mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Add CTC HLG decoding for zipformer (#1287)
This commit is contained in:
parent
f14b673408
commit
109354b6b8
@ -10,7 +10,57 @@ log() {
|
||||
|
||||
pushd egs/librispeech/ASR
|
||||
|
||||
# repo_url=https://github.com/csukuangfj/icefall-asr-conformer-ctc-bpe-500
|
||||
repo_url=https://huggingface.co/csukuangfj/sherpa-onnx-zipformer-ctc-en-2023-10-02
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
git lfs install
|
||||
git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
log "Display test files"
|
||||
tree $repo/
|
||||
ls -lh $repo/test_wavs/*.wav
|
||||
|
||||
log "CTC greedy search"
|
||||
|
||||
./zipformer/onnx_pretrained_ctc.py \
|
||||
--nn-model $repo/model.onnx \
|
||||
--tokens $repo/tokens.txt \
|
||||
$repo/test_wavs/0.wav \
|
||||
$repo/test_wavs/1.wav \
|
||||
$repo/test_wavs/2.wav
|
||||
|
||||
log "CTC H decoding"
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_H.py \
|
||||
--nn-model $repo/model.onnx \
|
||||
--tokens $repo/tokens.txt \
|
||||
--H $repo/H.fst \
|
||||
$repo/test_wavs/0.wav \
|
||||
$repo/test_wavs/1.wav \
|
||||
$repo/test_wavs/2.wav
|
||||
|
||||
log "CTC HL decoding"
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_HL.py \
|
||||
--nn-model $repo/model.onnx \
|
||||
--words $repo/words.txt \
|
||||
--HL $repo/HL.fst \
|
||||
$repo/test_wavs/0.wav \
|
||||
$repo/test_wavs/1.wav \
|
||||
$repo/test_wavs/2.wav
|
||||
|
||||
log "CTC HLG decoding"
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_HLG.py \
|
||||
--nn-model $repo/model.onnx \
|
||||
--words $repo/words.txt \
|
||||
--HLG $repo/HLG.fst \
|
||||
$repo/test_wavs/0.wav \
|
||||
$repo/test_wavs/1.wav \
|
||||
$repo/test_wavs/2.wav
|
||||
|
||||
rm -rf $repo
|
||||
|
||||
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||
@ -128,7 +178,9 @@ repo=$(basename $repo_url)
|
||||
pushd $repo
|
||||
|
||||
git lfs pull --include "exp/pretrained.pt"
|
||||
git lfs pull --include "data/lm/G_3_gram_char.fst.txt"
|
||||
git lfs pull --include "data/lang_char/H.fst"
|
||||
git lfs pull --include "data/lang_char/HL.fst"
|
||||
git lfs pull --include "data/lang_char/HLG.fst"
|
||||
|
||||
popd
|
||||
|
||||
@ -153,10 +205,6 @@ popd
|
||||
|
||||
ls -lh $repo/exp
|
||||
|
||||
log "Generating H.fst, HL.fst"
|
||||
|
||||
./local/prepare_lang_fst.py --lang-dir $repo/data/lang_char --ngram-G $repo/data/lm/G_3_gram_char.fst.txt
|
||||
|
||||
ls -lh $repo/data/lang_char
|
||||
|
||||
log "Decoding with H on CPU with OpenFst"
|
@ -14,7 +14,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: run-pre-trained-conformer-ctc
|
||||
name: run-pre-trained-ctc
|
||||
|
||||
on:
|
||||
push:
|
||||
@ -31,12 +31,12 @@ on:
|
||||
default: 'y'
|
||||
|
||||
concurrency:
|
||||
group: run_pre_trained_conformer_ctc-${{ github.ref }}
|
||||
group: run_pre_trained_ctc-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
run_pre_trained_conformer_ctc:
|
||||
if: github.event.label.name == 'ready' || github.event_name == 'push' || github.event.inputs.test-run == 'y'
|
||||
run_pre_trained_ctc:
|
||||
if: github.event.label.name == 'ready' || github.event_name == 'push' || github.event.inputs.test-run == 'y' || github.event.label.name == 'ctc'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
@ -84,4 +84,4 @@ jobs:
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||
.github/scripts/run-pre-trained-conformer-ctc.sh
|
||||
.github/scripts/run-pre-trained-ctc.sh
|
@ -145,7 +145,7 @@ def decode(
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
print(f"failed to decode {filename}")
|
||||
logging.info(f"failed to decode {filename}")
|
||||
return [""]
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
@ -157,7 +157,7 @@ def decode(
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
print(f"failed to get linear symbol sequence for {filename}")
|
||||
logging.info(f"failed to get linear symbol sequence for {filename}")
|
||||
return [""]
|
||||
|
||||
# tokens are incremented during graph construction
|
||||
|
@ -132,8 +132,8 @@ def decode(
|
||||
contains output from log_softmax.
