mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Add doc about installation and usage (#7)
* Add readme. * Add TOC. * fix typos * Minor fixes after review.
This commit is contained in:
parent
5a0b9bcb23
commit
12a2fd023e
61
README.md
61
README.md
@ -1 +1,60 @@
|
|||||||
Working in progress.
|
|
||||||
|
# Table of Contents
|
||||||
|
|
||||||
|
- [Installation](#installation)
|
||||||
|
* [Install k2](#install-k2)
|
||||||
|
* [Install lhotse](#install-lhotse)
|
||||||
|
* [Install icefall](#install-icefall)
|
||||||
|
- [Run recipes](#run-recipes)
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
`icefall` depends on [k2][k2] for FSA operations and [lhotse][lhotse] for
|
||||||
|
data preparations. To use `icefall`, you have to install its dependencies first.
|
||||||
|
The following subsections describe how to setup the environment.
|
||||||
|
|
||||||
|
CAUTION: There are various ways to setup the environment. What we describe
|
||||||
|
here is just one alternative.
|
||||||
|
|
||||||
|
### Install k2
|
||||||
|
|
||||||
|
Please refer to [k2's installation documentation][k2-install] to install k2.
|
||||||
|
If you have any issues about installing k2, please open an issue at
|
||||||
|
<https://github.com/k2-fsa/k2/issues>.
|
||||||
|
|
||||||
|
### Install lhotse
|
||||||
|
|
||||||
|
Please refer to [lhotse's installation documentation][lhotse-install] to install
|
||||||
|
lhotse.
|
||||||
|
|
||||||
|
### Install icefall
|
||||||
|
|
||||||
|
`icefall` is a set of Python scripts. What you need to do is just to set
|
||||||
|
the environment variable `PYTHONPATH`:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd $HOME/open-source
|
||||||
|
git clone https://github.com/k2-fsa/icefall
|
||||||
|
cd icefall
|
||||||
|
pip install -r requirements.txt
|
||||||
|
export PYTHONPATH=$HOME/open-source/icefall:$PYTHONPATHON
|
||||||
|
```
|
||||||
|
|
||||||
|
To verify `icefall` was installed successfully, you can run:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python3 -c "import icefall; print(icefall.__file__)"
|
||||||
|
```
|
||||||
|
|
||||||
|
It should print the path to `icefall`.
|
||||||
|
|
||||||
|
## Run recipes
|
||||||
|
|
||||||
|
At present, only LibriSpeech recipe is provided. Please
|
||||||
|
follow [egs/librispeech/ASR/README.md][LibriSpeech] to run it.
|
||||||
|
|
||||||
|
[LibriSpeech]: egs/librispeech/ASR/README.md
|
||||||
|
[k2-install]: https://k2.readthedocs.io/en/latest/installation/index.html#
|
||||||
|
[k2]: https://github.com/k2-fsa/k2
|
||||||
|
[lhotse]: https://github.com/lhotse-speech/lhotse
|
||||||
|
[lhotse-install]: https://lhotse.readthedocs.io/en/latest/getting-started.html#installation
|
||||||
|
@ -1,121 +1,64 @@
|
|||||||
|
|
||||||
Run `./prepare.sh` to prepare the data.
|
## Data preparation
|
||||||
|
|
||||||
Run `./xxx_train.py` (to be added) to train a model.
