mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Add Zipformer Onnx Support (#778)
* add export script * add zipformer onnx pretrained script * add onnx zipformer test * fix style * add zipformer onnx to workflow * replace is_in_onnx_export with is_tracing * add github.event.label.name == 'onnx' * add is_tracing to necessary conditions * fix pooling_mask * add onnx_check * add onnx_check to scripts * add is_tracing to scaling.py
This commit is contained in:
parent
80cce141b4
commit
0f26edfde9
@ -30,6 +30,15 @@ ln -s pretrained.pt epoch-99.pt
|
|||||||
ls -lh *.pt
|
ls -lh *.pt
|
||||||
popd
|
popd
|
||||||
|
|
||||||
|
log "Test exporting to ONNX format"
|
||||||
|
./pruned_transducer_stateless7/export.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--use-averaged-model false \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--onnx 1
|
||||||
|
|
||||||
log "Export to torchscript model"
|
log "Export to torchscript model"
|
||||||
./pruned_transducer_stateless7/export.py \
|
./pruned_transducer_stateless7/export.py \
|
||||||
--exp-dir $repo/exp \
|
--exp-dir $repo/exp \
|
||||||
@ -41,6 +50,27 @@ log "Export to torchscript model"
|
|||||||
|
|
||||||
ls -lh $repo/exp/*.pt
|
ls -lh $repo/exp/*.pt
|
||||||
|
|
||||||
|
log "Decode with ONNX models"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7/onnx_check.py \
|
||||||
|
--jit-filename $repo/exp/cpu_jit.pt \
|
||||||
|
--onnx-encoder-filename $repo/exp/encoder.onnx \
|
||||||
|
--onnx-decoder-filename $repo/exp/decoder.onnx \
|
||||||
|
--onnx-joiner-filename $repo/exp/joiner.onnx \
|
||||||
|
--onnx-joiner-encoder-proj-filename $repo/exp/joiner_encoder_proj.onnx \
|
||||||
|
--onnx-joiner-decoder-proj-filename $repo/exp/joiner_decoder_proj.onnx
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7/onnx_pretrained.py \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--encoder-model-filename $repo/exp/encoder.onnx \
|
||||||
|
--decoder-model-filename $repo/exp/decoder.onnx \
|
||||||
|
--joiner-model-filename $repo/exp/joiner.onnx \
|
||||||
|
--joiner-encoder-proj-model-filename $repo/exp/joiner_encoder_proj.onnx \
|
||||||
|
--joiner-decoder-proj-model-filename $repo/exp/joiner_decoder_proj.onnx \
|
||||||
|
$repo/test_wavs/1089-134686-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0001.wav \
|
||||||
|
$repo/test_wavs/1221-135766-0002.wav
|
||||||
|
|
||||||
log "Decode with models exported by torch.jit.script()"
|
log "Decode with models exported by torch.jit.script()"
|
||||||
|
|
||||||
./pruned_transducer_stateless7/jit_pretrained.py \
|
./pruned_transducer_stateless7/jit_pretrained.py \
|
||||||
|
@ -39,7 +39,7 @@ concurrency:
|
|||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_2022_11_11_zipformer:
|
run_librispeech_2022_11_11_zipformer:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
|
@ -41,7 +41,31 @@ Check
|
|||||||
https://github.com/k2-fsa/sherpa
|
https://github.com/k2-fsa/sherpa
|
||||||
for how to use the exported models outside of icefall.
|
for how to use the exported models outside of icefall.
|
||||||
|
|
||||||
(2) Export `model.state_dict()`
|
(2) Export to ONNX format
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7/export.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 10 \
|
||||||
|
--onnx 1
|
||||||
|
|
||||||
|
It will generate the following files in the given `exp_dir`.
|
||||||
|
Check `onnx_check.py` for how to use them.
|
||||||
|
|
||||||
|
- encoder.onnx
|
||||||
|
- decoder.onnx
|
||||||
|
- joiner.onnx
|
||||||
|
- joiner_encoder_proj.onnx
|
||||||
|
- joiner_decoder_proj.onnx
|
||||||
|
|
||||||
|
Please see ./onnx_pretrained.py for usage of the generated files
|
||||||
|
|
||||||
|
Check
|
||||||
|
https://github.com/k2-fsa/sherpa-onnx
|
||||||
|
for how to use the exported models outside of icefall.
|
||||||
|
|
||||||
|
(3) Export `model.state_dict()`
|
||||||
|
|
||||||
./pruned_transducer_stateless7/export.py \
|
./pruned_transducer_stateless7/export.py \
|
||||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
@ -172,6 +196,23 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--onnx",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""If True, --jit is ignored and it exports the model
|
||||||
|
to onnx format. It will generate the following files:
|
||||||
|
|
||||||
|
- encoder.onnx
|
||||||
|
- decoder.onnx
|
||||||
|
- joiner.onnx
|
||||||
|
- joiner_encoder_proj.onnx
|
||||||
|
- joiner_decoder_proj.onnx
|
||||||
|
|
||||||
|
Refer to ./onnx_check.py and ./onnx_pretrained.py for how to use them.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--context-size",
|
"--context-size",
|
||||||
type=int,
|
type=int,
|
||||||
@ -184,6 +225,204 @@ def get_parser():
|
|||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def export_encoder_model_onnx(
|
||||||
|
encoder_model: nn.Module,
|
||||||
|
encoder_filename: str,
|
||||||
|
opset_version: int = 11,
|
||||||
|
) -> None:
|
||||||
|
"""Export the given encoder model to ONNX format.
|
||||||
|
The exported model has two inputs:
|
||||||
|
|
||||||
|
- x, a tensor of shape (N, T, C); dtype is torch.float32
|
||||||
|
- x_lens, a tensor of shape (N,); dtype is torch.int64
|
||||||
|
|
||||||
|
and it has two outputs:
|
||||||
|
|
||||||
|
- encoder_out, a tensor of shape (N, T, C)
|
||||||
|
- encoder_out_lens, a tensor of shape (N,)
|
||||||
|
|
||||||
|
Note: The warmup argument is fixed to 1.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
encoder_model:
|
||||||
|
The input encoder model
|
||||||
|
encoder_filename:
|
||||||
|
The filename to save the exported ONNX model.
|
||||||
|
opset_version:
|
||||||
|
The opset version to use.
|
||||||
|
"""
|
||||||
|
x = torch.zeros(1, 101, 80, dtype=torch.float32)
|
||||||
|
x_lens = torch.tensor([101], dtype=torch.int64)
|
||||||
|
|
||||||
|
# encoder_model = torch.jit.script(encoder_model)
|
||||||
|
# It throws the following error for the above statement
|
||||||
|
#
|
||||||
|
# RuntimeError: Exporting the operator __is_ to ONNX opset version
|
||||||
|
# 11 is not supported. Please feel free to request support or
|
||||||
|
# submit a pull request on PyTorch GitHub.
|
||||||
|
#
|
||||||
|
# I cannot find which statement causes the above error.
|
||||||
|
# torch.onnx.export() will use torch.jit.trace() internally, which
|
||||||
|
# works well for the current reworked model
|
||||||
|
torch.onnx.export(
|
||||||
|
encoder_model,
|
||||||
|
(x, x_lens),
|
||||||
|
encoder_filename,
|
||||||
|
verbose=False,
|
||||||
|
opset_version=opset_version,
|
||||||
|
input_names=["x", "x_lens"],
|
||||||
|
output_names=["encoder_out", "encoder_out_lens"],
|
||||||
|
dynamic_axes={
|
||||||
|
"x": {0: "N", 1: "T"},
|
||||||
|
"x_lens": {0: "N"},
|
||||||
|
"encoder_out": {0: "N", 1: "T"},
|
||||||
|
"encoder_out_lens": {0: "N"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
logging.info(f"Saved to {encoder_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
def export_decoder_model_onnx(
|
||||||
|
decoder_model: nn.Module,
|
||||||
|
decoder_filename: str,
|
||||||
|
opset_version: int = 11,
|
||||||
|
) -> None:
|
||||||
|
"""Export the decoder model to ONNX format.
