From 11faddc83007ab7baacb96cfade00b0bf3689384 Mon Sep 17 00:00:00 2001 From: jinzr <60612200+JinZr@users.noreply.github.com> Date: Tue, 27 Jun 2023 20:23:33 +0800 Subject: [PATCH] Update RESULTS.md Lower WERs reported --- egs/swbd/ASR/RESULTS.md | 47 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 47 insertions(+) diff --git a/egs/swbd/ASR/RESULTS.md b/egs/swbd/ASR/RESULTS.md index a7c50879b..68a843c01 100644 --- a/egs/swbd/ASR/RESULTS.md +++ b/egs/swbd/ASR/RESULTS.md @@ -1,6 +1,53 @@ ## Results ### Switchboard BPE training results (Conformer-CTC) +#### 2023-06-27 + +The best WER, as of 2023-06-27, for the Switchboard is below + +Results using HLG decoding + n-gram LM rescoring + attention decoder rescoring: + +| | eval2000 | rt03 | +|--------------------------------|------------|--------| +| `conformer_ctc` | 30.80 | 32.29 | + +Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are: + +##### eval2000 + +| ngram_lm_scale | attention_scale | +|----------------|-----------------| +| 0.9 | 1.1 | + +##### rt03 + +| ngram_lm_scale | attention_scale | +|----------------|-----------------| +| 0.9 | 1.9 | + +To reproduce the above result, use the following commands for training: + +```bash +cd egs/swbd/ASR +./prepare.sh +export CUDA_VISIBLE_DEVICES="0,1" +./conformer_ctc/train.py \ + --max-duration 120 \ + --num-workers 8 \ + --enable-musan False \ + --world-size 2 \ + --num-epochs 100 +``` + +and the following command for decoding: + +```bash +./conformer_ctc/decode.py \ + --epoch 99 \ + --avg 10 \ + --max-duration 50 +``` + #### 2023-06-26 The best WER, as of 2023-06-26, for the Switchboard is below