|
||||
HL:
|
||||
The HL graph.
|
||||
word2token:
|
||||
A map mapping token ID to word string.
|
||||
id2word:
|
||||
A map mapping word ID to word string.
|
||||
Returns:
|
||||
Return a list of decoded words.
|
||||
"""
|
||||
@ -145,7 +145,7 @@ def decode(
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
print(f"failed to decode {filename}")
|
||||
logging.info(f"failed to decode {filename}")
|
||||
return [""]
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
@ -157,7 +157,7 @@ def decode(
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
print(f"failed to get linear symbol sequence for {filename}")
|
||||
logging.info(f"failed to get linear symbol sequence for {filename}")
|
||||
return [""]
|
||||
|
||||
# are shifted by 1 during graph construction
|
||||
|
@ -131,8 +131,8 @@ def decode(
|
||||
contains output from log_softmax.
|
||||
HLG:
|
||||
The HLG graph.
|
||||
word2token:
|
||||
A map mapping token ID to word string.
|
||||
id2word:
|
||||
A map mapping word ID to word string.
|
||||
Returns:
|
||||
Return a list of decoded words.
|
||||
"""
|
||||
@ -144,7 +144,7 @@ def decode(
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
print(f"failed to decode {filename}")
|
||||
logging.info(f"failed to decode {filename}")
|
||||
return [""]
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
@ -156,7 +156,7 @@ def decode(
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
print(f"failed to get linear symbol sequence for {filename}")
|
||||
logging.info(f"failed to get linear symbol sequence for {filename}")
|
||||
return [""]
|
||||
|
||||
# are shifted by 1 during graph construction
|
||||
|
436
egs/librispeech/ASR/zipformer/export-onnx-ctc.py
Executable file
436
egs/librispeech/ASR/zipformer/export-onnx-ctc.py
Executable file
@ -0,0 +1,436 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2023 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
|
||||
"""
|
||||
This script exports a CTC model from PyTorch to ONNX.
|
||||
|
||||
Note that the model is trained using both transducer and CTC loss. This script
|
||||
exports only the CTC head.
|
||||
|
||||
We use the pre-trained model from
|
||||
https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-transducer-ctc-2023-06-13
|
||||
as an example to show how to use this file.
|
||||
|
||||
1. Download the pre-trained model
|
||||
|
||||
cd egs/librispeech/ASR
|
||||
|
||||
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-transducer-ctc-2023-06-13
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
pushd $repo
|
||||
git lfs pull --include "exp/pretrained.pt"
|
||||
|
||||
cd exp
|
||||
ln -s pretrained.pt epoch-99.pt
|
||||
popd
|
||||
|
||||
2. Export the model to ONNX
|
||||
|
||||
./zipformer/export-onnx-ctc.py \
|
||||
--use-transducer 0 \
|
||||
--use-ctc 1 \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
--use-averaged-model 0 \
|
||||
--epoch 99 \
|
||||
--avg 1 \
|
||||
--exp-dir $repo/exp \
|
||||
--num-encoder-layers "2,2,3,4,3,2" \
|
||||
--downsampling-factor "1,2,4,8,4,2" \
|
||||
--feedforward-dim "512,768,1024,1536,1024,768" \
|
||||
--num-heads "4,4,4,8,4,4" \
|
||||
--encoder-dim "192,256,384,512,384,256" \
|
||||
--query-head-dim 32 \
|
||||
--value-head-dim 12 \
|
||||
--pos-head-dim 4 \
|
||||
--pos-dim 48 \
|
||||
--encoder-unmasked-dim "192,192,256,256,256,192" \
|
||||
--cnn-module-kernel "31,31,15,15,15,31" \
|
||||
--decoder-dim 512 \
|
||||
--joiner-dim 512 \
|
||||
--causal False \
|
||||
--chunk-size 16 \
|
||||
--left-context-frames 128
|
||||
|
||||
It will generate the following 2 files inside $repo/exp:
|
||||
|
||||
- model.onnx
|
||||
- model.int8.onnx
|
||||
|
||||
See ./onnx_pretrained_ctc.py for how to
|
||||
use the exported ONNX models.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict, Tuple
|
||||
|
||||
import k2
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from decoder import Decoder
|
||||
from onnxruntime.quantization import QuantType, quantize_dynamic
|
||||
from scaling_converter import convert_scaled_to_non_scaled
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
from zipformer import Zipformer2
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import make_pad_mask, num_tokens, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for averaging.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/tokens.txt",
|
||||
help="Path to the tokens.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def add_meta_data(filename: str, meta_data: Dict[str, str]):
|
||||
"""Add meta data to an ONNX model. It is changed in-place.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Filename of the ONNX model to be changed.
