mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Merge e03a2d1d9048e0bdb40e28dfcc0d2fa72f6e8614 into abd9437e6d5419a497707748eb935e50976c3b7b
This commit is contained in:
commit
0ec57e77a2
440
egs/voxpopuli/ASR/local/asr_datamodule.py
Normal file
440
egs/voxpopuli/ASR/local/asr_datamodule.py
Normal file
@ -0,0 +1,440 @@
|
|||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Yifan Yang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import inspect
|
||||||
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||||
|
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||||
|
CutConcatenate,
|
||||||
|
CutMix,
|
||||||
|
DynamicBucketingSampler,
|
||||||
|
K2SpeechRecognitionDataset,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
SimpleCutSampler,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
|
AudioSamples,
|
||||||
|
OnTheFlyFeatures,
|
||||||
|
)
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class _SeedWorkers:
|
||||||
|
def __init__(self, seed: int):
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def __call__(self, worker_id: int):
|
||||||
|
fix_random_seed(self.seed + worker_id)
|
||||||
|
|
||||||
|
|
||||||
|
class VoxPopuliAsrDataModule:
|
||||||
|
"""
|
||||||
|
DataModule for k2 ASR experiments.
|
||||||
|
It assumes there is always one train and valid dataloader,
|
||||||
|
but there can be multiple test dataloaders (e.g. CommonVoice test-clean
|
||||||
|
and test-other).
|
||||||
|
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- augmentation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
|
||||||
|
This class should be derived for specific corpora used in ASR tasks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--language",
|
||||||
|
type=str,
|
||||||
|
default="en",
|
||||||
|
help="Language of VoxPopuli subset",
|
||||||
|
)
|
||||||
|
#group.add_argument(
|
||||||
|
# "--voxpopuli-asr-manifest-dir",
|
||||||
|
# type=Path,
|
||||||
|
# default=Path("data/en/fbank"),
|
||||||
|
# help="Path to directory with CommonVoice train/dev/test cuts.",
|
||||||
|
#)
|
||||||
|
group.add_argument(
|
||||||
|
"--manifest-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with the other cuts.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=20.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--concatenate-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--duration-factor",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--gap",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="The amount of padding (in seconds) inserted between "
|
||||||
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
|
"noise augmentation is used.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--drop-last",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to drop last batch. Used by sampler.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-spec-aug",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--spec-aug-time-warp-factor",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="Used only when --enable-spec-aug is True. "
|
||||||
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
|
"Larger values mean more warping. "
|
||||||
|
"A value less than 1 means to disable time warp.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-musan",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--input-strategy",
|
||||||
|
type=str,
|
||||||
|
default="PrecomputedFeatures",
|
||||||
|
help="AudioSamples or PrecomputedFeatures",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(
|
||||||
|
self,
|
||||||
|
cuts_train: CutSet,
|
||||||
|
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||||
|
) -> DataLoader:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cuts_train:
|
||||||
|
CutSet for training.
|
||||||
|
sampler_state_dict:
|
||||||
|
The state dict for the training sampler.
|
||||||
|
"""
|
||||||
|
transforms = []
|
||||||
|
if self.args.enable_musan:
|
||||||
|
logging.info("Enable MUSAN")
|
||||||
|
logging.info("About to get Musan cuts")
|
||||||
|
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||||
|
transforms.append(
|
||||||
|
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
logging.info(
|
||||||
|
f"Using cut concatenation with duration factor "
|
||||||
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
|
)
|
||||||
|
# Cut concatenation should be the first transform in the list,
|
||||||
|
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||||
|
# different utterances.
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
input_transforms = []
|
||||||
|
if self.args.enable_spec_aug:
|
||||||
|
logging.info("Enable SpecAugment")
|
||||||
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||||
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
|
# different.
|
||||||
|
num_frame_masks = 10
|
||||||
|
num_frame_masks_parameter = inspect.signature(
|
||||||
|
SpecAugment.__init__
|
||||||
|
).parameters["num_frame_masks"]
|
||||||
|
if num_frame_masks_parameter.default == 1:
|
||||||
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
|
input_transforms.append(
|
||||||
|
SpecAugment(
|
||||||
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
|
num_frame_masks=num_frame_masks,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable SpecAugment")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=eval(self.args.input_strategy)(),
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.bucketing_sampler:
|
||||||
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
buffer_size=self.args.num_buckets * 2000,
|
||||||
|
shuffle_buffer_size=self.args.num_buckets * 5000,
|
||||||
|
drop_last=self.args.drop_last,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using SimpleCutSampler.")
