mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 10:32:17 +00:00
Merge branch 'k2-fsa:master' into fix/ami
This commit is contained in:
commit
13ba82bd4e
@ -2,6 +2,56 @@
|
|||||||
|
|
||||||
### Aishell training result(Stateless Transducer)
|
### Aishell training result(Stateless Transducer)
|
||||||
|
|
||||||
|
#### Pruned transducer stateless 7 streaming
|
||||||
|
[./pruned_transducer_stateless7_streaming](./pruned_transducer_stateless7_streaming)
|
||||||
|
|
||||||
|
It's Streaming version of Zipformer1 with Pruned RNNT loss.
|
||||||
|
|
||||||
|
| | test | dev | comment |
|
||||||
|
|------------------------|------|------|---------------------------------------|
|
||||||
|
| greedy search | 6.95 | 6.29 | --epoch 44 --avg 15 --max-duration 600 |
|
||||||
|
| modified beam search | 6.51 | 5.90 | --epoch 44 --avg 15 --max-duration 600 |
|
||||||
|
| fast beam search | 6.73 | 6.09 | --epoch 44 --avg 15 --max-duration 600 |
|
||||||
|
|
||||||
|
Training command is:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./prepare.sh
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7_streaming/train.py \
|
||||||
|
--world-size 2 \
|
||||||
|
--num-epochs 50 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--context-size 1 \
|
||||||
|
--max-duration 800 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--enable-musan 0 \
|
||||||
|
--spec-aug-time-warp-factor 20
|
||||||
|
```
|
||||||
|
|
||||||
|
**Caution**: It uses `--context-size=1`.
|
||||||
|
|
||||||
|
The decoding command is:
|
||||||
|
```bash
|
||||||
|
for m in greedy_search modified_beam_search fast_beam_search ; do
|
||||||
|
./pruned_transducer_stateless7_streaming/decode.py \
|
||||||
|
--epoch 44 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--lang-dir data/lang_char \
|
||||||
|
--context-size 1 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
|
Pretrained models, training logs, decoding logs, tensorboard and decoding results
|
||||||
|
are available at
|
||||||
|
<https://huggingface.co/zrjin/icefall-asr-aishell-zipformer-pruned-transducer-stateless7-streaming-2023-10-16/>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#### Pruned transducer stateless 7
|
#### Pruned transducer stateless 7
|
||||||
|
|
||||||
[./pruned_transducer_stateless7](./pruned_transducer_stateless7)
|
[./pruned_transducer_stateless7](./pruned_transducer_stateless7)
|
||||||
|
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/README.md
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/README.md
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/README.md
|
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/asr_datamodule.py
|
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/beam_search.py
|
735
egs/aishell/ASR/pruned_transducer_stateless7_streaming/decode.py
Executable file
735
egs/aishell/ASR/pruned_transducer_stateless7_streaming/decode.py
Executable file
@ -0,0 +1,735 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||||
|
# Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./pruned_transducer_stateless7_streaming/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
(2) beam search (not recommended)
|
||||||
|
./pruned_transducer_stateless7_streaming/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--decoding-method beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./pruned_transducer_stateless7_streaming/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(4) fast beam search (one best)
|
||||||
|
./pruned_transducer_stateless7_streaming/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
|
|
||||||
|
(5) fast beam search (nbest)
|
||||||
|
./pruned_transducer_stateless7_streaming/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--decoding-method fast_beam_search_nbest \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64 \
|
||||||
|
--num-paths 200 \
|
||||||
|
--nbest-scale 0.5
|
||||||
|
|
||||||
|
(6) fast beam search (nbest oracle WER)
|
||||||
|
./pruned_transducer_stateless7_streaming/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--decoding-method fast_beam_search_nbest_oracle \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64 \
|
||||||
|
--num-paths 200 \
|
||||||
|
--nbest-scale 0.5
|
||||||
|
|
||||||
|
(7) fast beam search (with LG)
|
||||||
|
./pruned_transducer_stateless7_streaming/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--decoding-method fast_beam_search_nbest_LG \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AishellAsrDataModule
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall import ContextGraph
|
||||||
|
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless3/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_char",
|
||||||
|
help="The lang dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-score",
|
||||||
|
type=float,
|
||||||
|
default=2,
|
||||||
|
help="""
|
||||||
|
The bonus score of each token for the context biasing words/phrases.