|
||||
meta_data:
|
||||
Key-value pairs.
|
||||
"""
|
||||
model = onnx.load(filename)
|
||||
for key, value in meta_data.items():
|
||||
meta = model.metadata_props.add()
|
||||
meta.key = key
|
||||
meta.value = value
|
||||
|
||||
onnx.save(model, filename)
|
||||
|
||||
|
||||
class OnnxModel(nn.Module):
|
||||
"""A wrapper for encoder_embed, Zipformer, and ctc_output layer"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
encoder: Zipformer2,
|
||||
encoder_embed: nn.Module,
|
||||
ctc_output: nn.Module,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
encoder:
|
||||
A Zipformer encoder.
|
||||
encoder_embed:
|
||||
The first downsampling layer for zipformer.
|
||||
"""
|
||||
super().__init__()
|
||||
self.encoder = encoder
|
||||
self.encoder_embed = encoder_embed
|
||||
self.ctc_output = ctc_output
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Please see the help information of Zipformer.forward
|
||||
|
||||
Args:
|
||||
x:
|
||||
A 3-D tensor of shape (N, T, C)
|
||||
x_lens:
|
||||
A 1-D tensor of shape (N,). Its dtype is torch.int64
|
||||
Returns:
|
||||
Return a tuple containing:
|
||||
- log_probs, a 3-D tensor of shape (N, T', vocab_size)
|
||||
- log_probs_len, a 1-D int64 tensor of shape (N,)
|
||||
"""
|
||||
x, x_lens = self.encoder_embed(x, x_lens)
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
x = x.permute(1, 0, 2)
|
||||
encoder_out, log_probs_len = self.encoder(x, x_lens, src_key_padding_mask)
|
||||
encoder_out = encoder_out.permute(1, 0, 2)
|
||||
log_probs = self.ctc_output(encoder_out)
|
||||
|
||||
return log_probs, log_probs_len
|
||||
|
||||
|
||||
def export_ctc_model_onnx(
|
||||
model: OnnxModel,
|
||||
filename: str,
|
||||
opset_version: int = 11,
|
||||
) -> None:
|
||||
"""Export the given model to ONNX format.
|
||||
The exported model has two inputs:
|
||||
|
||||
- x, a tensor of shape (N, T, C); dtype is torch.float32
|
||||
- x_lens, a tensor of shape (N,); dtype is torch.int64
|
||||
|
||||
and it has two outputs:
|
||||
|
||||
- log_probs, a tensor of shape (N, T', joiner_dim)
|
||||
- log_probs_len, a tensor of shape (N,)
|
||||
|
||||
Args:
|
||||
model:
|
||||
The input model
|
||||
filename:
|
||||
The filename to save the exported ONNX model.
|
||||
opset_version:
|
||||
The opset version to use.
|
||||
"""
|
||||
x = torch.zeros(1, 100, 80, dtype=torch.float32)
|
||||
x_lens = torch.tensor([100], dtype=torch.int64)
|
||||
|
||||
model = torch.jit.trace(model, (x, x_lens))
|
||||
|
||||
torch.onnx.export(
|
||||
model,
|
||||
(x, x_lens),
|
||||
filename,
|
||||
verbose=False,
|
||||
opset_version=opset_version,
|
||||
input_names=["x", "x_lens"],
|
||||
output_names=["log_probs", "log_probs_len"],
|
||||
dynamic_axes={
|
||||
"x": {0: "N", 1: "T"},
|
||||
"x_lens": {0: "N"},
|
||||
"log_probs": {0: "N", 1: "T"},
|
||||
"log_probs_len": {0: "N"},
|
||||
},
|
||||
)
|
||||
|
||||
meta_data = {
|
||||
"model_type": "zipformer2_ctc",
|
||||
"version": "1",
|
||||
"model_author": "k2-fsa",
|
||||
"comment": "non-streaming zipformer2 CTC",
|
||||
}
|
||||
logging.info(f"meta_data: {meta_data}")
|
||||
|
||||
add_meta_data(filename=filename, meta_data=meta_data)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
token_table = k2.SymbolTable.from_file(params.tokens)
|
||||
params.blank_id = token_table["<blk>"]
|
||||
params.vocab_size = num_tokens(token_table) + 1
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints(filenames, device=device), strict=False
|
||||
)
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(
|
||||
f"{params.exp_dir}/epoch-{params.epoch}.pt", model, strict=False
|
||||
)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints(filenames, device=device), strict=False
|
||||
)
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
),
|
||||
strict=False,
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
),
|
||||
strict=False,
|
||||
)
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
convert_scaled_to_non_scaled(model, inplace=True, is_onnx=True)
|
||||
|
||||
model = OnnxModel(
|
||||
encoder=model.encoder,
|
||||
encoder_embed=model.encoder_embed,
|
||||
ctc_output=model.ctc_output,
|
||||
)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"num parameters: {num_param}")
|
||||
|
||||
opset_version = 13
|
||||
|
||||
logging.info("Exporting ctc model")
|
||||
filename = params.exp_dir / f"model.onnx"
|
||||
export_ctc_model_onnx(
|
||||
model,
|
||||
filename,
|
||||
opset_version=opset_version,
|
||||
)
|
||||
logging.info(f"Exported to {filename}")
|
||||
|
||||
# Generate int8 quantization models
|
||||
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
|
||||
|
||||
logging.info("Generate int8 quantization models")