|
||||||
|
train_sampler = SimpleCutSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
if sampler_state_dict is not None:
|
||||||
|
logging.info("Loading sampler state dict")
|
||||||
|
train_sampler.load_state_dict(sampler_state_dict)
|
||||||
|
|
||||||
|
# 'seed' is derived from the current random state, which will have
|
||||||
|
# previously been set in the main process.
|
||||||
|
seed = torch.randint(0, 100000, ()).item()
|
||||||
|
worker_init_fn = _SeedWorkers(seed)
|
||||||
|
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=False,
|
||||||
|
worker_init_fn=worker_init_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
|
transforms = []
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
valid_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
|
logging.debug("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=(
|
||||||
|
OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else eval(self.args.input_strategy)()
|
||||||
|
),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = DynamicBucketingSampler(
|
||||||
|
cuts,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.debug("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test,
|
||||||
|
batch_size=None,
|
||||||
|
sampler=sampler,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
)
|
||||||
|
return test_dl
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / f"voxpopuli-asr-{self.args.language}_cuts_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def validated_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get validated cuts (with dev/test removed)")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir
|
||||||
|
/ f"voxpopuli-asr-{self.args.language}_cuts_validated.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def invalidated_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get invalidated cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir
|
||||||
|
/ f"voxpopuli-asr-{self.args.language}_cuts_invalidated.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get dev cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / f"voxpopuli-asr-{self.args.language}_cuts_dev.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / f"voxpopuli-asr-{self.args.language}_cuts_test.jsonl.gz"
|
||||||
|
)
|
23
egs/voxpopuli/ASR/local/test_dataloader.py
Normal file
23
egs/voxpopuli/ASR/local/test_dataloader.py
Normal file
@ -0,0 +1,23 @@
|
|||||||
|
from asr_datamodule import VoxPopuliAsrDataModule
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
parser = get_parser()
|
||||||
|
VoxPopuliAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
voxpopuli = VoxPopuliAsrDataModule(args)
|
||||||
|
|
||||||
|
train_cuts = voxpopuli.train_cuts()
|
||||||
|
test_cuts = voxpopuli.test_cuts()
|
||||||
|
dev_cuts = voxpopuli.dev_cuts()
|
||||||
|
|
||||||
|
print(train_cuts)
|
||||||
|
print(test_cuts)
|
||||||
|
print(dev_cuts)
|
@ -3,9 +3,9 @@
|
|||||||
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
set -euxo pipefail
|
set -euo pipefail
|
||||||
|
|
||||||
nj=20
|
nj=4
|
||||||
stage=-1
|
stage=-1
|
||||||
stop_stage=100
|
stop_stage=100
|
||||||
|
|
||||||
@ -42,9 +42,9 @@ musan_dir=${dl_dir}/musan
|
|||||||
#
|
#
|
||||||
# See ASR_LANGUAGES in:
|
# See ASR_LANGUAGES in:
|
||||||
# https://github.com/lhotse-speech/lhotse/blob/c5f26afd100885b86e4244eeb33ca1986f3fa923/lhotse/recipes/voxpopuli.py#L54C4-L54C4
|
# https://github.com/lhotse-speech/lhotse/blob/c5f26afd100885b86e4244eeb33ca1986f3fa923/lhotse/recipes/voxpopuli.py#L54C4-L54C4
|
||||||
lang=en
|
lang="es"
|
||||||
|
|
||||||
task=asr
|
task="asr"
|
||||||
|
|
||||||
. shared/parse_options.sh || exit 1
|
. shared/parse_options.sh || exit 1
|
||||||
|
|
||||||
@ -147,7 +147,7 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|||||||
log "Stage 5: Compute fbank for train set of VoxPopuli"
|
log "Stage 5: Compute fbank for train set of VoxPopuli"
|
||||||
if [ ! -e data/fbank/.voxpopuli-${task}-${lang}-train.done ]; then
|
if [ ! -e data/fbank/.voxpopuli-${task}-${lang}-train.done ]; then
|
||||||
./local/compute_fbank.py --src-dir data/fbank --output-dir data/fbank \
|
./local/compute_fbank.py --src-dir data/fbank --output-dir data/fbank \
|
||||||
--num-jobs 100 --num-workers ${nj} \
|
--num-jobs 1000 --num-workers ${nj} \
|
||||||
--prefix "voxpopuli-${task}-${lang}" \
|
--prefix "voxpopuli-${task}-${lang}" \
|
||||||
--dataset train \
|
--dataset train \
|
||||||
--trim-to-supervisions True \
|
--trim-to-supervisions True \
|
||||||
@ -161,8 +161,8 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|||||||
for dataset in "dev" "test" "train"; do
|
for dataset in "dev" "test" "train"; do
|
||||||
mkdir -p data/fbank/log/
|
mkdir -p data/fbank/log/
|
||||||
./local/validate_cutset_manifest.py \
|
./local/validate_cutset_manifest.py \