|
||||||
|
Used only when --decoding_method is modified_beam_search.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-file",
|
||||||
|
type=str,
|
||||||
|
default="",
|
||||||
|
help="""
|
||||||
|
The path of the context biasing lists, one word/phrase each line
|
||||||
|
Used only when --decoding_method is modified_beam_search.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
token_table: k2.SymbolTable,
|
||||||
|
batch: dict,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
context_graph: Optional[ContextGraph] = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
token_table:
|
||||||
|
It maps token ID to a string.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
feature_lens += 30
|
||||||
|
feature = torch.nn.functional.pad(
|
||||||
|
feature,
|
||||||
|
pad=(0, 0, 0, 30),
|
||||||
|
value=LOG_EPS,
|
||||||
|
)
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
context_graph=context_graph,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
hyp_tokens = []
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyp_tokens.append(hyp)
|
||||||
|
|
||||||
|
hyps = [[token_table[t] for t in tokens] for tokens in hyp_tokens]
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search": hyps}
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
return {
|
||||||
|
(
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
): hyps
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
key = f"beam_size_{params.beam_size}"
|
||||||
|
if params.has_contexts:
|
||||||
|
key += f"-context-score-{params.context_score}"
|
||||||
|
else:
|
||||||
|
key += "-no-context-words"
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
token_table: Optional[k2.SymbolTable] = None,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
context_graph: Optional[ContextGraph] = None,
|
||||||
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
token_table:
|
||||||
|
It maps a token ID to a string.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
log_interval = 50
|
||||||
|
else:
|
||||||
|
log_interval = 20
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
token_table=token_table,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
context_graph=context_graph,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((cut_id, ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AishellAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
args.lang_dir = Path(args.lang_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
"modified_beam_search",
|
||||||
|
)
|
||||||
|
|
||||||
|
if os.path.exists(params.context_file):
|
||||||
|
params.has_contexts = True
|
||||||
|
else:
|
||||||
|
params.has_contexts = False
|
||||||
|
|
||||||
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
|
if params.has_contexts:
|
||||||
|
params.suffix += f"-context-score-{params.context_score}"
|
||||||
|
else:
|
||||||
|
params.suffix += "-no-contexts-words"
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
if params.use_averaged_model:
|
||||||
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
params.blank_id = 0
|
||||||
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||||
|
lexicon=lexicon,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
assert model.encoder.decode_chunk_size == params.decode_chunk_len // 2, (
|
||||||
|
model.encoder.decode_chunk_size,
|
||||||
|
params.decode_chunk_len,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
|
||||||
|
if params.decoding_method == "modified_beam_search":
|
||||||
|
if os.path.exists(params.context_file):
|
||||||
|
contexts_text = []
|
||||||
|
for line in open(params.context_file).readlines():
|
||||||
|
contexts_text.append(line.strip())
|
||||||
|
contexts = graph_compiler.texts_to_ids(contexts_text)
|
||||||
|
context_graph = ContextGraph(params.context_score)
|
||||||
|
context_graph.build(contexts)
|
||||||
|
else:
|
||||||
|
context_graph = None
|
||||||
|
else:
|
||||||
|
context_graph = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
|
args.return_cuts = True
|
||||||
|
aishell = AishellAsrDataModule(args)
|
||||||
|
|
||||||
|
test_cuts = aishell.test_cuts()
|
||||||
|
dev_cuts = aishell.valid_cuts()
|
||||||
|
|
||||||
|
test_dl = aishell.test_dataloaders(test_cuts)
|
||||||
|
dev_dl = aishell.test_dataloaders(dev_cuts)
|
||||||
|
|
||||||
|
test_sets = ["test", "dev"]
|
||||||
|
test_dls = [test_dl, dev_dl]
|
||||||
|
|
||||||
|
import time
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dls):
|
||||||
|
start = time.time()
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
token_table=lexicon.token_table,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
context_graph=context_graph,
|
||||||
|
)
|
||||||
|
logging.info(f"Elasped time for {test_set}: {time.time() - start}")
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/decode_stream.py
|
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless7/decoder.py
|
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless2/encoder_interface.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/export-for-ncnn-zh.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/export-for-ncnn.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/export-onnx-zh.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/export-onnx.py
|
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/export.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/export.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/export.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/jit_pretrained.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/jit_trace_export.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/jit_trace_pretrained.py
|
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/joiner.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/joiner.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless7/joiner.py
|