|
||||||
|
|
||||||
|
The exported model has one input:
|
||||||
|
|
||||||
|
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
|
||||||
|
|
||||||
|
and has one output:
|
||||||
|
|
||||||
|
- decoder_out: a torch.float32 tensor of shape (N, 1, C)
|
||||||
|
|
||||||
|
Note: The argument need_pad is fixed to False.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
decoder_model:
|
||||||
|
The decoder model to be exported.
|
||||||
|
decoder_filename:
|
||||||
|
Filename to save the exported ONNX model.
|
||||||
|
opset_version:
|
||||||
|
The opset version to use.
|
||||||
|
"""
|
||||||
|
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
|
||||||
|
need_pad = False # Always False, so we can use torch.jit.trace() here
|
||||||
|
# Note(fangjun): torch.jit.trace() is more efficient than torch.jit.script()
|
||||||
|
# in this case
|
||||||
|
torch.onnx.export(
|
||||||
|
decoder_model,
|
||||||
|
(y, need_pad),
|
||||||
|
decoder_filename,
|
||||||
|
verbose=False,
|
||||||
|
opset_version=opset_version,
|
||||||
|
input_names=["y", "need_pad"],
|
||||||
|
output_names=["decoder_out"],
|
||||||
|
dynamic_axes={
|
||||||
|
"y": {0: "N"},
|
||||||
|
"decoder_out": {0: "N"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
logging.info(f"Saved to {decoder_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
def export_joiner_model_onnx(
|
||||||
|
joiner_model: nn.Module,
|
||||||
|
joiner_filename: str,
|
||||||
|
opset_version: int = 11,
|
||||||
|
) -> None:
|
||||||
|
"""Export the joiner model to ONNX format.
|
||||||
|
The exported joiner model has two inputs:
|
||||||
|
|
||||||
|
- projected_encoder_out: a tensor of shape (N, joiner_dim)
|
||||||
|
- projected_decoder_out: a tensor of shape (N, joiner_dim)
|
||||||
|
|
||||||
|
and produces one output:
|
||||||
|
|
||||||
|
- logit: a tensor of shape (N, vocab_size)
|
||||||
|
|
||||||
|
The exported encoder_proj model has one input:
|
||||||
|
|
||||||
|
- encoder_out: a tensor of shape (N, encoder_out_dim)
|
||||||
|
|
||||||
|
and produces one output:
|
||||||
|
|
||||||
|
- projected_encoder_out: a tensor of shape (N, joiner_dim)
|
||||||
|
|
||||||
|
The exported decoder_proj model has one input:
|
||||||
|
|
||||||
|
- decoder_out: a tensor of shape (N, decoder_out_dim)
|
||||||
|
|
||||||
|
and produces one output:
|
||||||
|
|
||||||
|
- projected_decoder_out: a tensor of shape (N, joiner_dim)
|
||||||
|
"""
|
||||||
|
encoder_proj_filename = str(joiner_filename).replace(".onnx", "_encoder_proj.onnx")
|
||||||
|
decoder_proj_filename = str(joiner_filename).replace(".onnx", "_decoder_proj.onnx")
|
||||||
|
|
||||||
|
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
|
||||||
|
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
|
||||||
|
joiner_dim = joiner_model.decoder_proj.weight.shape[0]
|
||||||
|
|
||||||
|
projected_encoder_out = torch.rand(1, 1, 1, joiner_dim, dtype=torch.float32)
|
||||||
|
projected_decoder_out = torch.rand(1, 1, 1, joiner_dim, dtype=torch.float32)
|
||||||
|
|
||||||
|
project_input = False
|
||||||
|
# Note: It uses torch.jit.trace() internally
|
||||||
|
torch.onnx.export(
|
||||||
|
joiner_model,
|
||||||
|
(projected_encoder_out, projected_decoder_out, project_input),
|
||||||
|
joiner_filename,
|
||||||
|
verbose=False,
|
||||||
|
opset_version=opset_version,
|
||||||
|
input_names=[
|
||||||
|
"encoder_out",
|
||||||
|
"decoder_out",
|
||||||
|
"project_input",
|
||||||
|
],
|
||||||
|
output_names=["logit"],
|
||||||
|
dynamic_axes={
|
||||||
|
"encoder_out": {0: "N"},
|
||||||
|
"decoder_out": {0: "N"},
|
||||||
|
"logit": {0: "N"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
logging.info(f"Saved to {joiner_filename}")
|
||||||
|
|
||||||
|
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
|
||||||
|
torch.onnx.export(
|
||||||
|
joiner_model.encoder_proj,
|
||||||
|
encoder_out,
|
||||||
|
encoder_proj_filename,
|
||||||
|
verbose=False,
|
||||||
|
opset_version=opset_version,
|
||||||
|
input_names=["encoder_out"],
|
||||||
|
output_names=["projected_encoder_out"],
|
||||||
|
dynamic_axes={
|
||||||
|
"encoder_out": {0: "N"},
|
||||||
|
"projected_encoder_out": {0: "N"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
logging.info(f"Saved to {encoder_proj_filename}")
|
||||||
|
|
||||||
|
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
|
||||||
|
torch.onnx.export(
|
||||||
|
joiner_model.decoder_proj,
|
||||||
|
decoder_out,
|
||||||
|
decoder_proj_filename,
|
||||||
|
verbose=False,
|
||||||
|
opset_version=opset_version,
|
||||||
|
input_names=["decoder_out"],
|
||||||
|
output_names=["projected_decoder_out"],
|
||||||
|
dynamic_axes={
|
||||||
|
"decoder_out": {0: "N"},
|
||||||
|
"projected_decoder_out": {0: "N"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
logging.info(f"Saved to {decoder_proj_filename}")
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def main():
|
def main():
|
||||||
args = get_parser().parse_args()
|
args = get_parser().parse_args()
|
||||||
@ -292,7 +531,31 @@ def main():
|
|||||||
model.to("cpu")
|
model.to("cpu")
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
if params.jit is True:
|
if params.onnx is True:
|
||||||
|
convert_scaled_to_non_scaled(model, inplace=True)
|
||||||
|
opset_version = 13
|
||||||
|
logging.info("Exporting to onnx format")
|
||||||
|
encoder_filename = params.exp_dir / "encoder.onnx"
|
||||||
|
export_encoder_model_onnx(
|
||||||
|
model.encoder,
|
||||||
|
encoder_filename,
|
||||||
|
opset_version=opset_version,
|
||||||
|
)
|
||||||
|
|
||||||
|
decoder_filename = params.exp_dir / "decoder.onnx"
|
||||||
|
export_decoder_model_onnx(
|
||||||
|
model.decoder,
|
||||||
|
decoder_filename,
|
||||||
|
opset_version=opset_version,
|
||||||
|
)
|
||||||
|
|
||||||
|
joiner_filename = params.exp_dir / "joiner.onnx"
|
||||||
|
export_joiner_model_onnx(
|
||||||
|
model.joiner,
|
||||||
|
joiner_filename,
|
||||||
|
opset_version=opset_version,
|
||||||
|
)
|
||||||
|
elif params.jit is True:
|
||||||
convert_scaled_to_non_scaled(model, inplace=True)
|
convert_scaled_to_non_scaled(model, inplace=True)
|
||||||
# We won't use the forward() method of the model in C++, so just ignore
|
# We won't use the forward() method of the model in C++, so just ignore
|
||||||
# it here.
|
# it here.
|
||||||
|
286
egs/librispeech/ASR/pruned_transducer_stateless7/onnx_check.py
Executable file
286
egs/librispeech/ASR/pruned_transducer_stateless7/onnx_check.py
Executable file
@ -0,0 +1,286 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script checks that exported onnx models produce the same output
|
||||||
|
with the given torchscript model for the same input.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
|
||||||
|
import onnxruntime as ort
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from icefall import is_module_available
|
||||||
|
|
||||||
|
if not is_module_available("onnxruntime"):
|
||||||
|
raise ValueError("Please 'pip install onnxruntime' first.")