|
||||
|
||||
filename_int8 = params.exp_dir / f"model.int8.onnx"
|
||||
quantize_dynamic(
|
||||
model_input=filename,
|
||||
model_output=filename_int8,
|
||||
op_types_to_quantize=["MatMul"],
|
||||
weight_type=QuantType.QInt8,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
213
egs/librispeech/ASR/zipformer/onnx_pretrained_ctc.py
Executable file
213
egs/librispeech/ASR/zipformer/onnx_pretrained_ctc.py
Executable file
@ -0,0 +1,213 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
"""
|
||||
This script loads ONNX models and uses them to decode waves.
|
||||
|
||||
We use the pre-trained model from
|
||||
https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-transducer-ctc-2023-06-13
|
||||
as an example to show how to use this file.
|
||||
|
||||
1. Please follow ./export-onnx-ctc.py to get the onnx model.
|
||||
|
||||
2. Run this file
|
||||
|
||||
./zipformer/onnx_pretrained_ctc.py \
|
||||
--nn-model /path/to/model.onnx \
|
||||
--tokens /path/to/data/lang_bpe_500/tokens.txt \
|
||||
1089-134686-0001.wav \
|
||||
1221-135766-0001.wav \
|
||||
1221-135766-0002.wav
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List, Tuple
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
import torchaudio
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nn-model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
help="""Path to tokens.txt.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="The sample rate of the input sound file",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
class OnnxModel:
|
||||
def __init__(
|
||||
self,
|
||||
nn_model: str,
|
||||
):
|
||||
session_opts = ort.SessionOptions()
|
||||
session_opts.inter_op_num_threads = 1
|
||||
session_opts.intra_op_num_threads = 1
|
||||
|
||||
self.session_opts = session_opts
|
||||
|
||||
self.init_model(nn_model)
|
||||
|
||||
def init_model(self, nn_model: str):
|
||||
self.model = ort.InferenceSession(
|
||||
nn_model,
|
||||
sess_options=self.session_opts,
|
||||
providers=["CPUExecutionProvider"],
|
||||
)
|
||||
meta = self.model.get_modelmeta().custom_metadata_map
|
||||
print(meta)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D float tensor of shape (N, T, C)
|
||||
x_lens:
|
||||
A 1-D int64 tensor of shape (N,)
|
||||
Returns:
|
||||
Return a tuple containing:
|
||||
- A float tensor containing log_probs of shape (N, T, C)
|
||||
- A int64 tensor containing log_probs_len of shape (N)
|
||||
"""
|
||||
out = self.model.run(
|
||||
[
|
||||
self.model.get_outputs()[0].name,
|
||||
self.model.get_outputs()[1].name,
|
||||
],
|
||||
{
|
||||
self.model.get_inputs()[0].name: x.numpy(),
|
||||
self.model.get_inputs()[1].name: x_lens.numpy(),
|
||||
},
|
||||
)
|
||||
return torch.from_numpy(out[0]), torch.from_numpy(out[1])
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert (
|
||||
sample_rate == expected_sample_rate
|
||||
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
logging.info(vars(args))
|
||||
model = OnnxModel(
|
||||
nn_model=args.nn_model,
|
||||
)
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = "cpu"
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = args.sample_rate
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {args.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=args.sound_files,
|
||||
expected_sample_rate=args.sample_rate,
|
||||
)
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.size(0) for f in features]
|
||||
features = pad_sequence(
|
||||
features,
|
||||
batch_first=True,
|
||||
padding_value=math.log(1e-10),
|
||||
)
|
||||
|
||||
feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64)
|
||||
log_probs, log_probs_len = model(features, feature_lengths)
|
||||
|
||||
token_table = k2.SymbolTable.from_file(args.tokens)
|
||||
|
||||
def token_ids_to_words(token_ids: List[int]) -> str:
|
||||
text = ""
|
||||
for i in token_ids:
|
||||
text += token_table[i]
|
||||
return text.replace("▁", " ").strip()
|
||||
|
||||
blank_id = 0
|
||||
s = "\n"
|
||||
for i in range(log_probs.size(0)):
|
||||
# greedy search
|
||||
indexes = log_probs[i, : log_probs_len[i]].argmax(dim=-1)
|
||||
token_ids = torch.unique_consecutive(indexes)
|
||||
|
||||
token_ids = token_ids[token_ids != blank_id]
|
||||
words = token_ids_to_words(token_ids.tolist())
|
||||
s += f"{args.sound_files[i]}:\n{words}\n\n"
|
||||
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
277
egs/librispeech/ASR/zipformer/onnx_pretrained_ctc_H.py
Executable file
277
egs/librispeech/ASR/zipformer/onnx_pretrained_ctc_H.py
Executable file
@ -0,0 +1,277 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
"""
|
||||
This script loads ONNX models and uses them to decode waves.
