refactor, use fixed-length cache for batch decoding

This commit is contained in:
yaozengwei 2022-06-06 21:19:25 +08:00
parent 10998bef69
commit 13899dff51

View File

@ -200,7 +200,6 @@ class ConvolutionModule(nn.Module):
self,
utterance: torch.Tensor,
right_context: torch.Tensor,
cache: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Causal convolution module.
@ -209,14 +208,11 @@ class ConvolutionModule(nn.Module):
Utterance tensor of shape (U, B, D).
right_context (torch.Tensor):
Right context tensor of shape (R, B, D).
cache (torch.Tensor, optional):
Cached tensor for left padding of shape (B, D, cache_size).
Returns:
A tuple of 3 tensors:
- output utterance of shape (U, B, D).
- output right_context of shape (R, B, D).
- updated cache tensor of shape (B, D, cache_size).
A tuple of 2 tensors:
- output utterance of shape (U, B, D).
- output right_context of shape (R, B, D).
"""
U, B, D = utterance.size()
R, _, _ = right_context.size()
@ -230,17 +226,13 @@ class ConvolutionModule(nn.Module):
utterance = x[:, :, R:] # (B, D, U)
right_context = x[:, :, :R] # (B, D, R)
if cache is None:
cache = torch.zeros(
B, D, self.cache_size, device=x.device, dtype=x.dtype
)
else:
assert cache.shape == (B, D, self.cache_size), cache.shape
# make causal convolution
cache = torch.zeros(
B, D, self.cache_size, device=x.device, dtype=x.dtype
)
pad_utterance = torch.cat(
[cache, utterance], dim=2
) # (B, D, cache + U)
# update cache
new_cache = pad_utterance[:, :, -self.cache_size :]
# depth-wise conv on utterance
utterance = self.depthwise_conv(pad_utterance) # (B, D, U)
@ -269,7 +261,6 @@ class ConvolutionModule(nn.Module):
return (
utterance.permute(2, 0, 1),
right_context.permute(2, 0, 1),
new_cache,
)
def infer(
@ -304,12 +295,8 @@ class ConvolutionModule(nn.Module):
x = self.deriv_balancer1(x)
x = nn.functional.glu(x, dim=1) # (B, D, U + R)
if cache is None:
cache = torch.zeros(
B, D, self.cache_size, device=x.device, dtype=x.dtype
)
else:
assert cache.shape == (B, D, self.cache_size), cache.shape
# make causal convolution
assert cache.shape == (B, D, self.cache_size), cache.shape
x = torch.cat([cache, x], dim=2) # (B, D, cache_size + U + R)
# update cache
new_cache = x[:, :, -R - self.cache_size : -R]
@ -383,7 +370,7 @@ class EmformerAttention(nn.Module):
self,
attention_weights: torch.Tensor,
attention_mask: torch.Tensor,
padding_mask: Optional[torch.Tensor],
padding_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Given the entire attention weights, mask out unecessary connections
and optionally with padding positions, to obtain underlying chunk-wise
@ -438,11 +425,11 @@ class EmformerAttention(nn.Module):
def _forward_impl(
self,
utterance: torch.Tensor,
lengths: torch.Tensor,
right_context: torch.Tensor,
summary: torch.Tensor,
memory: torch.Tensor,
attention_mask: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
left_context_key: Optional[torch.Tensor] = None,
left_context_val: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
@ -470,7 +457,7 @@ class EmformerAttention(nn.Module):
[value[: M + R], left_context_val, value[M + R :]]
)
Q = query.size(0)
KV = key.size(0)
# KV = key.size(0)
reshaped_query, reshaped_key, reshaped_value = [
tensor.contiguous()
@ -482,12 +469,6 @@ class EmformerAttention(nn.Module):
reshaped_query * scaling, reshaped_key.transpose(1, 2)
) # (B * nhead, Q, KV)
# compute padding mask
if B == 1:
padding_mask = None
else:
padding_mask = make_pad_mask(KV - U + lengths)
# compute attention probabilities
attention_probs = self._gen_attention_probs(
attention_weights, attention_mask, padding_mask
@ -515,11 +496,11 @@ class EmformerAttention(nn.Module):
def forward(
self,
utterance: torch.Tensor,
lengths: torch.Tensor,
right_context: torch.Tensor,
summary: torch.Tensor,
memory: torch.Tensor,
attention_mask: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# TODO: Modify docs.