|
||||||
|
|
||||||
|
|
||||||
|
ort.set_default_logger_severity(3)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--jit-filename",
|
||||||
|
required=True,
|
||||||
|
type=str,
|
||||||
|
help="Path to the torchscript model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--onnx-encoder-filename",
|
||||||
|
required=True,
|
||||||
|
type=str,
|
||||||
|
help="Path to the onnx encoder model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--onnx-decoder-filename",
|
||||||
|
required=True,
|
||||||
|
type=str,
|
||||||
|
help="Path to the onnx decoder model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--onnx-joiner-filename",
|
||||||
|
required=True,
|
||||||
|
type=str,
|
||||||
|
help="Path to the onnx joiner model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--onnx-joiner-encoder-proj-filename",
|
||||||
|
required=True,
|
||||||
|
type=str,
|
||||||
|
help="Path to the onnx joiner encoder projection model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--onnx-joiner-decoder-proj-filename",
|
||||||
|
required=True,
|
||||||
|
type=str,
|
||||||
|
help="Path to the onnx joiner decoder projection model",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def test_encoder(
|
||||||
|
model: torch.jit.ScriptModule,
|
||||||
|
encoder_session: ort.InferenceSession,
|
||||||
|
):
|
||||||
|
inputs = encoder_session.get_inputs()
|
||||||
|
outputs = encoder_session.get_outputs()
|
||||||
|
input_names = [n.name for n in inputs]
|
||||||
|
output_names = [n.name for n in outputs]
|
||||||
|
|
||||||
|
assert inputs[0].shape == ["N", "T", 80]
|
||||||
|
assert inputs[1].shape == ["N"]
|
||||||
|
|
||||||
|
for N in [1, 5]:
|
||||||
|
for T in [12, 50]:
|
||||||
|
print("N, T", N, T)
|
||||||
|
x = torch.rand(N, T, 80, dtype=torch.float32)
|
||||||
|
x_lens = torch.randint(low=10, high=T + 1, size=(N,))
|
||||||
|
x_lens[0] = T
|
||||||
|
|
||||||
|
encoder_inputs = {
|
||||||
|
input_names[0]: x.numpy(),
|
||||||
|
input_names[1]: x_lens.numpy(),
|
||||||
|
}
|
||||||
|
|
||||||
|
torch_encoder_out, torch_encoder_out_lens = model.encoder(x, x_lens)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = encoder_session.run(
|
||||||
|
output_names,
|
||||||
|
encoder_inputs,
|
||||||
|
)
|
||||||
|
|
||||||
|
torch_encoder_out, torch_encoder_out_lens = model.encoder(x, x_lens)
|
||||||
|
|
||||||
|
encoder_out = torch.from_numpy(encoder_out)
|
||||||
|
assert torch.allclose(encoder_out, torch_encoder_out, atol=1e-05), (
|
||||||
|
(encoder_out - torch_encoder_out).abs().max(),
|
||||||
|
encoder_out.shape,
|
||||||
|
torch_encoder_out.shape,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_decoder(
|
||||||
|
model: torch.jit.ScriptModule,
|
||||||
|
decoder_session: ort.InferenceSession,
|
||||||
|
):
|
||||||
|
inputs = decoder_session.get_inputs()
|
||||||
|
outputs = decoder_session.get_outputs()
|
||||||
|
input_names = [n.name for n in inputs]
|
||||||
|
output_names = [n.name for n in outputs]
|
||||||
|
|
||||||
|
assert inputs[0].shape == ["N", 2]
|
||||||
|
for N in [1, 5, 10]:
|
||||||
|
y = torch.randint(low=1, high=500, size=(10, 2))
|
||||||
|
|
||||||
|
decoder_inputs = {input_names[0]: y.numpy()}
|
||||||
|
decoder_out = decoder_session.run(
|
||||||
|
output_names,
|
||||||
|
decoder_inputs,
|
||||||
|
)[0]
|
||||||
|
decoder_out = torch.from_numpy(decoder_out)
|
||||||
|
|
||||||
|
torch_decoder_out = model.decoder(y, need_pad=False)
|
||||||
|
assert torch.allclose(decoder_out, torch_decoder_out, atol=1e-5), (
|
||||||
|
(decoder_out - torch_decoder_out).abs().max()
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_joiner(
|
||||||
|
model: torch.jit.ScriptModule,
|
||||||
|
joiner_session: ort.InferenceSession,
|
||||||
|
joiner_encoder_proj_session: ort.InferenceSession,
|
||||||
|
joiner_decoder_proj_session: ort.InferenceSession,
|
||||||
|
):
|
||||||
|
joiner_inputs = joiner_session.get_inputs()
|
||||||
|
joiner_outputs = joiner_session.get_outputs()
|
||||||
|
joiner_input_names = [n.name for n in joiner_inputs]
|
||||||
|
joiner_output_names = [n.name for n in joiner_outputs]
|
||||||
|
|
||||||
|
assert joiner_inputs[0].shape == ["N", 1, 1, 512]
|
||||||
|
assert joiner_inputs[1].shape == ["N", 1, 1, 512]
|
||||||
|
|
||||||
|
joiner_encoder_proj_inputs = joiner_encoder_proj_session.get_inputs()
|
||||||
|
encoder_proj_input_name = joiner_encoder_proj_inputs[0].name
|
||||||
|
|
||||||
|
assert joiner_encoder_proj_inputs[0].shape == ["N", 384]
|
||||||
|
|
||||||
|
joiner_encoder_proj_outputs = joiner_encoder_proj_session.get_outputs()
|
||||||
|
encoder_proj_output_name = joiner_encoder_proj_outputs[0].name
|
||||||
|
|
||||||
|
joiner_decoder_proj_inputs = joiner_decoder_proj_session.get_inputs()
|
||||||
|
decoder_proj_input_name = joiner_decoder_proj_inputs[0].name
|
||||||
|
|
||||||
|
assert joiner_decoder_proj_inputs[0].shape == ["N", 512]
|
||||||
|
|
||||||
|
joiner_decoder_proj_outputs = joiner_decoder_proj_session.get_outputs()
|
||||||
|
decoder_proj_output_name = joiner_decoder_proj_outputs[0].name
|
||||||
|
|
||||||
|
for N in [1, 5, 10]:
|
||||||
|
encoder_out = torch.rand(N, 384)
|
||||||
|
decoder_out = torch.rand(N, 512)
|
||||||
|
|
||||||
|
projected_encoder_out = torch.rand(N, 1, 1, 512)
|
||||||
|
projected_decoder_out = torch.rand(N, 1, 1, 512)
|
||||||
|
|
||||||
|
joiner_inputs = {
|
||||||
|
joiner_input_names[0]: projected_encoder_out.numpy(),
|
||||||
|
joiner_input_names[1]: projected_decoder_out.numpy(),
|
||||||
|
}
|
||||||
|
joiner_out = joiner_session.run(joiner_output_names, joiner_inputs)[0]
|
||||||
|
joiner_out = torch.from_numpy(joiner_out)
|
||||||
|
|
||||||
|
torch_joiner_out = model.joiner(
|
||||||
|
projected_encoder_out,
|
||||||
|
projected_decoder_out,
|
||||||
|
project_input=False,
|
||||||
|
)
|
||||||
|
assert torch.allclose(joiner_out, torch_joiner_out, atol=1e-5), (
|
||||||
|
(joiner_out - torch_joiner_out).abs().max()
|
||||||
|
)
|
||||||
|
|
||||||
|
# Now test encoder_proj
|
||||||
|
joiner_encoder_proj_inputs = {encoder_proj_input_name: encoder_out.numpy()}
|