|
||||
|
||||
We use the pre-trained model from
|
||||
https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-transducer-ctc-2023-06-13
|
||||
as an example to show how to use this file.
|
||||
|
||||
1. Please follow ./export-onnx-ctc.py to get the onnx model.
|
||||
|
||||
2. Run this file
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_H.py \
|
||||
--nn-model /path/to/model.onnx \
|
||||
--tokens /path/to/data/lang_bpe_500/tokens.txt \
|
||||
--H /path/to/H.fst \
|
||||
1089-134686-0001.wav \
|
||||
1221-135766-0001.wav \
|
||||
1221-135766-0002.wav
|
||||
|
||||
You can find exported ONNX models at
|
||||
https://huggingface.co/csukuangfj/sherpa-onnx-zipformer-ctc-en-2023-10-02
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List, Tuple
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
from typing import Dict
|
||||
import kaldifst
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldi_decoder import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nn-model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
help="""Path to tokens.txt.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--H",
|
||||
type=str,
|
||||
help="""Path to H.fst.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="The sample rate of the input sound file",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
class OnnxModel:
|
||||
def __init__(
|
||||
self,
|
||||
nn_model: str,
|
||||
):
|
||||
session_opts = ort.SessionOptions()
|
||||
session_opts.inter_op_num_threads = 1
|
||||
session_opts.intra_op_num_threads = 1
|
||||
|
||||
self.session_opts = session_opts
|
||||
|
||||
self.init_model(nn_model)
|
||||
|
||||
def init_model(self, nn_model: str):
|
||||
self.model = ort.InferenceSession(
|
||||
nn_model,
|
||||
sess_options=self.session_opts,
|
||||
providers=["CPUExecutionProvider"],
|
||||
)
|
||||
meta = self.model.get_modelmeta().custom_metadata_map
|
||||
print(meta)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D float tensor of shape (N, T, C)
|
||||
x_lens:
|
||||
A 1-D int64 tensor of shape (N,)
|
||||
Returns:
|
||||
Return a tuple containing:
|
||||
- A float tensor containing log_probs of shape (N, T, C)
|
||||
- A int64 tensor containing log_probs_len of shape (N)
|
||||
"""
|
||||
out = self.model.run(
|
||||
[
|
||||
self.model.get_outputs()[0].name,
|
||||
self.model.get_outputs()[1].name,
|
||||
],
|
||||
{
|
||||
self.model.get_inputs()[0].name: x.numpy(),
|
||||
self.model.get_inputs()[1].name: x_lens.numpy(),
|
||||
},
|
||||
)
|
||||
return torch.from_numpy(out[0]), torch.from_numpy(out[1])
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert (
|
||||
sample_rate == expected_sample_rate
|
||||
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
def decode(
|
||||
filename: str,
|
||||
log_probs: torch.Tensor,
|
||||
H: kaldifst,
|
||||
id2token: Dict[int, str],
|
||||
) -> List[str]:
|
||||
"""
|
||||
Args:
|
||||
filename:
|
||||
Path to the filename for decoding. Used for debugging.
|
||||
log_probs:
|
||||
A 2-D float32 tensor of shape (num_frames, vocab_size). It
|
||||
contains output from log_softmax.
|
||||
H:
|
||||
The H graph.
|
||||
id2word:
|
||||
A map mapping token ID to word string.
|
||||
Returns:
|
||||
Return a list of decoded words.