"""Forward pass for training and validation mode.
@ -560,9 +541,6 @@ class EmformerAttention(nn.Module):
Args:
utterance (torch.Tensor):
Full utterance frames, with shape (U, B, D).
lengths (torch.Tensor):
With shape (B,) and i-th element representing
number of valid frames for i-th batch element in utterance.
right_context (torch.Tensor):
Hard-copied right context frames, with shape (R, B, D),
where R = num_chunks * right_context_length
@ -575,6 +553,8 @@ class EmformerAttention(nn.Module):
attention_mask (torch.Tensor):
Pre-computed attention mask to simulate underlying chunk-wise
attention, with shape (Q, KV).
padding_mask (torch.Tensor):
Padding mask of key tensor, with shape (B, KV).
Returns:
A tuple containing 2 tensors:
@ -588,23 +568,23 @@ class EmformerAttention(nn.Module):
_,
) = self._forward_impl(
utterance,
lengths,
right_context,
summary,
memory,
attention_mask,
padding_mask=padding_mask,
)
return output_right_context_utterance, output_memory[:-1]
def infer(
self,
utterance: torch.Tensor,
lengths: torch.Tensor,
right_context: torch.Tensor,
summary: torch.Tensor,
memory: torch.Tensor,
left_context_key: torch.Tensor,
left_context_val: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Forward pass for inference.
@ -633,9 +613,6 @@ class EmformerAttention(nn.Module):
Args:
utterance (torch.Tensor):
Current chunk frames, with shape (U, B, D), where U = chunk_length.
lengths (torch.Tensor):
With shape (B,) and i-th element representing
number of valid frames for i-th batch element in utterance.
right_context (torch.Tensor):
Right context frames, with shape (R, B, D),
where R = right_context_length.
@ -645,10 +622,12 @@ class EmformerAttention(nn.Module):
Memory vectors, with shape (M, B, D), or empty tensor.
left_context_key (torch,Tensor):
Cached attention key of left context from preceding computation,
with shape (L, B, D), where L <= left_context_length.
with shape (L, B, D).
left_context_val (torch.Tensor):
Cached attention value of left context from preceding computation,
with shape (L, B, D), where L <= left_context_length.
with shape (L, B, D).
padding_mask (torch.Tensor):
Padding mask of key tensor, with shape (B, KV).
Returns:
A tuple containing 4 tensors:
@ -665,6 +644,7 @@ class EmformerAttention(nn.Module):
S = summary.size(0)
M = memory.size(0)
# TODO: move it outside
# query = [right context, utterance, summary]
Q = R + U + S
# key, value = [memory, right context, left context, uttrance]
@ -681,11 +661,11 @@ class EmformerAttention(nn.Module):
value,
) = self._forward_impl(
utterance,
lengths,
right_context,
summary,
memory,
attention_mask,
padding_mask=padding_mask,
left_context_key=left_context_key,
left_context_val=left_context_val,
)
@ -719,8 +699,8 @@ class EmformerEncoderLayer(nn.Module):
Length of left context. (Default: 0)
right_context_length (int, optional):
Length of right context. (Default: 0)
max_memory_size (int, optional):
Maximum number of memory elements to use. (Default: 0)
memory_size (int, optional):
Number of memory elements to use. (Default: 0)
tanh_on_mem (bool, optional):
If ``True``, applies tanh to memory elements. (Default: ``False``)
negative_inf (float, optional):
@ -738,7 +718,7 @@ class EmformerEncoderLayer(nn.Module):
cnn_module_kernel: int = 31,
left_context_length: int = 0,
right_context_length: int = 0,
max_memory_size: int = 0,
memory_size: int = 0,
tanh_on_mem: bool = False,
negative_inf: float = -1e8,
):
@ -791,75 +771,29 @@ class EmformerEncoderLayer(nn.Module):
self.layer_dropout = layer_dropout
self.left_context_length = left_context_length
self.chunk_length = chunk_length
self.max_memory_size = max_memory_size
self.memory_size = memory_size
self.d_model = d_model
self.use_memory = max_memory_size > 0
self.use_memory = memory_size > 0
def _init_state(
self, batch_size: int, device: Optional[torch.device]
) -> List[torch.Tensor]:
"""Initialize states with zeros."""