||||||
|
joiner_encoder_proj_out = joiner_encoder_proj_session.run(
|
||||||
|
[encoder_proj_output_name], joiner_encoder_proj_inputs
|
||||||
|
)[0]
|
||||||
|
joiner_encoder_proj_out = torch.from_numpy(joiner_encoder_proj_out)
|
||||||
|
|
||||||
|
torch_joiner_encoder_proj_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
assert torch.allclose(
|
||||||
|
joiner_encoder_proj_out, torch_joiner_encoder_proj_out, atol=1e-5
|
||||||
|
), ((joiner_encoder_proj_out - torch_joiner_encoder_proj_out).abs().max())
|
||||||
|
|
||||||
|
# Now test decoder_proj
|
||||||
|
joiner_decoder_proj_inputs = {decoder_proj_input_name: decoder_out.numpy()}
|
||||||
|
joiner_decoder_proj_out = joiner_decoder_proj_session.run(
|
||||||
|
[decoder_proj_output_name], joiner_decoder_proj_inputs
|
||||||
|
)[0]
|
||||||
|
joiner_decoder_proj_out = torch.from_numpy(joiner_decoder_proj_out)
|
||||||
|
|
||||||
|
torch_joiner_decoder_proj_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
assert torch.allclose(
|
||||||
|
joiner_decoder_proj_out, torch_joiner_decoder_proj_out, atol=1e-5
|
||||||
|
), ((joiner_decoder_proj_out - torch_joiner_decoder_proj_out).abs().max())
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
logging.info(vars(args))
|
||||||
|
|
||||||
|
model = torch.jit.load(args.jit_filename)
|
||||||
|
|
||||||
|
options = ort.SessionOptions()
|
||||||
|
options.inter_op_num_threads = 1
|
||||||
|
options.intra_op_num_threads = 1
|
||||||
|
|
||||||
|
logging.info("Test encoder")
|
||||||
|
encoder_session = ort.InferenceSession(
|
||||||
|
args.onnx_encoder_filename,
|
||||||
|
sess_options=options,
|
||||||
|
)
|
||||||
|
test_encoder(model, encoder_session)
|
||||||
|
|
||||||
|
logging.info("Test decoder")
|
||||||
|
decoder_session = ort.InferenceSession(
|
||||||
|
args.onnx_decoder_filename,
|
||||||
|
sess_options=options,
|
||||||
|
)
|
||||||
|
test_decoder(model, decoder_session)
|
||||||
|
|
||||||
|
logging.info("Test joiner")
|
||||||
|
joiner_session = ort.InferenceSession(
|
||||||
|
args.onnx_joiner_filename,
|
||||||
|
sess_options=options,
|
||||||
|
)
|
||||||
|
joiner_encoder_proj_session = ort.InferenceSession(
|
||||||
|
args.onnx_joiner_encoder_proj_filename,
|
||||||
|
sess_options=options,
|
||||||
|
)
|
||||||
|
joiner_decoder_proj_session = ort.InferenceSession(
|
||||||
|
args.onnx_joiner_decoder_proj_filename,
|
||||||
|
sess_options=options,
|
||||||
|
)
|
||||||
|
test_joiner(
|
||||||
|
model,
|
||||||
|
joiner_session,
|
||||||
|
joiner_encoder_proj_session,
|
||||||
|
joiner_decoder_proj_session,
|
||||||
|
)
|
||||||
|
logging.info("Finished checking ONNX models")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
torch.manual_seed(20220727)
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
388
egs/librispeech/ASR/pruned_transducer_stateless7/onnx_pretrained.py
Executable file
388
egs/librispeech/ASR/pruned_transducer_stateless7/onnx_pretrained.py
Executable file
@ -0,0 +1,388 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
This script loads ONNX models and uses them to decode waves.
|
||||||
|
You can use the following command to get the exported models:
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7/export.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 10 \
|
||||||
|
--onnx 1
|
||||||
|
|
||||||
|
Usage of this script:
|
||||||
|
|
||||||
|
./pruned_transducer_stateless7/onnx_pretrained.py \
|
||||||
|
--encoder-model-filename ./pruned_transducer_stateless7/exp/encoder.onnx \
|
||||||
|
--decoder-model-filename ./pruned_transducer_stateless7/exp/decoder.onnx \
|
||||||
|
--joiner-model-filename ./pruned_transducer_stateless7/exp/joiner.onnx \
|
||||||
|
--joiner-encoder-proj-model-filename ./pruned_transducer_stateless7/exp/joiner_encoder_proj.onnx \
|
||||||
|
--joiner-decoder-proj-model-filename ./pruned_transducer_stateless7/exp/joiner_decoder_proj.onnx \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import kaldifeat
|
||||||
|
import numpy as np
|
||||||
|
import onnxruntime as ort
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--encoder-model-filename",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the encoder onnx model. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoder-model-filename",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the decoder onnx model. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--joiner-model-filename",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the joiner onnx model. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--joiner-encoder-proj-model-filename",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the joiner encoder_proj onnx model. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--joiner-decoder-proj-model-filename",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the joiner decoder_proj onnx model. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
help="""Path to bpe.model.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="Context size of the decoder model",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert (
|
||||||
|
sample_rate == expected_sample_rate
|
||||||
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(
|
||||||
|
decoder: ort.InferenceSession,
|
||||||
|
joiner: ort.InferenceSession,
|
||||||
|
joiner_encoder_proj: ort.InferenceSession,
|
||||||
|
joiner_decoder_proj: ort.InferenceSession,
|
||||||
|
encoder_out: np.ndarray,
|
||||||
|
encoder_out_lens: np.ndarray,
|
||||||
|
context_size: int,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||||
|
Args:
|
||||||
|
decoder:
|
||||||
|
The decoder model.
|
||||||
|
joiner:
|
||||||
|
The joiner model.
|
||||||
|
joiner_encoder_proj:
|
||||||
|
The joiner encoder projection model.
|
||||||
|
joiner_decoder_proj:
|
||||||
|
The joiner decoder projection model.
|
||||||
|
encoder_out:
|
||||||
|
A 3-D tensor of shape (N, T, C)
|
||||||
|
encoder_out_lens:
|
||||||
|
A 1-D tensor of shape (N,).
|
||||||
|
context_size:
|
||||||
|
The context size of the decoder model.
|
||||||
|
Returns:
|
||||||
|
Return the decoded results for each utterance.