|
||||
"""
|
||||
logging.info(f"{filename}, {log_probs.shape}")
|
||||
decodable = DecodableCtc(log_probs.cpu())
|
||||
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(H, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
logging.info(f"failed to decode {filename}")
|
||||
return [""]
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
|
||||
(
|
||||
ok,
|
||||
isymbols_out,
|
||||
osymbols_out,
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
logging.info(f"failed to get linear symbol sequence for {filename}")
|
||||
return [""]
|
||||
|
||||
# tokens are incremented during graph construction
|
||||
# are shifted by 1 during graph construction
|
||||
hyps = [id2token[i - 1] for i in osymbols_out if i != 1]
|
||||
hyps = "".join(hyps).split("\u2581") # unicode codepoint of ▁
|
||||
|
||||
return hyps
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
logging.info(vars(args))
|
||||
model = OnnxModel(
|
||||
nn_model=args.nn_model,
|
||||
)
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = "cpu"
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = args.sample_rate
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
logging.info(f"Loading H from {args.H}")
|
||||
H = kaldifst.StdVectorFst.read(args.H)
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {args.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=args.sound_files,
|
||||
expected_sample_rate=args.sample_rate,
|
||||
)
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.size(0) for f in features]
|
||||
features = pad_sequence(
|
||||
features,
|
||||
batch_first=True,
|
||||
padding_value=math.log(1e-10),
|
||||
)
|
||||
|
||||
feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64)
|
||||
log_probs, log_probs_len = model(features, feature_lengths)
|
||||
|
||||
token_table = k2.SymbolTable.from_file(args.tokens)
|
||||
|
||||
hyps = []
|
||||
for i in range(log_probs.shape[0]):
|
||||
hyp = decode(
|
||||
filename=args.sound_files[i],
|
||||
log_probs=log_probs[i, : log_probs_len[i]],
|
||||
H=H,
|
||||
id2token=token_table,
|
||||
)
|
||||
hyps.append(hyp)
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(args.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
275
egs/librispeech/ASR/zipformer/onnx_pretrained_ctc_HL.py
Executable file
275
egs/librispeech/ASR/zipformer/onnx_pretrained_ctc_HL.py
Executable file
@ -0,0 +1,275 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
"""
|
||||
This script loads ONNX models and uses them to decode waves.
|
||||
|
||||
We use the pre-trained model from
|
||||
https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-transducer-ctc-2023-06-13
|
||||
as an example to show how to use this file.
|
||||
|
||||
1. Please follow ./export-onnx-ctc.py to get the onnx model.
|
||||
|
||||
2. Run this file
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_HL.py \
|
||||
--nn-model /path/to/model.onnx \
|
||||
--words /path/to/data/lang_bpe_500/words.txt \
|
||||
--HL /path/to/HL.fst \
|
||||
1089-134686-0001.wav \
|
||||
1221-135766-0001.wav \
|
||||
1221-135766-0002.wav
|
||||
|
||||
You can find exported ONNX models at
|
||||
https://huggingface.co/csukuangfj/sherpa-onnx-zipformer-ctc-en-2023-10-02
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List, Tuple
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
from typing import Dict
|
||||
import kaldifst
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldi_decoder import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nn-model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--words",
|
||||
type=str,
|
||||
help="""Path to words.txt.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--HL",
|
||||
type=str,
|
||||
help="""Path to HL.fst.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="The sample rate of the input sound file",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
class OnnxModel:
|
||||
def __init__(
|
||||
self,
|
||||
nn_model: str,
|
||||
):
|
||||
session_opts = ort.SessionOptions()
|
||||
session_opts.inter_op_num_threads = 1
|
||||
session_opts.intra_op_num_threads = 1
|
||||
|
||||
self.session_opts = session_opts
|
||||
|
||||
self.init_model(nn_model)
|
||||
|
||||
def init_model(self, nn_model: str):
|
||||
self.model = ort.InferenceSession(
|
||||
nn_model,
|
||||
sess_options=self.session_opts,
|
||||
providers=["CPUExecutionProvider"],
|
||||
)
|
||||
meta = self.model.get_modelmeta().custom_metadata_map
|
||||
print(meta)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D float tensor of shape (N, T, C)
|
||||
x_lens:
|
||||
A 1-D int64 tensor of shape (N,)
|
||||
Returns:
|
||||
Return a tuple containing:
|
||||
- A float tensor containing log_probs of shape (N, T, C)
|
||||
- A int64 tensor containing log_probs_len of shape (N)
|
||||
"""
|
||||
out = self.model.run(
|
||||
[
|
||||
self.model.get_outputs()[0].name,
|
||||
self.model.get_outputs()[1].name,
|
||||
],
|
||||
{
|
||||
self.model.get_inputs()[0].name: x.numpy(),
|
||||
self.model.get_inputs()[1].name: x_lens.numpy(),
|
||||
},
|
||||
)
|
||||
return torch.from_numpy(out[0]), torch.from_numpy(out[1])
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert (
|
||||
sample_rate == expected_sample_rate
|
||||
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
def decode(
|
||||
filename: str,
|
||||
log_probs: torch.Tensor,
|
||||
HL: kaldifst,
|
||||
id2word: Dict[int, str],
|
||||
) -> List[str]:
|
||||
"""
|
||||
Args:
|
||||
filename:
|
||||
Path to the filename for decoding. Used for debugging.