empty_memory = torch.zeros(
self.max_memory_size, batch_size, self.d_model, device=device
)
left_context_key = torch.zeros(
self.left_context_length, batch_size, self.d_model, device=device
)
left_context_val = torch.zeros(
self.left_context_length, batch_size, self.d_model, device=device
)
past_length = torch.zeros(
1, batch_size, dtype=torch.int32, device=device
)
return [empty_memory, left_context_key, left_context_val, past_length]
def _unpack_state(
self, state: List[torch.Tensor]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Unpack cached states including:
1) output memory from previous chunks in the lower layer;
2) attention key and value of left context from preceding chunk's
computation.
"""
past_length = state[3][0][0].item()
past_left_context_length = min(self.left_context_length, past_length)
past_memory_length = min(
self.max_memory_size, math.ceil(past_length / self.chunk_length)
)
memory_start_idx = self.max_memory_size - past_memory_length
pre_memory = state[0][memory_start_idx:]
left_context_start_idx = (
self.left_context_length - past_left_context_length
)
left_context_key = state[1][left_context_start_idx:]
left_context_val = state[2][left_context_start_idx:]
return pre_memory, left_context_key, left_context_val
def _pack_state(
def _update_attn_cache(
self,
next_key: torch.Tensor,
next_val: torch.Tensor,
update_length: int,
memory: torch.Tensor,
state: List[torch.Tensor],
attn_cache: List[torch.Tensor],
) -> List[torch.Tensor]:
"""Pack updated states including:
"""Update cached attention state:
1) output memory of current chunk in the lower layer;
2) attention key and value in current chunk's computation, which would
be resued in next chunk's computation.
3) length of current chunk.
"""
new_memory = torch.cat([state[0], memory])
new_key = torch.cat([state[1], next_key])
new_val = torch.cat([state[2], next_val])
memory_start_idx = new_memory.size(0) - self.max_memory_size
state[0] = new_memory[memory_start_idx:]
key_start_idx = new_key.size(0) - self.left_context_length
state[1] = new_key[key_start_idx:]
val_start_idx = new_val.size(0) - self.left_context_length
state[2] = new_val[val_start_idx:]
state[3] = state[3] + update_length
return state
new_memory = torch.cat([attn_cache[0], memory])
new_key = torch.cat([attn_cache[1], next_key])
new_val = torch.cat([attn_cache[2], next_val])
attn_cache[0] = new_memory[new_memory.size(0) - self.memory_size :]
attn_cache[1] = new_key[new_key.size(0) - self.left_context_length :]
attn_cache[2] = new_val[new_val.size(0) - self.left_context_length :]
return attn_cache
def _apply_conv_module_forward(
self,
@ -869,7 +803,7 @@ class EmformerEncoderLayer(nn.Module):
"""Apply convolution module in training and validation mode."""
utterance = right_context_utterance[R:]
right_context = right_context_utterance[:R]
utterance, right_context, _ = self.conv_module(utterance, right_context)
utterance, right_context = self.conv_module(utterance, right_context)
right_context_utterance = torch.cat([right_context, utterance])
return right_context_utterance
@ -892,15 +826,11 @@ class EmformerEncoderLayer(nn.Module):
self,
right_context_utterance: torch.Tensor,
R: int,
lengths: torch.Tensor,
memory: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
attention_mask: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Apply attention module in training and validation mode."""