|
||||||
|
"""
|
||||||
|
encoder_out = torch.from_numpy(encoder_out)
|
||||||
|
encoder_out_lens = torch.from_numpy(encoder_out_lens)
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||||
|
|
||||||
|
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
||||||
|
input=encoder_out,
|
||||||
|
lengths=encoder_out_lens.cpu(),
|
||||||
|
batch_first=True,
|
||||||
|
enforce_sorted=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
projected_encoder_out = joiner_encoder_proj.run(
|
||||||
|
[joiner_encoder_proj.get_outputs()[0].name],
|
||||||
|
{joiner_encoder_proj.get_inputs()[0].name: packed_encoder_out.data.numpy()},
|
||||||
|
)[0]
|
||||||
|
|
||||||
|
blank_id = 0 # hard-code to 0
|
||||||
|
|
||||||
|
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
||||||
|
N = encoder_out.size(0)
|
||||||
|
|
||||||
|
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
||||||
|
assert N == batch_size_list[0], (N, batch_size_list)
|
||||||
|
|
||||||
|
hyps = [[blank_id] * context_size for _ in range(N)]
|
||||||
|
|
||||||
|
decoder_input_nodes = decoder.get_inputs()
|
||||||
|
decoder_output_nodes = decoder.get_outputs()
|
||||||
|
|
||||||
|
joiner_input_nodes = joiner.get_inputs()
|
||||||
|
joiner_output_nodes = joiner.get_outputs()
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
hyps,
|
||||||
|
dtype=torch.int64,
|
||||||
|
) # (N, context_size)
|
||||||
|
|
||||||
|
decoder_out = decoder.run(
|
||||||
|
[decoder_output_nodes[0].name],
|
||||||
|
{
|
||||||
|
decoder_input_nodes[0].name: decoder_input.numpy(),
|
||||||
|
},
|
||||||
|
)[0].squeeze(1)
|
||||||
|
projected_decoder_out = joiner_decoder_proj.run(
|
||||||
|
[joiner_decoder_proj.get_outputs()[0].name],
|
||||||
|
{joiner_decoder_proj.get_inputs()[0].name: decoder_out},
|
||||||
|
)[0]
|
||||||
|
|
||||||
|
projected_decoder_out = torch.from_numpy(projected_decoder_out)
|
||||||
|
|
||||||
|
offset = 0
|
||||||
|
for batch_size in batch_size_list:
|
||||||
|
start = offset
|
||||||
|
end = offset + batch_size
|
||||||
|
current_encoder_out = projected_encoder_out[start:end]
|
||||||
|
# current_encoder_out's shape: (batch_size, encoder_out_dim)
|
||||||
|
offset = end
|
||||||
|
|
||||||
|
projected_decoder_out = projected_decoder_out[:batch_size]
|
||||||
|
|
||||||
|
logits = joiner.run(
|
||||||
|
[joiner_output_nodes[0].name],
|
||||||
|
{
|
||||||
|
joiner_input_nodes[0].name: np.expand_dims(
|
||||||
|
np.expand_dims(current_encoder_out, axis=1), axis=1
|
||||||
|
),
|
||||||
|
joiner_input_nodes[1]
|
||||||
|
.name: projected_decoder_out.unsqueeze(1)
|
||||||
|
.unsqueeze(1)
|
||||||
|
.numpy(),
|
||||||
|
},
|
||||||
|
)[0]
|
||||||
|
logits = torch.from_numpy(logits).squeeze(1).squeeze(1)
|
||||||
|
# logits'shape (batch_size, vocab_size)
|
||||||
|
|
||||||
|
assert logits.ndim == 2, logits.shape
|
||||||
|
y = logits.argmax(dim=1).tolist()
|
||||||
|
emitted = False
|
||||||
|
for i, v in enumerate(y):
|
||||||
|
if v != blank_id:
|
||||||
|
hyps[i].append(v)
|
||||||
|
emitted = True
|
||||||
|
if emitted:
|
||||||
|
# update decoder output
|
||||||
|
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
decoder_input,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
decoder_out = decoder.run(
|
||||||
|
[decoder_output_nodes[0].name],
|
||||||
|
{
|
||||||
|
decoder_input_nodes[0].name: decoder_input.numpy(),
|
||||||
|
},
|
||||||
|
)[0].squeeze(1)
|
||||||
|
projected_decoder_out = joiner_decoder_proj.run(
|
||||||
|
[joiner_decoder_proj.get_outputs()[0].name],
|
||||||
|
{joiner_decoder_proj.get_inputs()[0].name: decoder_out},
|
||||||
|
)[0]
|
||||||
|
projected_decoder_out = torch.from_numpy(projected_decoder_out)
|
||||||
|
|
||||||
|
sorted_ans = [h[context_size:] for h in hyps]
|
||||||
|
ans = []
|
||||||
|
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
||||||
|
for i in range(N):
|
||||||
|
ans.append(sorted_ans[unsorted_indices[i]])
|
||||||
|
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
logging.info(vars(args))
|
||||||
|
|
||||||
|
session_opts = ort.SessionOptions()
|
||||||
|
session_opts.inter_op_num_threads = 1
|
||||||
|
session_opts.intra_op_num_threads = 1
|
||||||
|
|
||||||
|
encoder = ort.InferenceSession(
|
||||||
|
args.encoder_model_filename,
|
||||||
|
sess_options=session_opts,
|
||||||
|
)
|
||||||
|
|
||||||
|
decoder = ort.InferenceSession(
|
||||||
|
args.decoder_model_filename,
|
||||||
|
sess_options=session_opts,
|
||||||
|
)
|
||||||
|
|
||||||
|
joiner = ort.InferenceSession(
|
||||||
|
args.joiner_model_filename,
|
||||||
|
sess_options=session_opts,
|
||||||
|
)
|
||||||
|
|
||||||
|
joiner_encoder_proj = ort.InferenceSession(
|
||||||
|
args.joiner_encoder_proj_model_filename,
|
||||||
|
sess_options=session_opts,
|
||||||
|
)
|
||||||
|
|
||||||
|
joiner_decoder_proj = ort.InferenceSession(
|
||||||
|
args.joiner_decoder_proj_model_filename,
|
||||||
|
sess_options=session_opts,
|
||||||
|
)
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(args.bpe_model)
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = "cpu"
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = args.sample_rate
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {args.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=args.sound_files,
|
||||||
|
expected_sample_rate=args.sample_rate,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
|
features = pad_sequence(
|
||||||
|
features,
|
||||||
|
batch_first=True,
|
||||||
|
padding_value=math.log(1e-10),
|
||||||
|
)
|
||||||
|
|
||||||
|
feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64)
|
||||||
|
|
||||||
|
encoder_input_nodes = encoder.get_inputs()
|
||||||
|
encoder_out_nodes = encoder.get_outputs()
|
||||||
|
encoder_out, encoder_out_lens = encoder.run(
|
||||||
|
[encoder_out_nodes[0].name, encoder_out_nodes[1].name],
|
||||||
|
{
|
||||||
|
encoder_input_nodes[0].name: features.numpy(),
|
||||||
|
encoder_input_nodes[1].name: feature_lengths.numpy(),
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
hyps = greedy_search(
|
||||||
|
decoder=decoder,
|
||||||
|
joiner=joiner,
|
||||||
|
joiner_encoder_proj=joiner_encoder_proj,
|
||||||
|
joiner_decoder_proj=joiner_decoder_proj,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
context_size=args.context_size,
|
||||||
|
)
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(args.sound_files, hyps):
|
||||||
|
words = sp.decode(hyp)
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
@ -261,7 +261,7 @@ class RandomGrad(torch.nn.Module):
|
|||||||
self.min_abs = min_abs
|
self.min_abs = min_abs
|
||||||
|
|
||||||
def forward(self, x: Tensor):
|
def forward(self, x: Tensor):
|
||||||
if torch.jit.is_scripting() or not self.training:
|
if torch.jit.is_scripting() or not self.training or torch.jit.is_tracing():
|
||||||
return x
|
return x
|
||||||
else:
|
else:
|
||||||
return RandomGradFunction.apply(x, self.min_abs)
|
return RandomGradFunction.apply(x, self.min_abs)
|
||||||
@ -530,7 +530,7 @@ class ActivationBalancer(torch.nn.Module):
|
|||||||
self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
|
self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
|
||||||
|
|
||||||
def forward(self, x: Tensor) -> Tensor:
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
if torch.jit.is_scripting() or not x.requires_grad:
|
if torch.jit.is_scripting() or not x.requires_grad or torch.jit.is_tracing():
|
||||||
return _no_op(x)
|
return _no_op(x)
|
||||||
|
|
||||||
count = self.cpu_count
|
count = self.cpu_count
|
||||||
@ -790,7 +790,7 @@ def with_loss(x, y):
|
|||||||
|
|
||||||
|
|
||||||
def _no_op(x: Tensor) -> Tensor:
|
def _no_op(x: Tensor) -> Tensor:
|
||||||
if torch.jit.is_scripting():
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
||||||
return x
|
return x
|
||||||
else:
|
else:
|
||||||
# a no-op function that will have a node in the autograd graph,
|
# a no-op function that will have a node in the autograd graph,
|
||||||
@ -862,6 +862,7 @@ class MaxEig(torch.nn.Module):
|
|||||||
torch.jit.is_scripting()
|
torch.jit.is_scripting()
|
||||||
or self.max_var_per_eig <= 0
|
or self.max_var_per_eig <= 0
|
||||||
or random.random() > self.cur_prob
|
or random.random() > self.cur_prob
|
||||||
|
or torch.jit.is_tracing()
|
||||||
):
|
):
|
||||||
return _no_op(x)
|
return _no_op(x)
|
||||||
|
|
||||||
|
374
egs/librispeech/ASR/pruned_transducer_stateless7/test_onnx.py
Normal file
374
egs/librispeech/ASR/pruned_transducer_stateless7/test_onnx.py
Normal file
@ -0,0 +1,374 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file is to test that models can be exported to onnx.