|
||||||
data/fbank/voxpopuli-asr-en_cuts_${dataset}.jsonl.gz \
|
data/fbank/voxpopuli-asr-${lang}_cuts_${dataset}.jsonl.gz \
|
||||||
2>&1 | tee data/fbank/log/validate_voxpopuli-asr-en_cuts_${dataset}.log
|
2>&1 | tee data/fbank/log/validate_voxpopuli-asr-${lang}_cuts_${dataset}.log
|
||||||
done
|
done
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
1
egs/voxpopuli/ASR/zipformer/asr_datamodule.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../local/asr_datamodule.py
|
1
egs/voxpopuli/ASR/zipformer/beam_search.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/beam_search.py
|
1052
egs/voxpopuli/ASR/zipformer/decode.py
Executable file
1052
egs/voxpopuli/ASR/zipformer/decode.py
Executable file
File diff suppressed because it is too large
Load Diff
813
egs/voxpopuli/ASR/zipformer/decode_char.py
Executable file
813
egs/voxpopuli/ASR/zipformer/decode_char.py
Executable file
@ -0,0 +1,813 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021-2024 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||||
|
# Zengwei Yao
|
||||||
|
# Mingshuang Luo,
|
||||||
|
# Zengrui Jin,)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 35 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--lang-dir data/zh-HK/lang_char \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
(2) modified beam search
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 35 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--lang-dir data/zh-HK/lang_char \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) fast beam search (trivial_graph)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 35 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--lang-dir data/zh-HK/lang_char \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
|
|
||||||
|
(4) fast beam search (LG)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 30 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--lang-dir data/zh-HK/lang_char \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_LG \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
|
|
||||||
|
(5) fast beam search (nbest oracle WER)
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 35 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--lang-dir data/zh-HK/lang_char \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest_oracle \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64 \
|
||||||
|
--num-paths 200 \
|
||||||
|
--nbest-scale 0.5
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import CommonVoiceAsrDataModule
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_nbest_oracle,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
make_pad_mask,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=Path,
|
||||||
|
default="data/zh-HK/lang_char",
|
||||||
|
help="The lang dir containing word table and LG graph",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
- fast_beam_search_LG
|
||||||
|
- fast_beam_search_nbest_oracle
|
||||||
|
If you use fast_beam_search_LG, you have to specify
|
||||||
|
`--lang-dir`, which should contain `LG.pt`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=20.0,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search,
|
||||||
|
fast_beam_search, fast_beam_search_LG,
|
||||||
|
and fast_beam_search_nbest_oracle
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ngram-lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.01,
|
||||||
|
help="""
|
||||||
|
Used only when --decoding_method is fast_beam_search_LG.
|
||||||
|
It specifies the scale for n-gram LM scores.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ilme-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.2,
|
||||||
|
help="""
|
||||||
|
Used only when --decoding_method is fast_beam_search_LG.
|
||||||
|
It specifies the scale for the internal language model estimation.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search, fast_beam_search, fast_beam_search_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search, fast_beam_search, fast_beam_search_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=200,
|
||||||
|
help="""Number of paths for nbest decoding.
|
||||||
|
Used only when the decoding method is fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nbest-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""Scale applied to lattice scores when computing nbest paths.
|
||||||
|
Used only when the decoding method is and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--blank-penalty",
|
||||||
|
type=float,
|
||||||
|
default=0.0,
|
||||||
|
help="""
|
||||||
|
The penalty applied on blank symbol during decoding.
|
||||||
|
Note: It is a positive value that would be applied to logits like
|
||||||
|
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
|
||||||
|
[batch_size, vocab] and blank id is 0).