if attention_mask is None:
raise ValueError(
"attention_mask must be not None in training or validation mode." # noqa
)
utterance = right_context_utterance[R:]
right_context = right_context_utterance[:R]
@ -914,11 +844,11 @@ class EmformerEncoderLayer(nn.Module):
)
output_right_context_utterance, output_memory = self.attention(
utterance=utterance,
lengths=lengths,
right_context=right_context,
summary=summary,
memory=memory,
attention_mask=attention_mask,
padding_mask=padding_mask,
)
return output_right_context_utterance, output_memory
@ -927,9 +857,9 @@ class EmformerEncoderLayer(nn.Module):
self,
right_context_utterance: torch.Tensor,
R: int,
lengths: torch.Tensor,
memory: torch.Tensor,
state: Optional[List[torch.Tensor]] = None,
attn_cache: List[torch.Tensor],
padding_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]:
"""Apply attention module in inference mode.
1) Unpack cached states including:
@ -937,7 +867,7 @@ class EmformerEncoderLayer(nn.Module):
- attention key and value of left context from preceding
chunk's compuation;
2) Apply attention computation;
3) Pack updated states including:
3) Update cached attention states including:
- output memory of current chunk in the lower layer;
- attention key and value in current chunk's computation, which would
be resued in next chunk's computation.
@ -946,11 +876,10 @@ class EmformerEncoderLayer(nn.Module):
utterance = right_context_utterance[R:]
right_context = right_context_utterance[:R]
if state is None:
state = self._init_state(utterance.size(1), device=utterance.device)
pre_memory, left_context_key, left_context_val = self._unpack_state(
state
)
pre_memory = attn_cache[0]
left_context_key = attn_cache[1]
left_context_val = attn_cache[2]
if self.use_memory:
summary = self.summary_op(utterance.permute(1, 2, 0)).permute(
2, 0, 1
@ -967,25 +896,25 @@ class EmformerEncoderLayer(nn.Module):
next_val,
) = self.attention.infer(
utterance=utterance,
lengths=lengths,
right_context=right_context,
summary=summary,
memory=pre_memory,
left_context_key=left_context_key,
left_context_val=left_context_val,
padding_mask=padding_mask,
)
state = self._pack_state(
next_key, next_val, utterance.size(0), memory, state
attn_cache = self._update_attn_cache(
next_key, next_val, memory, attn_cache
)
return output_right_context_utterance, output_memory, state
return output_right_context_utterance, output_memory, attn_cache
def forward(
self,
utterance: torch.Tensor,
lengths: torch.Tensor,
right_context: torch.Tensor,
memory: torch.Tensor,
attention_mask: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
warmup: float = 1.0,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
r"""Forward pass for training and validation mode.
@ -999,9 +928,6 @@ class EmformerEncoderLayer(nn.Module):
Args:
utterance (torch.Tensor):
Utterance frames, with shape (U, B, D).
lengths (torch.Tensor):
With shape (B,) and i-th element representing
number of valid frames for i-th batch element in utterance.
right_context (torch.Tensor):
Right context frames, with shape (R, B, D).
memory (torch.Tensor):
@ -1010,6 +936,8 @@ class EmformerEncoderLayer(nn.Module):
attention_mask (torch.Tensor):
Attention mask for underlying attention module,
with shape (Q, KV), where Q = R + U + S, KV = M + R + U.
padding_mask (torch.Tensor):
Padding mask of ker tensor, with shape (B, KV).
Returns:
A tuple containing 3 tensors:
@ -1038,7 +966,7 @@ class EmformerEncoderLayer(nn.Module):
# emformer attention module
src_att, output_memory = self._apply_attention_module_forward(
src, R, lengths, memory, attention_mask
src, R, memory, attention_mask, padding_mask=padding_mask
)
src = src + self.dropout(src_att)
@ -1061,11 +989,11 @@ class EmformerEncoderLayer(nn.Module):
def infer(
self,
utterance: torch.Tensor,
lengths: torch.Tensor,
right_context: torch.Tensor,
memory: torch.Tensor,
state: Optional[List[torch.Tensor]] = None,
conv_cache: Optional[torch.Tensor] = None,
attn_cache: List[torch.Tensor],
conv_cache: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor], torch.Tensor]:
"""Forward pass for inference.
