ + --same-spk-pause 0.5 \ + --diff-spk-pause 0.5 \ + --diff-spk-overlap 1.0 \ + --prob-diff-spk-overlap 0.8 \ + --num-meetings 200000 \ + --num-speakers-per-meeting 2,3 \ + --max-duration-per-speaker 15.0 \ + --max-utterances-per-speaker 3 \ + --seed 1234 \ + --num-jobs 2 \ + data/manifests/ihm_cuts_train_trimmed.jsonl.gz \ + data/manifests/ai-mix_cuts_clean.jsonl.gz + + python local/compute_fbank_aimix.py + + # Add source features to the manifest (will be used for masking loss) + # This may take ~2 hours. + python local/add_source_feats.py + + # Combine clean and reverb + cat <(gunzip -c data/manifests/cuts_train_clean_sources.jsonl.gz) \ + <(gunzip -c data/manifests/cuts_train_reverb_sources.jsonl.gz) |\ + shuf | gzip -c > data/manifests/cuts_train_comb_sources.jsonl.gz +fi + +if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then + log "Stage 7: Create training mixtures from real sessions" + python local/prepare_ami_train_cuts.py + python local/prepare_icsi_train_cuts.py + + # Combine AMI and ICSI + cat <(gunzip -c data/manifests/cuts_train_ami.jsonl.gz) \ + <(gunzip -c data/manifests/cuts_train_icsi.jsonl.gz) |\ + shuf | gzip -c > data/manifests/cuts_train_ami_icsi.jsonl.gz +fi + +if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then + log "Stage 8: Dump transcripts for BPE model training (using AMI and ICSI)." + mkdir -p data/lm + cat <(gunzip -c data/manifests/ami-sdm_supervisions_train.jsonl.gz | jq '.text' | sed 's:"::g') \ + <(gunzip -c data/manifests/icsi-sdm_supervisions_train.jsonl.gz | jq '.text' | sed 's:"::g') \ + > data/lm/transcript_words.txt +fi + +if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then + log "Stage 9: Prepare BPE based lang (combining AMI and ICSI)" + + lang_dir=data/lang_bpe_${vocab_size} + mkdir -p $lang_dir + + # Add special words to words.txt + echo " 0" > $lang_dir/words.txt + echo "!SIL 1" >> $lang_dir/words.txt + echo " 2" >> $lang_dir/words.txt + + # Add regular words to words.txt + cat data/lm/transcript_words.txt | grep -o -E '\w+' | sort -u | awk '{print $0,NR+2}' >> $lang_dir/words.txt + + # Add remaining special word symbols expected by LM scripts. + num_words=$(cat $lang_dir/words.txt | wc -l) + echo " ${num_words}" >> $lang_dir/words.txt + num_words=$(cat $lang_dir/words.txt | wc -l) + echo " ${num_words}" >> $lang_dir/words.txt + num_words=$(cat $lang_dir/words.txt | wc -l) + echo "#0 ${num_words}" >> $lang_dir/words.txt + + ./local/train_bpe_model.py \ + --lang-dir $lang_dir \ + --vocab-size $vocab_size \ + --transcript data/lm/transcript_words.txt + + if [ ! -f $lang_dir/L_disambig.pt ]; then + ./local/prepare_lang_bpe.py --lang-dir $lang_dir + fi +fi diff --git a/egs/ami/SURT/shared b/egs/ami/SURT/shared new file mode 120000 index 000000000..4cbd91a7e --- /dev/null +++ b/egs/ami/SURT/shared @@ -0,0 +1 @@ +../../../icefall/shared \ No newline at end of file