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
|
||||||
|
from icefall import is_module_available
|
||||||
|
|
||||||
|
if not is_module_available("onnxruntime"):
|
||||||
|
raise ValueError("Please 'pip install onnxruntime' first.")
|
||||||
|
|
||||||
|
import onnxruntime as ort
|
||||||
|
import torch
|
||||||
|
from scaling_converter import convert_scaled_to_non_scaled
|
||||||
|
from zipformer import (
|
||||||
|
Conv2dSubsampling,
|
||||||
|
RelPositionalEncoding,
|
||||||
|
Zipformer,
|
||||||
|
ZipformerEncoder,
|
||||||
|
ZipformerEncoderLayer,
|
||||||
|
)
|
||||||
|
|
||||||
|
ort.set_default_logger_severity(3)
|
||||||
|
|
||||||
|
|
||||||
|
def test_conv2d_subsampling():
|
||||||
|
filename = "conv2d_subsampling.onnx"
|
||||||
|
opset_version = 13
|
||||||
|
N = 30
|
||||||
|
T = 50
|
||||||
|
num_features = 80
|
||||||
|
d_model = 512
|
||||||
|
x = torch.rand(N, T, num_features)
|
||||||
|
|
||||||
|
encoder_embed = Conv2dSubsampling(num_features, d_model)
|
||||||
|
encoder_embed.eval()
|
||||||
|
encoder_embed = convert_scaled_to_non_scaled(encoder_embed, inplace=True)
|
||||||
|
|
||||||
|
torch.onnx.export(
|
||||||
|
encoder_embed,
|
||||||
|
x,
|
||||||
|
filename,
|
||||||
|
verbose=False,
|
||||||
|
opset_version=opset_version,
|
||||||
|
input_names=["x"],
|
||||||
|
output_names=["y"],
|
||||||
|
dynamic_axes={
|
||||||
|
"x": {0: "N", 1: "T"},
|
||||||
|
"y": {0: "N", 1: "T"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
options = ort.SessionOptions()
|
||||||
|
options.inter_op_num_threads = 1
|
||||||
|
options.intra_op_num_threads = 1
|
||||||
|
|
||||||
|
session = ort.InferenceSession(
|
||||||
|
filename,
|
||||||
|
sess_options=options,
|
||||||
|
)
|
||||||
|
|
||||||
|
input_nodes = session.get_inputs()
|
||||||
|
assert input_nodes[0].name == "x"
|
||||||
|
assert input_nodes[0].shape == ["N", "T", num_features]
|
||||||
|
|
||||||
|
inputs = {input_nodes[0].name: x.numpy()}
|
||||||
|
|
||||||
|
onnx_y = session.run(["y"], inputs)[0]
|
||||||
|
|
||||||
|
onnx_y = torch.from_numpy(onnx_y)
|
||||||
|
torch_y = encoder_embed(x)
|
||||||
|
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
|
||||||
|
|
||||||
|
os.remove(filename)
|
||||||
|
|
||||||
|
|
||||||
|
def test_rel_pos():
|
||||||
|
filename = "rel_pos.onnx"
|
||||||
|
|
||||||
|
opset_version = 13
|
||||||
|
N = 30
|
||||||
|
T = 50
|
||||||
|
num_features = 80
|
||||||
|
d_model = 512
|
||||||
|
x = torch.rand(N, T, num_features)
|
||||||
|
|
||||||
|
encoder_pos = RelPositionalEncoding(d_model, dropout_rate=0.1)
|
||||||
|
encoder_pos.eval()
|
||||||
|
encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True)
|
||||||
|
|
||||||
|
x = x.permute(1, 0, 2)
|
||||||
|
|
||||||
|
torch.onnx.export(
|
||||||
|
encoder_pos,
|
||||||
|
x,
|
||||||
|
filename,
|
||||||
|
verbose=False,
|
||||||
|
opset_version=opset_version,
|
||||||
|
input_names=["x"],
|
||||||
|
output_names=["pos_emb"],
|
||||||
|
dynamic_axes={
|
||||||
|
"x": {0: "N", 1: "T"},
|
||||||
|
"pos_emb": {0: "N", 1: "T"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
options = ort.SessionOptions()
|
||||||
|
options.inter_op_num_threads = 1
|
||||||
|
options.intra_op_num_threads = 1
|
||||||
|
|
||||||
|
session = ort.InferenceSession(
|
||||||
|
filename,
|
||||||
|
sess_options=options,
|
||||||
|
)
|
||||||
|
|
||||||
|
input_nodes = session.get_inputs()
|
||||||
|
assert input_nodes[0].name == "x"
|
||||||
|
assert input_nodes[0].shape == ["N", "T", num_features]
|
||||||
|
|
||||||
|
inputs = {input_nodes[0].name: x.numpy()}
|
||||||
|
onnx_pos_emb = session.run(["pos_emb"], inputs)
|
||||||
|
onnx_pos_emb = torch.from_numpy(onnx_pos_emb[0])
|
||||||
|
|
||||||
|
torch_pos_emb = encoder_pos(x)
|
||||||
|
assert torch.allclose(onnx_pos_emb, torch_pos_emb, atol=1e-05), (
|
||||||
|
(onnx_pos_emb - torch_pos_emb).abs().max()
|
||||||
|
)
|
||||||
|
print(onnx_pos_emb.abs().sum(), torch_pos_emb.abs().sum())
|
||||||
|
|
||||||
|
os.remove(filename)
|
||||||
|
|
||||||
|
|
||||||
|
def test_zipformer_encoder_layer():
|
||||||
|
filename = "zipformer_encoder_layer.onnx"
|
||||||
|
opset_version = 13
|
||||||
|
N = 30
|
||||||
|
T = 50
|
||||||
|
|
||||||
|
d_model = 384
|
||||||
|
attention_dim = 192
|
||||||
|
nhead = 8
|
||||||
|
feedforward_dim = 1024
|
||||||
|
dropout = 0.1
|
||||||
|
cnn_module_kernel = 31
|
||||||
|
pos_dim = 4
|
||||||
|
|
||||||
|
x = torch.rand(N, T, d_model)
|
||||||
|
|
||||||
|
encoder_pos = RelPositionalEncoding(d_model, dropout)
|
||||||
|
encoder_pos.eval()
|
||||||
|
encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True)
|
||||||
|
|
||||||
|
x = x.permute(1, 0, 2)
|
||||||
|
pos_emb = encoder_pos(x)
|
||||||
|
|
||||||
|
encoder_layer = ZipformerEncoderLayer(
|
||||||
|
d_model,
|
||||||
|
attention_dim,
|
||||||
|
nhead,
|
||||||
|
feedforward_dim,
|
||||||
|
dropout,
|
||||||
|
cnn_module_kernel,
|
||||||
|
pos_dim,
|
||||||
|
)
|
||||||
|
encoder_layer.eval()
|
||||||
|
encoder_layer = convert_scaled_to_non_scaled(encoder_layer, inplace=True)
|
||||||
|
|
||||||
|
torch.onnx.export(
|
||||||
|
encoder_layer,
|
||||||
|
(x, pos_emb),
|
||||||
|
filename,
|
||||||
|
verbose=False,
|
||||||
|
opset_version=opset_version,
|
||||||
|
input_names=["x", "pos_emb"],
|
||||||
|
output_names=["y"],
|
||||||
|
dynamic_axes={
|
||||||
|
"x": {0: "T", 1: "N"},
|
||||||
|
"pos_emb": {0: "N", 1: "T"},
|
||||||
|
"y": {0: "T", 1: "N"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
options = ort.SessionOptions()
|
||||||
|
options.inter_op_num_threads = 1
|
||||||
|
options.intra_op_num_threads = 1
|
||||||
|
|
||||||
|
session = ort.InferenceSession(
|
||||||
|
filename,
|
||||||
|
sess_options=options,
|
||||||
|
)
|
||||||
|
|
||||||
|
input_nodes = session.get_inputs()
|
||||||
|
inputs = {
|
||||||
|
input_nodes[0].name: x.numpy(),
|
||||||
|
input_nodes[1].name: pos_emb.numpy(),
|
||||||
|
}
|
||||||
|
onnx_y = session.run(["y"], inputs)[0]
|
||||||
|
onnx_y = torch.from_numpy(onnx_y)
|
||||||
|
|
||||||
|
torch_y = encoder_layer(x, pos_emb)
|
||||||
|
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
|
||||||
|
|
||||||
|
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
|
||||||
|
|
||||||
|
os.remove(filename)
|
||||||
|
|
||||||
|
|
||||||
|
def test_zipformer_encoder():
|
||||||
|
filename = "zipformer_encoder.onnx"
|
||||||
|
|
||||||
|
opset_version = 13
|