@ -1078,18 +1006,17 @@ class EmformerEncoderLayer(nn.Module):
Args:
utterance (torch.Tensor):
Utterance frames, with shape (U, B, D).
lengths (torch.Tensor):
With shape (B,) and i-th element representing
number of valid frames for i-th batch element in utterance.
right_context (torch.Tensor):
Right context frames, with shape (R, B, D).
memory (torch.Tensor):
Memory elements, with shape (M, B, D).
state (List[torch.Tensor], optional):
List of tensors representing layer internal state generated in
preceding computation. (default=None)
attn_cache (List[torch.Tensor]):
Cached attention tensors generated in preceding computation,
including memory, key and value of left context.
conv_cache (torch.Tensor, optional):
Cache tensor of left context for causal convolution.
padding_mask (torch.Tensor):
Padding mask of ker tensor.
Returns:
(Tensor, Tensor, List[torch.Tensor], Tensor):
@ -1109,8 +1036,10 @@ class EmformerEncoderLayer(nn.Module):
(
src_att,
output_memory,
output_state,
) = self._apply_attention_module_infer(src, R, lengths, memory, state)
attn_cache,
) = self._apply_attention_module_infer(
src, R, memory, attn_cache, padding_mask=padding_mask
)
src = src + self.dropout(src_att)
# convolution module
@ -1128,7 +1057,7 @@ class EmformerEncoderLayer(nn.Module):
output_utterance,
output_right_context,
output_memory,
output_state,
attn_cache,
conv_cache,
)
@ -1179,8 +1108,8 @@ class EmformerEncoder(nn.Module):
Length of left context. (default: 0)
right_context_length (int, optional):
Length of right context. (default: 0)
max_memory_size (int, optional):
Maximum number of memory elements to use. (default: 0)
memory_size (int, optional):
Number of memory elements to use. (default: 0)
tanh_on_mem (bool, optional):
If ``true``, applies tanh to memory elements. (default: ``false``)
negative_inf (float, optional):
@ -1199,13 +1128,13 @@ class EmformerEncoder(nn.Module):
cnn_module_kernel: int = 31,
left_context_length: int = 0,
right_context_length: int = 0,
max_memory_size: int = 0,
memory_size: int = 0,
tanh_on_mem: bool = False,
negative_inf: float = -1e8,
):
super().__init__()
self.use_memory = max_memory_size > 0
self.use_memory = memory_size > 0
self.init_memory_op = nn.AvgPool1d(
kernel_size=chunk_length,
stride=chunk_length,
@ -1224,7 +1153,7 @@ class EmformerEncoder(nn.Module):
cnn_module_kernel=cnn_module_kernel,
left_context_length=left_context_length,
right_context_length=right_context_length,
max_memory_size=max_memory_size,
memory_size=memory_size,
tanh_on_mem=tanh_on_mem,
negative_inf=negative_inf,
)
@ -1232,10 +1161,13 @@ class EmformerEncoder(nn.Module):
]
)
self.num_encoder_layers = num_encoder_layers
self.d_model = d_model
self.left_context_length = left_context_length
self.right_context_length = right_context_length
self.chunk_length = chunk_length
self.max_memory_size = max_memory_size
self.memory_size = memory_size
self.cnn_module_kernel = cnn_module_kernel
def _gen_right_context(self, x: torch.Tensor) -> torch.Tensor:
"""Hard copy each chunk's right context and concat them."""