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/model.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless7/model.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/ncnn_custom_layer.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/onnx_check.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/onnx_model_wrapper.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/onnx_pretrained.py
|
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/optim.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/optim.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless7/optim.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/pretrained.py
|
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless7/scaling.py
|
@ -0,0 +1 @@
|
|||||||
|
../pruned_transducer_stateless7/scaling_converter.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/streaming-ncnn-decode.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless2/streaming_beam_search.py
|
627
egs/aishell/ASR/pruned_transducer_stateless7_streaming/streaming_decode.py
Executable file
627
egs/aishell/ASR/pruned_transducer_stateless7_streaming/streaming_decode.py
Executable file
@ -0,0 +1,627 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./pruned_transducer_stateless7_streaming/streaming_decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--decode-chunk-len 32 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--num-decode-streams 2000
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AishellAsrDataModule
|
||||||
|
from decode_stream import DecodeStream
|
||||||
|
from kaldifeat import Fbank, FbankOptions
|
||||||
|
from lhotse import CutSet
|
||||||
|
from streaming_beam_search import (
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
from zipformer import stack_states, unstack_states
|
||||||
|
|
||||||
|
from icefall import ContextGraph
|
||||||
|
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless7_streaming/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Supported decoding methods are:
|
||||||
|
greedy_search
|
||||||
|
modified_beam_search
|
||||||
|
fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num_active_paths",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An interger indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=32,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-decode-streams",
|
||||||
|
type=int,
|
||||||
|
default=2000,
|
||||||
|
help="The number of streams that can be decoded parallel.",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_chunk(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
decode_streams: List[DecodeStream],
|
||||||
|
) -> List[int]:
|
||||||
|
"""Decode one chunk frames of features for each decode_streams and
|
||||||
|
return the indexes of finished streams in a List.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
decode_streams:
|
||||||
|
A List of DecodeStream, each belonging to a utterance.
|
||||||
|
Returns:
|
||||||
|
Return a List containing which DecodeStreams are finished.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
features = []
|
||||||
|
feature_lens = []
|
||||||
|
states = []
|
||||||
|
processed_lens = []
|
||||||
|
|
||||||
|
for stream in decode_streams:
|
||||||
|
feat, feat_len = stream.get_feature_frames(params.decode_chunk_len)
|
||||||
|
features.append(feat)
|
||||||
|
feature_lens.append(feat_len)
|
||||||
|
states.append(stream.states)
|
||||||
|
processed_lens.append(stream.done_frames)
|
||||||
|
|
||||||
|
feature_lens = torch.tensor(feature_lens, device=device)
|
||||||
|
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||||
|
|
||||||
|
# We subsample features with ((x_len - 7) // 2 + 1) // 2 and the max downsampling
|
||||||
|
# factor in encoders is 8.
|
||||||
|
# After feature embedding (x_len - 7) // 2, we have (23 - 7) // 2 = 8.
|
||||||
|
tail_length = 23
|
||||||
|
if features.size(1) < tail_length:
|
||||||
|
pad_length = tail_length - features.size(1)
|
||||||
|
feature_lens += pad_length
|
||||||
|
features = torch.nn.functional.pad(
|
||||||
|
features,
|
||||||
|
(0, 0, 0, pad_length),
|
||||||
|
mode="constant",
|
||||||
|
value=LOG_EPS,
|
||||||
|
)
|
||||||
|
|
||||||
|
states = stack_states(states)
|
||||||
|
processed_lens = torch.tensor(processed_lens, device=device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens, new_states = model.encoder.streaming_forward(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
states=states,
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
processed_lens = processed_lens + encoder_out_lens
|
||||||
|
fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
processed_lens=processed_lens,
|
||||||
|
streams=decode_streams,
|
||||||
|
beam=params.beam,
|
||||||
|
max_states=params.max_states,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
streams=decode_streams,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
num_active_paths=params.num_active_paths,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||||
|
|
||||||
|
states = unstack_states(new_states)
|
||||||
|
|
||||||
|
finished_streams = []
|
||||||
|
for i in range(len(decode_streams)):
|
||||||
|
decode_streams[i].states = states[i]
|
||||||
|
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||||
|
if decode_streams[i].done:
|
||||||
|
finished_streams.append(i)
|
||||||
|
|
||||||
|
return finished_streams
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
cuts: CutSet,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
token_table: Optional[k2.SymbolTable] = None,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
context_graph: Optional[ContextGraph] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
cuts:
|
||||||
|
Lhotse Cutset containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
opts = FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = 16000
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
|
||||||
|
log_interval = 50
|
||||||
|
|
||||||
|
decode_results = []