||||||
|
N = 3
|
||||||
|
T = 15
|
||||||
|
|
||||||
|
d_model = 512
|
||||||
|
attention_dim = 192
|
||||||
|
nhead = 8
|
||||||
|
feedforward_dim = 1024
|
||||||
|
dropout = 0.1
|
||||||
|
cnn_module_kernel = 31
|
||||||
|
pos_dim = 4
|
||||||
|
num_encoder_layers = 12
|
||||||
|
|
||||||
|
warmup_batches = 4000.0
|
||||||
|
warmup_begin = warmup_batches / (num_encoder_layers + 1)
|
||||||
|
warmup_end = warmup_batches / (num_encoder_layers + 1)
|
||||||
|
|
||||||
|
x = torch.rand(N, T, d_model)
|
||||||
|
|
||||||
|
encoder_layer = ZipformerEncoderLayer(
|
||||||
|
d_model,
|
||||||
|
attention_dim,
|
||||||
|
nhead,
|
||||||
|
feedforward_dim,
|
||||||
|
dropout,
|
||||||
|
cnn_module_kernel,
|
||||||
|
pos_dim,
|
||||||
|
)
|
||||||
|
encoder = ZipformerEncoder(
|
||||||
|
encoder_layer, num_encoder_layers, dropout, warmup_begin, warmup_end
|
||||||
|
)
|
||||||
|
encoder.eval()
|
||||||
|
encoder = convert_scaled_to_non_scaled(encoder, inplace=True)
|
||||||
|
|
||||||
|
# jit_model = torch.jit.trace(encoder, (pos_emb))
|
||||||
|
|
||||||
|
torch_y = encoder(x)
|
||||||
|
|
||||||
|
torch.onnx.export(
|
||||||
|
encoder,
|
||||||
|
(x),
|
||||||
|
filename,
|
||||||
|
verbose=False,
|
||||||
|
opset_version=opset_version,
|
||||||
|
input_names=["x"],
|
||||||
|
output_names=["y"],
|
||||||
|
dynamic_axes={
|
||||||
|
"x": {0: "T", 1: "N"},
|
||||||
|
"y": {0: "T", 1: "N"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
options = ort.SessionOptions()
|
||||||
|
options.inter_op_num_threads = 1
|
||||||
|
options.intra_op_num_threads = 1
|
||||||
|
|
||||||
|
session = ort.InferenceSession(
|
||||||
|
filename,
|
||||||
|
sess_options=options,
|
||||||
|
)
|
||||||
|
|
||||||
|
input_nodes = session.get_inputs()
|
||||||
|
inputs = {
|
||||||
|
input_nodes[0].name: x.numpy(),
|
||||||
|
}
|
||||||
|
onnx_y = session.run(["y"], inputs)[0]
|
||||||
|
onnx_y = torch.from_numpy(onnx_y)
|
||||||
|
|
||||||
|
torch_y = encoder(x)
|
||||||
|
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
|
||||||
|
|
||||||
|
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
|
||||||
|
|
||||||
|
os.remove(filename)
|
||||||
|
|
||||||
|
|
||||||
|
def test_zipformer():
|
||||||
|
filename = "zipformer.onnx"
|
||||||
|
opset_version = 11
|
||||||
|
N = 3
|
||||||
|
T = 15
|
||||||
|
num_features = 80
|
||||||
|
x = torch.rand(N, T, num_features)
|
||||||
|
x_lens = torch.full((N,), fill_value=T, dtype=torch.int64)
|
||||||
|
|
||||||
|
zipformer = Zipformer(num_features=num_features)
|
||||||
|
zipformer.eval()
|
||||||
|
zipformer = convert_scaled_to_non_scaled(zipformer, inplace=True)
|
||||||
|
|
||||||
|
# jit_model = torch.jit.trace(zipformer, (x, x_lens))
|
||||||
|
torch.onnx.export(
|
||||||
|
zipformer,
|
||||||
|
(x, x_lens),
|
||||||
|
filename,
|
||||||
|
verbose=False,
|
||||||
|
opset_version=opset_version,
|
||||||
|
input_names=["x", "x_lens"],
|
||||||
|
output_names=["y", "y_lens"],
|
||||||
|
dynamic_axes={
|
||||||
|
"x": {0: "N", 1: "T"},
|
||||||
|
"x_lens": {0: "N"},
|
||||||
|
"y": {0: "N", 1: "T"},
|
||||||
|
"y_lens": {0: "N"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
options = ort.SessionOptions()
|
||||||
|
options.inter_op_num_threads = 1
|
||||||
|
options.intra_op_num_threads = 1
|
||||||
|
|
||||||
|
session = ort.InferenceSession(
|
||||||
|
filename,
|
||||||
|
sess_options=options,
|
||||||
|
)
|
||||||
|
|
||||||
|
input_nodes = session.get_inputs()
|
||||||
|
inputs = {
|
||||||
|
input_nodes[0].name: x.numpy(),
|
||||||
|
input_nodes[1].name: x_lens.numpy(),
|
||||||
|
}
|
||||||
|
onnx_y, onnx_y_lens = session.run(["y", "y_lens"], inputs)
|
||||||
|
onnx_y = torch.from_numpy(onnx_y)
|
||||||
|
onnx_y_lens = torch.from_numpy(onnx_y_lens)
|
||||||
|
|
||||||
|
torch_y, torch_y_lens = zipformer(x, x_lens)
|
||||||
|
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
|
||||||
|
|
||||||
|
assert torch.allclose(onnx_y_lens, torch_y_lens, atol=1e-05), (
|
||||||
|
(onnx_y_lens - torch_y_lens).abs().max()
|
||||||
|
)
|
||||||
|
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
|
||||||
|
print(onnx_y_lens, torch_y_lens)
|
||||||
|
|
||||||
|
os.remove(filename)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
test_conv2d_subsampling()
|
||||||
|
test_rel_pos()
|
||||||
|
test_zipformer_encoder_layer()
|
||||||
|
test_zipformer_encoder()
|
||||||
|
test_zipformer()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
torch.manual_seed(20221011)
|
||||||
|
main()
|
@ -210,7 +210,7 @@ class Zipformer(EncoderInterface):
|
|||||||
(num_frames, batch_size, encoder_dims0)
|
(num_frames, batch_size, encoder_dims0)
|
||||||
"""
|
"""
|
||||||
num_encoders = len(self.encoder_dims)
|
num_encoders = len(self.encoder_dims)
|
||||||
if torch.jit.is_scripting() or not self.training:
|
if torch.jit.is_scripting() or not self.training or torch.jit.is_tracing():
|
||||||
return [1.0] * num_encoders
|
return [1.0] * num_encoders
|
||||||
|
|
||||||
(num_frames0, batch_size, _encoder_dims0) = x.shape
|
(num_frames0, batch_size, _encoder_dims0) = x.shape
|
||||||
@ -293,7 +293,7 @@ class Zipformer(EncoderInterface):
|
|||||||
k = self.skip_layers[i]
|
k = self.skip_layers[i]
|
||||||
if isinstance(k, int):
|
if isinstance(k, int):
|
||||||
layer_skip_dropout_prob = self._get_layer_skip_dropout_prob()
|
layer_skip_dropout_prob = self._get_layer_skip_dropout_prob()
|
||||||
if torch.jit.is_scripting():
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
||||||
x = skip_module(outputs[k], x)
|
x = skip_module(outputs[k], x)
|
||||||
elif (not self.training) or random.random() > layer_skip_dropout_prob:
|
elif (not self.training) or random.random() > layer_skip_dropout_prob:
|
||||||
x = skip_module(outputs[k], x)
|
x = skip_module(outputs[k], x)
|
||||||
@ -386,7 +386,7 @@ class ZipformerEncoderLayer(nn.Module):
|
|||||||
)
|
)
|
||||||
|
|
||||||
def get_bypass_scale(self):
|
def get_bypass_scale(self):
|
||||||
if torch.jit.is_scripting() or not self.training:
|
if torch.jit.is_scripting() or not self.training or torch.jit.is_tracing():
|
||||||
return self.bypass_scale
|
return self.bypass_scale
|
||||||
if random.random() < 0.1:
|
if random.random() < 0.1:
|
||||||
# ensure we get grads if self.bypass_scale becomes out of range
|
# ensure we get grads if self.bypass_scale becomes out of range
|
||||||
@ -407,7 +407,7 @@ class ZipformerEncoderLayer(nn.Module):