|
If you want to use `./prepare.sh` to download everything for you,
|
||||||
|
you can just run
|
||||||
## Conformer-CTC
|
|
||||||
Results of the pre-trained model from
|
|
||||||
`<https://huggingface.co/GuoLiyong/snowfall_bpe_model/tree/main/exp-duration-200-feat_batchnorm-bpe-lrfactor5.0-conformer-512-8-noam>`
|
|
||||||
are given below
|
|
||||||
|
|
||||||
### HLG - no LM rescoring
|
|
||||||
|
|
||||||
(output beam size is 8)
|
|
||||||
|
|
||||||
#### 1-best decoding
|
|
||||||
|
|
||||||
```
|
```
|
||||||
[test-clean-no_rescore] %WER 3.15% [1656 / 52576, 127 ins, 377 del, 1152 sub ]
|
./prepare.sh
|
||||||
[test-other-no_rescore] %WER 7.03% [3682 / 52343, 220 ins, 1024 del, 2438 sub ]
|
|
||||||
```
|
```
|
||||||
|
|
||||||
#### n-best decoding
|
If you have pre-downloaded the LibriSpeech dataset, please
|
||||||
|
read `./prepare.sh` and modify it to point to the location
|
||||||
For n=100,
|
of your dataset so that it won't re-download it. After modification,
|
||||||
|
please run
|
||||||
|
|
||||||
```
|
```
|
||||||
[test-clean-no_rescore-100] %WER 3.15% [1656 / 52576, 127 ins, 377 del, 1152 sub ]
|
./prepare.sh
|
||||||
[test-other-no_rescore-100] %WER 7.14% [3737 / 52343, 275 ins, 1020 del, 2442 sub ]
|
|
||||||
```
|
```
|
||||||
|
|
||||||
For n=200,
|
The script `./prepare.sh` prepares features, lexicon, LMs, etc.
|
||||||
|
All generated files are saved in the folder `./data`.
|
||||||
|
|
||||||
|
**HINT:** `./prepare.sh` supports options `--stage` and `--stop-stage`.
|
||||||
|
|
||||||
|
## TDNN-LSTM CTC training
|
||||||
|
|
||||||
|
The folder `tdnn_lstm_ctc` contains scripts for CTC training
|
||||||
|
with TDNN-LSTM models.
|
||||||
|
|
||||||
|
Pre-configured parameters for training and decoding are set in the function
|
||||||
|
`get_params()` within `tdnn_lstm_ctc/train.py`
|
||||||
|
and `tdnn_lstm_ctc/decode.py`.
|
||||||
|
|
||||||
|
Parameters that can be passed from the command-line can be found by
|
||||||
|
|
||||||
```
|
```
|
||||||
[test-clean-no_rescore-200] %WER 3.16% [1660 / 52576, 125 ins, 378 del, 1157 sub ]
|
./tdnn_lstm_ctc/train.py --help
|
||||||
[test-other-no_rescore-200] %WER 7.04% [3684 / 52343, 228 ins, 1012 del, 2444 sub ]
|
./tdnn_lstm_ctc/decode.py --help
|
||||||
```
|
```
|
||||||
|
|
||||||
### HLG - with LM rescoring
|
If you have 4 GPUs on a machine and want to use GPU 0, 2, 3 for
|
||||||
|
mutli-GPU training, you can run
|
||||||
#### Whole lattice rescoring
|
|
||||||
|
|
||||||
```
|
```
|
||||||
[test-clean-lm_scale_0.8] %WER 2.77% [1456 / 52576, 150 ins, 210 del, 1096 sub ]
|
export CUDA_VISIBLE_DEVICES="0,2,3"
|
||||||
[test-other-lm_scale_0.8] %WER 6.23% [3262 / 52343, 246 ins, 635 del, 2381 sub ]
|
./tdnn_lstm_ctc/train.py \
|
||||||
|
--master-port 12345 \
|
||||||
|
--world-size 3
|
||||||
```
|
```
|
||||||
|
|
||||||
WERs of different LM scales are:
|
If you want to decode by averaging checkpoints `epoch-8.pt`,
|
||||||
|
`epoch-9.pt` and `epoch-10.pt`, you can run
|
||||||
|
|
||||||
```
|
```
|
||||||
For test-clean, WER of different settings are:
|
./tdnn_lstm_ctc/decode.py \
|
||||||
lm_scale_0.8 2.77 best for test-clean
|
--epoch 10 \
|
||||||
lm_scale_0.9 2.87
|
--avg 3
|
||||||
lm_scale_1.0 3.06
|
|
||||||
lm_scale_1.1 3.34
|
|
||||||
lm_scale_1.2 3.71
|
|
||||||
lm_scale_1.3 4.18
|
|
||||||
lm_scale_1.4 4.8
|
|
||||||
lm_scale_1.5 5.48
|
|
||||||
lm_scale_1.6 6.08
|
|
||||||