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
lexicon: Lexicon,
|
||||||
|
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||||
|
batch: dict,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||||
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
if params.causal:
|
||||||
|
# this seems to cause insertions at the end of the utterance if used with zipformer.
|
||||||
|
pad_len = 30
|
||||||
|
feature_lens += pad_len
|
||||||
|
feature = torch.nn.functional.pad(
|
||||||
|
feature,
|
||||||
|
pad=(0, 0, 0, pad_len),
|
||||||
|
value=LOG_EPS,
|
||||||
|
)
|
||||||
|
|
||||||
|
x, x_lens = model.encoder_embed(feature, feature_lens)
|
||||||
|
|
||||||
|
src_key_padding_mask = make_pad_mask(x_lens)
|
||||||
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(x, x_lens, src_key_padding_mask)
|
||||||
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
|
||||||
|
hyps = []
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
blank_penalty=params.blank_penalty,
|
||||||
|
)
|
||||||
|
for i in range(encoder_out.size(0)):
|
||||||
|
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
|
elif params.decoding_method == "fast_beam_search_LG":
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
blank_penalty=params.blank_penalty,
|
||||||
|
ilme_scale=params.ilme_scale,
|
||||||
|
)
|
||||||
|
for hyp in hyp_tokens:
|
||||||
|
sentence = "".join([lexicon.word_table[i] for i in hyp])
|
||||||
|
hyps.append(list(sentence))
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||||
|
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
ref_texts=graph_compiler.texts_to_ids(supervisions["text"]),
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
blank_penalty=params.blank_penalty,
|
||||||
|
)
|
||||||
|
for i in range(encoder_out.size(0)):
|
||||||
|
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
|
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
blank_penalty=params.blank_penalty,
|
||||||
|
)
|
||||||
|
for i in range(encoder_out.size(0)):
|
||||||
|
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
blank_penalty=params.blank_penalty,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for i in range(encoder_out.size(0)):
|
||||||
|
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||||
|
else:
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i + 1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
blank_penalty=params.blank_penalty,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
blank_penalty=params.blank_penalty,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyps.append([lexicon.token_table[idx] for idx in hyp])
|
||||||
|
|
||||||
|
key = f"blank_penalty_{params.blank_penalty}"
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search_" + key: hyps}
|
||||||
|
elif "fast_beam_search" in params.decoding_method:
|
||||||
|
key += f"_beam_{params.beam}_"
|
||||||
|
key += f"max_contexts_{params.max_contexts}_"
|
||||||
|
key += f"max_states_{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
key += f"_num_paths_{params.num_paths}_"
|
||||||
|
key += f"nbest_scale_{params.nbest_scale}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
key += f"_ilme_scale_{params.ilme_scale}"
|
||||||
|
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||||
|
|
||||||
|
return {key: hyps}
|
||||||
|
else:
|
||||||
|
return {f"beam_size_{params.beam_size}_" + key: hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
lexicon: Lexicon,
|
||||||
|
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||||
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
log_interval = 50
|
||||||
|
else:
|
||||||
|
log_interval = 20
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
texts = [list("".join(text.split())) for text in texts]
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
lexicon=lexicon,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||||
|
this_batch.append((cut_id, ref_text, hyp_words))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
CommonVoiceAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"modified_beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
"fast_beam_search_LG",
|
||||||
|
"fast_beam_search_nbest_oracle",
|
||||||
|
)
|
||||||
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if params.causal:
|
||||||
|
assert (
|
||||||
|
"," not in params.chunk_size
|
||||||
|
), "chunk_size should be one value in decoding."
|
||||||
|
assert (
|
||||||
|
"," not in params.left_context_frames
|
||||||
|
), "left_context_frames should be one value in decoding."