|
||||||
|
# Contain decode streams currently running.
|
||||||
|
decode_streams = []
|
||||||
|
for num, cut in enumerate(cuts):
|
||||||
|
# each utterance has a DecodeStream.
|
||||||
|
initial_states = model.encoder.get_init_state(device=device)
|
||||||
|
decode_stream = DecodeStream(
|
||||||
|
params=params,
|
||||||
|
cut_id=cut.id,
|
||||||
|
initial_states=initial_states,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
audio: np.ndarray = cut.load_audio()
|
||||||
|
# audio.shape: (1, num_samples)
|
||||||
|
assert len(audio.shape) == 2
|
||||||
|
assert audio.shape[0] == 1, "Should be single channel"
|
||||||
|
assert audio.dtype == np.float32, audio.dtype
|
||||||
|
|
||||||
|
# The trained model is using normalized samples
|
||||||
|
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
||||||
|
|
||||||
|
samples = torch.from_numpy(audio).squeeze(0)
|
||||||
|
|
||||||
|
fbank = Fbank(opts)
|
||||||
|
feature = fbank(samples.to(device))
|
||||||
|
decode_stream.set_features(feature, tail_pad_len=params.decode_chunk_len)
|
||||||
|
decode_stream.ground_truth = cut.supervisions[0].text
|
||||||
|
|
||||||
|
decode_streams.append(decode_stream)
|
||||||
|
|
||||||
|
while len(decode_streams) >= params.num_decode_streams:
|
||||||
|
finished_streams = decode_one_chunk(
|
||||||
|
params=params, model=model, decode_streams=decode_streams
|
||||||
|
)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
decode_streams[i].id,
|
||||||
|
decode_streams[i].ground_truth.split(),
|
||||||
|
[
|
||||||
|
token_table[result]
|
||||||
|
for result in decode_streams[i].decoding_result()
|
||||||
|
],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
if num % log_interval == 0:
|
||||||
|
logging.info(f"Cuts processed until now is {num}.")
|
||||||
|
|
||||||
|
# decode final chunks of last sequences
|
||||||
|
while len(decode_streams):
|
||||||
|
finished_streams = decode_one_chunk(
|
||||||
|
params=params, model=model, decode_streams=decode_streams
|
||||||
|
)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
decode_streams[i].id,
|
||||||
|
decode_streams[i].ground_truth.split(),
|
||||||
|
[
|
||||||
|
token_table[result]
|
||||||
|
for result in decode_streams[i].decoding_result()
|
||||||
|
],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
key = "greedy_search"
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
key = (
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
key = f"num_active_paths_{params.num_active_paths}"
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||||
|
return {key: decode_results}
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AishellAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
# for streaming
|
||||||
|
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_len}"
|
||||||
|
|
||||||
|
# for fast_beam_search
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
|
||||||
|
if params.use_averaged_model:
|
||||||
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
params.blank_id = 0
|
||||||
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||||
|
lexicon=lexicon,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
decoding_graph = None
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
|
||||||
|
if params.decoding_method == "modified_beam_search":
|
||||||
|
if os.path.exists(params.context_file):
|
||||||
|
contexts_text = []
|
||||||
|
for line in open(params.context_file).readlines():
|
||||||
|
contexts_text.append(line.strip())
|
||||||
|
contexts = graph_compiler.texts_to_ids(contexts_text)
|
||||||
|
context_graph = ContextGraph(params.context_score)
|
||||||
|
context_graph.build(contexts)
|
||||||
|
else:
|
||||||
|
context_graph = None
|
||||||
|
else:
|
||||||
|
context_graph = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
aishell = AishellAsrDataModule(args)
|
||||||
|
|
||||||
|
test_cuts = aishell.test_cuts()
|
||||||
|
valid_cuts = aishell.valid_cuts()
|
||||||
|
|
||||||
|
test_sets = ["test", "valid"]
|
||||||
|
cuts = [test_cuts, valid_cuts]
|
||||||
|
|
||||||
|
for test_set, test_cut in zip(test_sets, cuts):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
cuts=test_cut,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
token_table=lexicon.token_table,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
context_graph=context_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/test_model.py
|
1251
egs/aishell/ASR/pruned_transducer_stateless7_streaming/train.py
Executable file
1251
egs/aishell/ASR/pruned_transducer_stateless7_streaming/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1253
egs/aishell/ASR/pruned_transducer_stateless7_streaming/train2.py
Executable file
1253
egs/aishell/ASR/pruned_transducer_stateless7_streaming/train2.py
Executable file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/zipformer.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/zipformer2.py
|
Loading…
x
Reference in New Issue
Block a user