@ -1276,7 +1208,7 @@ class EmformerEncoder(nn.Module):
R = rc * num_chunks
if self.use_memory:
m_start = max(chunk_idx - self.max_memory_size, 0)
m_start = max(chunk_idx - self.memory_size, 0)
M = num_chunks - 1
col_widths = [
m_start, # before memory
@ -1430,15 +1362,18 @@ class EmformerEncoder(nn.Module):
if self.use_memory
else torch.empty(0).to(dtype=x.dtype, device=x.device)
)
padding_mask = make_pad_mask(
memory.size(0) + right_context.size(0) + output_lengths
)
output = utterance
for layer in self.emformer_layers:
output, right_context, memory = layer(
output,
output_lengths,
right_context,
memory,
attention_mask,
padding_mask=padding_mask,
warmup=warmup,
)
@ -1448,10 +1383,13 @@ class EmformerEncoder(nn.Module):
self,
x: torch.Tensor,
lengths: torch.Tensor,
states: Optional[List[List[torch.Tensor]]] = None,
conv_caches: Optional[List[torch.Tensor]] = None,
states: List[
torch.Tensor, List[List[torch.Tensor]], List[torch.Tensor]
],
) -> Tuple[
torch.Tensor, torch.Tensor, List[List[torch.Tensor]], List[torch.Tensor]
torch.Tensor,
torch.Tensor,
List[torch.Tensor, List[List[torch.Tensor]], List[torch.Tensor]],
]:
"""Forward pass for streaming inference.
@ -1467,13 +1405,13 @@ class EmformerEncoder(nn.Module):
With shape (B,) and i-th element representing number of valid
utterance frames for i-th batch element in x, which contains the
right_context at the end.
states (List[List[torch.Tensor]], optional):
Cached states from preceding chunk's computation, where each
element (List[torch.Tensor]) corresponds to each emformer layer.
(default: None)
conv_caches (List[torch.Tensor], optional):
Cached tensors of left context for causal convolution, where each
element (Tensor) corresponds to each convolutional layer.
states (List[torch.Tensor, List[List[torch.Tensor]], List[torch.Tensor]]: # noqa
Cached states containing:
- past_lens: number of past frames for each sample in batch
- attn_caches: attention states from preceding chunk's computation,
where each element corresponds to each emformer layer
- conv_caches: left context for causal convolution, where each
element corresponds to each layer.
Returns:
(Tensor, Tensor, List[List[torch.Tensor]], List[torch.Tensor]):
@ -1481,8 +1419,38 @@ class EmformerEncoder(nn.Module):
- output lengths, with shape (B,), without containing the
right_context at the end.
- updated states from current chunk's computation.
- updated convolution caches from current chunk.
"""
past_lens = states[0]
assert past_lens.shape == (x.size(1),), past_lens.shape
attn_caches = states[1]
assert len(attn_caches) == self.num_encoder_layers, len(attn_caches)
for i in range(len(attn_caches)):
assert attn_caches[i][0].shape == (
self.memory_size,
x.size(1),
self.d_model,
), attn_caches[i][0].shape
assert attn_caches[i][1].shape == (
self.left_context_length,
x.size(1),
self.d_model,
), attn_caches[i][1].shape
assert attn_caches[i][2].shape == (
self.left_context_length,
x.size(1),
self.d_model,
), attn_caches[i][2].shape
conv_caches = states[2]
assert len(conv_caches) == self.num_encoder_layers, len(conv_caches)
for i in range(len(conv_caches)):
assert conv_caches[i].shape == (
x.size(1),
self.d_model,
self.cnn_module_kernel,
), conv_caches[i].shape
assert x.size(0) == self.chunk_length + self.right_context_length, (
"Per configured chunk_length and right_context_length, "
f"expected size of {self.chunk_length + self.right_context_length} "
@ -1498,28 +1466,60 @@ class EmformerEncoder(nn.Module):
if self.use_memory
else torch.empty(0).to(dtype=x.dtype, device=x.device)
)
# calcualte padding mask
chunk_mask = make_pad_mask(output_lengths)
memory_mask = (
(past_lens // self.chunk_length).view(x.size(1), 1)
<= torch.arange(self.memory_size, device=x.device).expand(
x.size(1), self.memory_size
)
).flip(1)
left_context_mask = (
past_lens.view(x.size(1), 1)
<= torch.arange(self.left_context_length, device=x.device).expand(
x.size(1), self.left_context_length