|
|||||||
# return dropout rate for the dynamic modules (self_attn, pooling, convolution); this
|
# return dropout rate for the dynamic modules (self_attn, pooling, convolution); this
|
||||||
# starts at 0.2 and rapidly decreases to 0. Its purpose is to keep the training stable
|
# starts at 0.2 and rapidly decreases to 0. Its purpose is to keep the training stable
|
||||||
# at the beginning, by making the network focus on the feedforward modules.
|
# at the beginning, by making the network focus on the feedforward modules.
|
||||||
if torch.jit.is_scripting() or not self.training:
|
if torch.jit.is_scripting() or not self.training or torch.jit.is_tracing():
|
||||||
return 0.0
|
return 0.0
|
||||||
warmup_period = 2000.0
|
warmup_period = 2000.0
|
||||||
initial_dropout_rate = 0.2
|
initial_dropout_rate = 0.2
|
||||||
@ -452,12 +452,12 @@ class ZipformerEncoderLayer(nn.Module):
|
|||||||
dynamic_dropout = self.get_dynamic_dropout_rate()
|
dynamic_dropout = self.get_dynamic_dropout_rate()
|
||||||
|
|
||||||
# pooling module
|
# pooling module
|
||||||
if torch.jit.is_scripting():
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
||||||
src = src + self.pooling(src, key_padding_mask=src_key_padding_mask)
|
src = src + self.pooling(src, key_padding_mask=src_key_padding_mask)
|
||||||
elif random.random() >= dynamic_dropout:
|
elif random.random() >= dynamic_dropout:
|
||||||
src = src + self.pooling(src, key_padding_mask=src_key_padding_mask)
|
src = src + self.pooling(src, key_padding_mask=src_key_padding_mask)
|
||||||
|
|
||||||
if torch.jit.is_scripting():
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
||||||
src_att, attn_weights = self.self_attn(
|
src_att, attn_weights = self.self_attn(
|
||||||
src,
|
src,
|
||||||
pos_emb=pos_emb,
|
pos_emb=pos_emb,
|
||||||
@ -658,7 +658,7 @@ class ZipformerEncoder(nn.Module):
|
|||||||
pos_emb = self.encoder_pos(src)
|
pos_emb = self.encoder_pos(src)
|
||||||
output = src
|
output = src
|
||||||
|
|
||||||
if torch.jit.is_scripting():
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
||||||
layers_to_drop = []
|
layers_to_drop = []
|
||||||
else:
|
else:
|
||||||
rnd_seed = src.numel() + random.randint(0, 1000)
|
rnd_seed = src.numel() + random.randint(0, 1000)
|
||||||
@ -667,7 +667,7 @@ class ZipformerEncoder(nn.Module):
|
|||||||
output = output * feature_mask
|
output = output * feature_mask
|
||||||
|
|
||||||
for i, mod in enumerate(self.layers):
|
for i, mod in enumerate(self.layers):
|
||||||
if not torch.jit.is_scripting():
|
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
||||||
if i in layers_to_drop:
|
if i in layers_to_drop:
|
||||||
continue
|
continue
|
||||||
output = mod(
|
output = mod(
|
||||||
@ -864,7 +864,7 @@ class SimpleCombiner(torch.nn.Module):
|
|||||||
assert src1.shape[:-1] == src2.shape[:-1], (src1.shape, src2.shape)
|
assert src1.shape[:-1] == src2.shape[:-1], (src1.shape, src2.shape)
|
||||||
|
|
||||||
weight1 = self.weight1
|
weight1 = self.weight1
|
||||||
if not torch.jit.is_scripting():
|
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
||||||
if (
|
if (
|
||||||
self.training
|
self.training
|
||||||
and random.random() < 0.25
|
and random.random() < 0.25
|
||||||
@ -1258,6 +1258,16 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
# the following .as_strided() expression converts the last axis of pos_weights from relative
|
# the following .as_strided() expression converts the last axis of pos_weights from relative
|
||||||
# to absolute position. I don't know whether I might have got the time-offsets backwards or
|
# to absolute position. I don't know whether I might have got the time-offsets backwards or
|
||||||
# not, but let this code define which way round it is supposed to be.
|
# not, but let this code define which way round it is supposed to be.
|
||||||
|
if torch.jit.is_tracing():
|
||||||
|
(batch_size, num_heads, time1, n) = pos_weights.shape
|
||||||
|
rows = torch.arange(start=time1 - 1, end=-1, step=-1)
|
||||||
|
cols = torch.arange(seq_len)
|
||||||
|
rows = rows.repeat(batch_size * num_heads).unsqueeze(-1)
|
||||||
|
indexes = rows + cols
|
||||||
|
pos_weights = pos_weights.reshape(-1, n)
|
||||||
|
pos_weights = torch.gather(pos_weights, dim=1, index=indexes)
|
||||||
|
pos_weights = pos_weights.reshape(batch_size, num_heads, time1, seq_len)
|
||||||
|
else:
|
||||||
pos_weights = pos_weights.as_strided(
|
pos_weights = pos_weights.as_strided(
|
||||||
(bsz, num_heads, seq_len, seq_len),
|
(bsz, num_heads, seq_len, seq_len),
|
||||||
(
|
(
|
||||||
@ -1272,7 +1282,7 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
# caution: they are really scores at this point.
|
# caution: they are really scores at this point.
|
||||||
attn_output_weights = torch.matmul(q, k) + pos_weights
|
attn_output_weights = torch.matmul(q, k) + pos_weights
|
||||||
|
|
||||||
if not torch.jit.is_scripting():
|
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
||||||
if training and random.random() < 0.1:
|
if training and random.random() < 0.1:
|
||||||
# This is a harder way of limiting the attention scores to not be too large.
|
# This is a harder way of limiting the attention scores to not be too large.
|
||||||
# It incurs a penalty if any of them has an absolute value greater than 50.0.
|
# It incurs a penalty if any of them has an absolute value greater than 50.0.
|
||||||
@ -1383,7 +1393,7 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
# now v: (bsz * num_heads, seq_len, head_dim // 2)
|
# now v: (bsz * num_heads, seq_len, head_dim // 2)
|
||||||
attn_output = torch.bmm(attn_weights, v)
|
attn_output = torch.bmm(attn_weights, v)
|
||||||
|
|
||||||
if not torch.jit.is_scripting():
|
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
||||||
if random.random() < 0.001 or __name__ == "__main__":
|
if random.random() < 0.001 or __name__ == "__main__":
|
||||||
self._print_attn_stats(attn_weights, attn_output)
|
self._print_attn_stats(attn_weights, attn_output)
|
||||||
|
|
||||||
@ -1458,6 +1468,9 @@ class PoolingModule(nn.Module):
|
|||||||
a Tensor of shape (1, N, C)
|
a Tensor of shape (1, N, C)
|
||||||
"""
|
"""
|
||||||
if key_padding_mask is not None:
|
if key_padding_mask is not None:
|
||||||
|
if torch.jit.is_tracing():
|
||||||
|
pooling_mask = (~key_padding_mask).to(x.dtype)
|
||||||
|
else:
|
||||||
pooling_mask = key_padding_mask.logical_not().to(x.dtype) # (N, T)
|
pooling_mask = key_padding_mask.logical_not().to(x.dtype) # (N, T)
|
||||||
pooling_mask = pooling_mask / pooling_mask.sum(dim=1, keepdim=True)
|
pooling_mask = pooling_mask / pooling_mask.sum(dim=1, keepdim=True)
|
||||||
pooling_mask = pooling_mask.transpose(0, 1).contiguous().unsqueeze(-1)
|
pooling_mask = pooling_mask.transpose(0, 1).contiguous().unsqueeze(-1)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user