|
||||
log_probs:
|
||||
A 2-D float32 tensor of shape (num_frames, vocab_size). It
|
||||
contains output from log_softmax.
|
||||
HL:
|
||||
The HL graph.
|
||||
id2word:
|
||||
A map mapping word ID to word string.
|
||||
Returns:
|
||||
Return a list of decoded words.
|
||||
"""
|
||||
logging.info(f"{filename}, {log_probs.shape}")
|
||||
decodable = DecodableCtc(log_probs.cpu())
|
||||
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(HL, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
logging.info(f"failed to decode {filename}")
|
||||
return [""]
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
|
||||
(
|
||||
ok,
|
||||
isymbols_out,
|
||||
osymbols_out,
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
logging.info(f"failed to get linear symbol sequence for {filename}")
|
||||
return [""]
|
||||
|
||||
# are shifted by 1 during graph construction
|
||||
hyps = [id2word[i] for i in osymbols_out]
|
||||
|
||||
return hyps
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
logging.info(vars(args))
|
||||
model = OnnxModel(
|
||||
nn_model=args.nn_model,
|
||||
)
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = "cpu"
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = args.sample_rate
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
logging.info(f"Loading HL from {args.HL}")
|
||||
HL = kaldifst.StdVectorFst.read(args.HL)
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {args.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=args.sound_files,
|
||||
expected_sample_rate=args.sample_rate,
|
||||
)
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.size(0) for f in features]
|
||||
features = pad_sequence(
|
||||
features,
|
||||
batch_first=True,
|
||||
padding_value=math.log(1e-10),
|
||||
)
|
||||
|
||||
feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64)
|
||||
log_probs, log_probs_len = model(features, feature_lengths)
|
||||
|
||||
word_table = k2.SymbolTable.from_file(args.words)
|
||||
|
||||
hyps = []
|
||||
for i in range(log_probs.shape[0]):
|
||||
hyp = decode(
|
||||
filename=args.sound_files[i],
|
||||
log_probs=log_probs[i, : log_probs_len[i]],
|
||||
HL=HL,
|
||||
id2word=word_table,
|
||||
)
|
||||
hyps.append(hyp)
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(args.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
275
egs/librispeech/ASR/zipformer/onnx_pretrained_ctc_HLG.py
Executable file
275
egs/librispeech/ASR/zipformer/onnx_pretrained_ctc_HLG.py
Executable file
@ -0,0 +1,275 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
"""
|
||||
This script loads ONNX models and uses them to decode waves.
|
||||
|
||||
We use the pre-trained model from
|
||||
https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-transducer-ctc-2023-06-13
|
||||
as an example to show how to use this file.