)
).flip(1)
right_context_mask = torch.zeros(
x.size(1),
self.right_context_length,
dtype=torch.bool,
device=x.device,
)
padding_mask = torch.cat(
[memory_mask, left_context_mask, right_context_mask, chunk_mask],
dim=1,
)
output = utterance
output_states: List[List[torch.Tensor]] = []
output_attn_caches: List[List[torch.Tensor]] = []
output_conv_caches: List[torch.Tensor] = []
for layer_idx, layer in enumerate(self.emformer_layers):
(
output,
right_context,
memory,
output_state,
output_attn_cache,
output_conv_cache,
) = layer.infer(
output,
output_lengths,
right_context,
memory,
None if states is None else states[layer_idx],
None if conv_caches is None else conv_caches[layer_idx],
padding_mask=padding_mask,
attn_cache=attn_caches[layer_idx],
conv_cache=conv_caches[layer_idx],
)
output_states.append(output_state)
output_attn_caches.append(output_attn_cache)
output_conv_caches.append(output_conv_cache)
return output, output_lengths, output_states, output_conv_caches
output_past_lens = past_lens + output_lengths
output_states = [
output_past_lens,
output_attn_caches,
output_conv_caches,
]
return output, output_lengths, output_states
class Emformer(EncoderInterface):
@ -1537,7 +1537,7 @@ class Emformer(EncoderInterface):
cnn_module_kernel: int = 3,
left_context_length: int = 0,
right_context_length: int = 0,
max_memory_size: int = 0,
memory_size: int = 0,
tanh_on_mem: bool = False,
negative_inf: float = -1e8,
):
@ -1576,7 +1576,7 @@ class Emformer(EncoderInterface):
cnn_module_kernel=cnn_module_kernel,
left_context_length=left_context_length // 4,
right_context_length=right_context_length // 4,
max_memory_size=max_memory_size,
memory_size=memory_size,
tanh_on_mem=tanh_on_mem,
negative_inf=negative_inf,
)
@ -1633,7 +1633,6 @@ class Emformer(EncoderInterface):
x: torch.Tensor,
x_lens: torch.Tensor,
states: Optional[List[List[torch.Tensor]]] = None,
conv_caches: Optional[List[torch.Tensor]] = None,
) -> Tuple[torch.Tensor, torch.Tensor, List[List[torch.Tensor]]]:
"""Forward pass for streaming inference.
@ -1649,13 +1648,13 @@ class Emformer(EncoderInterface):
With shape (B,) and i-th element representing number of valid
utterance frames for i-th batch element in x, containing the
right_context at the end.
states (List[List[torch.Tensor]], optional):
Cached states from preceding chunk's computation, where each
element (List[torch.Tensor]) corresponds to each emformer layer.
(default: None)
conv_caches (List[torch.Tensor], optional):
Cached tensors of left context for causal convolution, where each
element (Tensor) corresponds to each convolutional layer.
states (List[torch.Tensor, List[List[torch.Tensor]], List[torch.Tensor]]: # noqa
Cached states containing:
- past_lens: number of past frames for each sample in batch
- attn_caches: attention states from preceding chunk's computation,
where each element corresponds to each emformer layer
- conv_caches: left context for causal convolution, where each
element corresponds to each layer.
Returns:
(Tensor, Tensor):
- output embedding, with shape (B, T', D), where
@ -1663,7 +1662,6 @@ class Emformer(EncoderInterface):
- output lengths, with shape (B,), without containing the
right_context at the end.
- updated states from current chunk's computation.
- updated convolution caches from current chunk.
"""
x = self.encoder_embed(x)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
@ -1674,16 +1672,13 @@ class Emformer(EncoderInterface):
x_lens = ((x_lens - 1) // 2 - 1) // 2
assert x.size(0) == x_lens.max().item()
(
output,
output_lengths,
output_states,
output_conv_caches,
) = self.encoder.infer(x, x_lens, states, conv_caches)
output, output_lengths, output_states = self.encoder.infer(
x, x_lens, states
)
output = output.permute(1, 0, 2) # (T, N, C) -> (N, T, C)
return output, output_lengths, output_states, output_conv_caches
return output, output_lengths, output_states
class Conv2dSubsampling(nn.Module):