lm_scale_1.7 6.79
|
|
||||||
lm_scale_1.8 7.49
|
|
||||||
lm_scale_1.9 8.14
|
|
||||||
lm_scale_2.0 8.82
|
|
||||||
|
|
||||||
For test-other, WER of different settings are:
|
|
||||||
lm_scale_0.8 6.23 best for test-other
|
|
||||||
lm_scale_0.9 6.37
|
|
||||||
lm_scale_1.0 6.62
|
|
||||||
lm_scale_1.1 6.99
|
|
||||||
lm_scale_1.2 7.46
|
|
||||||
lm_scale_1.3 8.13
|
|
||||||
lm_scale_1.4 8.84
|
|
||||||
lm_scale_1.5 9.61
|
|
||||||
lm_scale_1.6 10.32
|
|
||||||
lm_scale_1.7 11.17
|
|
||||||
lm_scale_1.8 12.12
|
|
||||||
lm_scale_1.9 12.93
|
|
||||||
lm_scale_2.0 13.77
|
|
||||||
```
|
```
|
||||||
|
|
||||||
#### n-best LM rescoring
|
## Conformer CTC training
|
||||||
|
|
||||||
n = 100
|
The folder `conformer-ctc` contains scripts for CTC training
|
||||||
|
with conformer models. The steps of running the training and
|
||||||
```
|
decoding are similar to `tdnn_lstm_ctc`.
|
||||||
[test-clean-lm_scale_0.8] %WER 2.79% [1469 / 52576, 149 ins, 212 del, 1108 sub ]
|
|
||||||
[test-other-lm_scale_0.8] %WER 6.36% [3329 / 52343, 259 ins, 666 del, 2404 sub ]
|
|
||||||
```
|
|
||||||
|
|
||||||
WERs of different LM scales are:
|
|
||||||
|
|
||||||
```
|
|
||||||
For test-clean, WER of different settings are:
|
|
||||||
lm_scale_0.8 2.79 best for test-clean
|
|
||||||
lm_scale_0.9 2.89
|
|
||||||
lm_scale_1.0 3.03
|
|
||||||
lm_scale_1.1 3.28
|
|
||||||
lm_scale_1.2 3.52
|
|
||||||
lm_scale_1.3 3.78
|
|
||||||
lm_scale_1.4 4.04
|
|
||||||
lm_scale_1.5 4.24
|
|
||||||
lm_scale_1.6 4.45
|
|
||||||
lm_scale_1.7 4.58
|
|
||||||
lm_scale_1.8 4.7
|
|
||||||
lm_scale_1.9 4.8
|
|
||||||
lm_scale_2.0 4.92
|
|
||||||
For test-other, WER of different settings are:
|
|
||||||
lm_scale_0.8 6.36 best for test-other
|
|
||||||
lm_scale_0.9 6.45
|
|
||||||
lm_scale_1.0 6.64
|
|
||||||
lm_scale_1.1 6.92
|
|
||||||
lm_scale_1.2 7.25
|
|
||||||
lm_scale_1.3 7.59
|
|
||||||
lm_scale_1.4 7.88
|
|
||||||
lm_scale_1.5 8.13
|
|
||||||
lm_scale_1.6 8.36
|
|
||||||
lm_scale_1.7 8.54
|
|
||||||
lm_scale_1.8 8.71
|
|
||||||
lm_scale_1.9 8.88
|
|
||||||
lm_scale_2.0 9.02
|
|
||||||
```
|
|
||||||
|
@ -16,6 +16,7 @@ import torch.nn as nn
|
|||||||
from conformer import Conformer
|
from conformer import Conformer
|
||||||
from lhotse.utils import fix_random_seed
|
from lhotse.utils import fix_random_seed
|
||||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.nn.utils import clip_grad_norm_
|
||||||
from torch.utils.tensorboard import SummaryWriter
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
from transformer import Noam
|
from transformer import Noam
|
||||||
|
|
||||||
@ -114,7 +115,9 @@ def get_params() -> AttributeDict:
|
|||||||
|
|
||||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||||
|
|
||||||
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||||
|
|
||||||
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||||
|
|
||||||
- beam_size: It is used in k2.ctc_loss
|
- beam_size: It is used in k2.ctc_loss
|
||||||
|
|
||||||
@ -124,19 +127,20 @@ def get_params() -> AttributeDict:
|
|||||||
"""
|
"""
|
||||||
params = AttributeDict(
|
params = AttributeDict(
|
||||||
{
|
{
|
||||||
"exp_dir": Path("conformer_ctc/exp"),
|
"exp_dir": Path("conformer_ctc/exp_new"),
|
||||||
"lang_dir": Path("data/lang_bpe"),
|
"lang_dir": Path("data/lang_bpe"),
|
||||||
"feature_dim": 80,
|
"feature_dim": 80,
|
||||||
"weight_decay": 0.0,
|
"weight_decay": 1e-6,
|
||||||
"subsampling_factor": 4,