|
||||
|
||||
1. Please follow ./export-onnx-ctc.py to get the onnx model.
|
||||
|
||||
2. Run this file
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_HLG.py \
|
||||
--nn-model /path/to/model.onnx \
|
||||
--words /path/to/data/lang_bpe_500/words.txt \
|
||||
--HLG /path/to/HLG.fst \
|
||||
1089-134686-0001.wav \
|
||||
1221-135766-0001.wav \
|
||||
1221-135766-0002.wav
|
||||
|
||||
You can find exported ONNX models at
|
||||
https://huggingface.co/csukuangfj/sherpa-onnx-zipformer-ctc-en-2023-10-02
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List, Tuple
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
from typing import Dict
|
||||
import kaldifst
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
import torchaudio
|
||||
from kaldi_decoder import DecodableCtc, FasterDecoder, FasterDecoderOptions
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nn-model",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--words",
|
||||
type=str,
|
||||
help="""Path to words.txt.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--HLG",
|
||||
type=str,
|
||||
help="""Path to HLG.fst.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="The sample rate of the input sound file",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
class OnnxModel:
|
||||
def __init__(
|
||||
self,
|
||||
nn_model: str,
|
||||
):
|
||||
session_opts = ort.SessionOptions()
|
||||
session_opts.inter_op_num_threads = 1
|
||||
session_opts.intra_op_num_threads = 1
|
||||
|
||||
self.session_opts = session_opts
|
||||
|
||||
self.init_model(nn_model)
|
||||
|
||||
def init_model(self, nn_model: str):
|
||||
self.model = ort.InferenceSession(
|
||||
nn_model,
|
||||
sess_options=self.session_opts,
|
||||
providers=["CPUExecutionProvider"],
|
||||
)
|
||||
meta = self.model.get_modelmeta().custom_metadata_map
|
||||
print(meta)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
A 3-D float tensor of shape (N, T, C)
|
||||
x_lens:
|
||||
A 1-D int64 tensor of shape (N,)
|
||||
Returns:
|
||||
Return a tuple containing:
|
||||
- A float tensor containing log_probs of shape (N, T, C)
|
||||
- A int64 tensor containing log_probs_len of shape (N)
|
||||
"""
|
||||
out = self.model.run(
|
||||
[
|
||||
self.model.get_outputs()[0].name,
|
||||
self.model.get_outputs()[1].name,
|
||||
],
|
||||
{
|
||||
self.model.get_inputs()[0].name: x.numpy(),
|
||||
self.model.get_inputs()[1].name: x_lens.numpy(),
|
||||
},
|
||||
)
|
||||
return torch.from_numpy(out[0]), torch.from_numpy(out[1])
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert (
|
||||
sample_rate == expected_sample_rate
|
||||
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||
# We use only the first channel
|
||||
ans.append(wave[0].contiguous())
|
||||
return ans
|
||||
|
||||
|
||||
def decode(
|
||||
filename: str,
|
||||
log_probs: torch.Tensor,
|
||||
HLG: kaldifst,
|
||||
id2word: Dict[int, str],
|
||||
) -> List[str]:
|
||||
"""
|
||||
Args:
|
||||
filename:
|
||||
Path to the filename for decoding. Used for debugging.
|
||||
log_probs:
|
||||
A 2-D float32 tensor of shape (num_frames, vocab_size). It
|
||||
contains output from log_softmax.
|
||||
HLG:
|
||||
The HLG graph.
|
||||
id2word:
|
||||
A map mapping word ID to word string.
|
||||
Returns:
|
||||
Return a list of decoded words.
|
||||
"""
|
||||
logging.info(f"{filename}, {log_probs.shape}")
|
||||
decodable = DecodableCtc(log_probs.cpu())
|
||||
|
||||
decoder_opts = FasterDecoderOptions(max_active=3000)
|
||||
decoder = FasterDecoder(HLG, decoder_opts)
|
||||
decoder.decode(decodable)
|
||||
|
||||
if not decoder.reached_final():
|
||||
logging.info(f"failed to decode {filename}")
|
||||
return [""]
|
||||
|
||||
ok, best_path = decoder.get_best_path()
|
||||
|
||||
(
|
||||
ok,
|
||||
isymbols_out,
|
||||
osymbols_out,
|
||||
total_weight,
|
||||
) = kaldifst.get_linear_symbol_sequence(best_path)
|
||||
if not ok:
|
||||
logging.info(f"failed to get linear symbol sequence for {filename}")
|
||||
return [""]
|
||||
|
||||
# are shifted by 1 during graph construction
|
||||
hyps = [id2word[i] for i in osymbols_out]
|
||||
|
||||
return hyps
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
logging.info(vars(args))
|
||||
model = OnnxModel(
|
||||
nn_model=args.nn_model,
|
||||
)
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = "cpu"
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = args.sample_rate
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
logging.info(f"Loading HLG from {args.HLG}")
|
||||
HLG = kaldifst.StdVectorFst.read(args.HLG)
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {args.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=args.sound_files,
|
||||
expected_sample_rate=args.sample_rate,
|
||||
)
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
feature_lengths = [f.size(0) for f in features]
|
||||
features = pad_sequence(
|
||||
features,
|
||||
batch_first=True,
|
||||
padding_value=math.log(1e-10),
|
||||
)
|
||||
|
||||
feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64)
|
||||
log_probs, log_probs_len = model(features, feature_lengths)
|
||||
|
||||
word_table = k2.SymbolTable.from_file(args.words)
|
||||
|
||||
hyps = []
|
||||
for i in range(log_probs.shape[0]):
|
||||
hyp = decode(
|
||||
filename=args.sound_files[i],
|
||||
log_probs=log_probs[i, : log_probs_len[i]],
|
||||
HLG=HLG,
|
||||
id2word=word_table,
|
||||
)
|
||||
hyps.append(hyp)
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(args.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user