diff --git a/egs/librispeech/ASR/conformer_ctc_bn_2d/conformer.py b/egs/librispeech/ASR/conformer_ctc_bn_2d/conformer.py index 00da79cdc..f3cd9054b 100644 --- a/egs/librispeech/ASR/conformer_ctc_bn_2d/conformer.py +++ b/egs/librispeech/ASR/conformer_ctc_bn_2d/conformer.py @@ -1867,7 +1867,7 @@ def _test_discrete_bottleneck(): lr=3.0e-04) - scale = 0.7 # determines the feature correlation..should be between 0 and 1. + scale = 0.3 # determines the feature correlation..should be between 0 and 1. #https://en.wikipedia.org/wiki/Mutual_information#Linear_correlation, -0.5 log(1 - rho^2).. # scale corresponds to rho^2, rho being sqrt(scale). mutual_information = dim * -0.5 * math.log(1.0 - scale) @@ -1897,9 +1897,13 @@ def _test_discrete_bottleneck(): if True: sampled_reversed = ReverseGrad.apply(sampled) predictor_reversed = self_predictor(sampled_reversed) - #predictor_reversed_shifted = torch.cat((torch.zeros(1, N, dim).to(device), - # predictor_reversed[:-1,:,:]), dim=0) - predictor_reversed_shifted = predictor_reversed + + if True: + predictor_reversed_shifted = torch.cat((torch.zeros(1, N, dim).to(device), + predictor_reversed[:-1,:,:]), dim=0) + else: + # skip shifting.. want to see the effect.. + predictor_reversed_shifted = predictor_reversed self_prob = b.compute_prob(predictor_reversed_shifted, sampled, softmax, reverse_grad=True)