|
"subsampling_factor": 4,
|
||||||
"start_epoch": 0,
|
"start_epoch": 0,
|
||||||
"num_epochs": 50,
|
"num_epochs": 20,
|
||||||
"best_train_loss": float("inf"),
|
"best_train_loss": float("inf"),
|
||||||
"best_valid_loss": float("inf"),
|
"best_valid_loss": float("inf"),
|
||||||
"best_train_epoch": -1,
|
"best_train_epoch": -1,
|
||||||
"best_valid_epoch": -1,
|
"best_valid_epoch": -1,
|
||||||
"batch_idx_train": 0,
|
"batch_idx_train": 0,
|
||||||
"log_interval": 10,
|
"log_interval": 10,
|
||||||
|
"reset_interval": 200,
|
||||||
"valid_interval": 3000,
|
"valid_interval": 3000,
|
||||||
"beam_size": 10,
|
"beam_size": 10,
|
||||||
"reduction": "sum",
|
"reduction": "sum",
|
||||||
@ -440,6 +444,8 @@ def train_one_epoch(
|
|||||||
tot_att_loss = 0.0
|
tot_att_loss = 0.0
|
||||||
|
|
||||||
tot_frames = 0.0 # sum of frames over all batches
|
tot_frames = 0.0 # sum of frames over all batches
|
||||||
|
params.tot_loss = 0.0
|
||||||
|
params.tot_frames = 0.0
|
||||||
for batch_idx, batch in enumerate(train_dl):
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
params.batch_idx_train += 1
|
params.batch_idx_train += 1
|
||||||
batch_size = len(batch["supervisions"]["text"])
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
@ -457,6 +463,7 @@ def train_one_epoch(
|
|||||||
|
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
loss.backward()
|
loss.backward()
|
||||||
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
loss_cpu = loss.detach().cpu().item()
|
loss_cpu = loss.detach().cpu().item()
|
||||||
@ -468,6 +475,9 @@ def train_one_epoch(
|
|||||||
tot_ctc_loss += ctc_loss_cpu
|
tot_ctc_loss += ctc_loss_cpu
|
||||||
tot_att_loss += att_loss_cpu
|
tot_att_loss += att_loss_cpu
|
||||||
|
|
||||||
|
params.tot_frames += params.train_frames
|
||||||
|
params.tot_loss += loss_cpu
|
||||||
|
|
||||||
tot_avg_loss = tot_loss / tot_frames
|
tot_avg_loss = tot_loss / tot_frames
|
||||||
tot_avg_ctc_loss = tot_ctc_loss / tot_frames
|
tot_avg_ctc_loss = tot_ctc_loss / tot_frames
|
||||||
tot_avg_att_loss = tot_att_loss / tot_frames
|
tot_avg_att_loss = tot_att_loss / tot_frames
|
||||||
@ -516,6 +526,12 @@ def train_one_epoch(
|
|||||||
tot_avg_loss,
|
tot_avg_loss,
|
||||||
params.batch_idx_train,
|
params.batch_idx_train,
|
||||||
)
|
)
|
||||||
|
if batch_idx > 0 and batch_idx % params.reset_interval == 0:
|
||||||
|
tot_loss = 0.0 # sum of losses over all batches
|
||||||
|
tot_ctc_loss = 0.0
|
||||||
|
tot_att_loss = 0.0
|
||||||
|
|
||||||
|
tot_frames = 0.0 # sum of frames over all batches
|
||||||
|
|
||||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
compute_validation_loss(
|
compute_validation_loss(
|
||||||
@ -551,7 +567,7 @@ def train_one_epoch(
|
|||||||
params.batch_idx_train,
|
params.batch_idx_train,
|
||||||
)
|
)
|
||||||
|
|
||||||
params.train_loss = tot_loss / tot_frames
|
params.train_loss = params.tot_loss / params.tot_frames
|
||||||
|
|
||||||
if params.train_loss < params.best_train_loss:
|
if params.train_loss < params.best_train_loss:
|
||||||
params.best_train_epoch = params.cur_epoch
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
@ -4,12 +4,9 @@
|
|||||||
import math
|
import math
|
||||||
from typing import Dict, List, Optional, Tuple
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
import k2
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from subsampling import Conv2dSubsampling, VggSubsampling
|
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||||
|
|
||||||
from icefall.utils import get_texts
|
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
# Note: TorchScript requires Dict/List/etc. to be fully typed.
|
# Note: TorchScript requires Dict/List/etc. to be fully typed.
|
||||||
@ -274,9 +271,11 @@ class Transformer(nn.Module):
|
|||||||
device
|
device
|
||||||
)
|
)
|
||||||
|
|
||||||
# TODO: Use eos_id as ignore_id.
|
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||||
# tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
# TODO: Use length information to create the decoder padding mask
|
||||||
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad)
|
# We set the first column to False since the first column in ys_in_pad
|
||||||
|
# contains sos_id, which is the same as eos_id in our current setting.
|
||||||
|
tgt_key_padding_mask[:, 0] = False
|
||||||
|
|
||||||
tgt = self.decoder_embed(ys_in_pad) # (N, T) -> (N, T, C)
|
tgt = self.decoder_embed(ys_in_pad) # (N, T) -> (N, T, C)
|
||||||
tgt = self.decoder_pos(tgt)
|
tgt = self.decoder_pos(tgt)
|
||||||
@ -339,9 +338,11 @@ class Transformer(nn.Module):
|
|||||||
device
|
device
|
||||||
)
|
)
|
||||||
|
|
||||||
# TODO: Use eos_id as ignore_id.
|
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||||
# tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
# TODO: Use length information to create the decoder padding mask
|
||||||
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad)
|
# We set the first column to False since the first column in ys_in_pad
|
||||||
|
# contains sos_id, which is the same as eos_id in our current setting.
|
||||||
|
tgt_key_padding_mask[:, 0] = False
|
||||||
|
|
||||||
tgt = self.decoder_embed(ys_in_pad) # (B, T) -> (B, T, F)
|
tgt = self.decoder_embed(ys_in_pad) # (B, T) -> (B, T, F)
|
||||||
tgt = self.decoder_pos(tgt)
|
tgt = self.decoder_pos(tgt)
|
||||||
|
@ -1,22 +1,2 @@
|
|||||||
## (To be filled in)
|
|
||||||
|
|
||||||
It will contain:
|
Will add results later.
|
||||||
|
|
||||||
- How to run
|
|
||||||
- WERs
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cd $PWD/..
|
|
||||||
|
|
||||||
./prepare.sh
|
|
||||||
|
|
||||||
./tdnn_lstm_ctc/train.py
|
|
||||||
```
|
|
||||||
|
|
||||||
If you have 4 GPUs and want to use GPU 1 and GPU 3 for DDP training,
|
|
||||||
you can do the following:
|
|
||||||
|
|
||||||
```
|
|
||||||
export CUDA_VISIBLE_DEVICES="1,3"
|
|
||||||
./tdnn_lstm_ctc/train.py --world-size=2
|
|
||||||
```
|
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
kaldilm
|
kaldilm
|
||||||
kaldialign
|
kaldialign
|
||||||
sentencepiece>=0.1.96
|
sentencepiece>=0.1.96
|
||||||
|
tensorboard
|
||||||
|
Loading…
x
Reference in New Issue
Block a user