|
||||||
|
params.suffix += f"-chunk-{params.chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||||
|
params.suffix += f"-num-paths-{params.num_paths}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
params.suffix += f"_ilme_scale_{params.ilme_scale}"
|
||||||
|
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
params.suffix += f"-blank-penalty-{params.blank_penalty}"
|
||||||
|
|
||||||
|
if params.use_averaged_model:
|
||||||
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
params.blank_id = lexicon.token_table["<blk>"]
|
||||||
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||||
|
lexicon=lexicon,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
lg_filename = params.lang_dir / "LG.pt"
|
||||||
|
logging.info(f"Loading {lg_filename}")
|
||||||
|
decoding_graph = k2.Fsa.from_dict(
|
||||||
|
torch.load(lg_filename, map_location=device)
|
||||||
|
)
|
||||||
|
decoding_graph.scores *= params.ngram_lm_scale
|
||||||
|
else:
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
# we need cut ids to display recognition results.
|
||||||
|
args.return_cuts = True
|
||||||
|
commonvoice = CommonVoiceAsrDataModule(args)
|
||||||
|
|
||||||
|
def remove_short_utt(c: Cut):
|
||||||
|
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||||
|
if T <= 0:
|
||||||
|
logging.warning(
|
||||||
|
f"Exclude cut with ID {c.id} from decoding, num_frames : {c.num_frames}."
|
||||||
|
)
|
||||||
|
return T > 0
|
||||||
|
|
||||||
|
dev_cuts = commonvoice.dev_cuts()
|
||||||
|
dev_cuts = dev_cuts.filter(remove_short_utt)
|
||||||
|
dev_dl = commonvoice.valid_dataloaders(dev_cuts)
|
||||||
|
|
||||||
|
test_cuts = commonvoice.test_cuts()
|
||||||
|
test_cuts = test_cuts.filter(remove_short_utt)
|
||||||
|
test_dl = commonvoice.test_dataloaders(test_cuts)
|
||||||
|
|
||||||
|
test_sets = ["dev", "test"]
|
||||||
|
test_dls = [dev_dl, test_dl]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dls):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
lexicon=lexicon,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/voxpopuli/ASR/zipformer/decode_stream.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/decode_stream.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/decode_stream.py
|
1
egs/voxpopuli/ASR/zipformer/decoder.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/decoder.py
|
1
egs/voxpopuli/ASR/zipformer/encoder_interface.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/encoder_interface.py
|
1
egs/voxpopuli/ASR/zipformer/export-onnx-ctc.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/export-onnx-ctc.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/export-onnx-ctc.py
|
1
egs/voxpopuli/ASR/zipformer/export-onnx-streaming-ctc.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/export-onnx-streaming-ctc.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/export-onnx-streaming-ctc.py
|
1
egs/voxpopuli/ASR/zipformer/export-onnx-streaming.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/export-onnx-streaming.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/export-onnx-streaming.py
|
1
egs/voxpopuli/ASR/zipformer/export-onnx.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/export-onnx.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/export-onnx.py
|
1
egs/voxpopuli/ASR/zipformer/export.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/export.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/export.py
|
1
egs/voxpopuli/ASR/zipformer/joiner.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/joiner.py
|
1
egs/voxpopuli/ASR/zipformer/model.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/model.py
|
1
egs/voxpopuli/ASR/zipformer/onnx_check.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/onnx_check.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/onnx_check.py
|
1
egs/voxpopuli/ASR/zipformer/onnx_pretrained.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/onnx_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/onnx_pretrained.py
|
1
egs/voxpopuli/ASR/zipformer/optim.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/optim.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/optim.py
|
1
egs/voxpopuli/ASR/zipformer/scaling.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/scaling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/scaling.py
|
1
egs/voxpopuli/ASR/zipformer/scaling_converter.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/scaling_converter.py
|
1
egs/voxpopuli/ASR/zipformer/streaming_beam_search.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/streaming_beam_search.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/streaming_beam_search.py
|
859
egs/voxpopuli/ASR/zipformer/streaming_decode.py
Executable file
859
egs/voxpopuli/ASR/zipformer/streaming_decode.py
Executable file
@ -0,0 +1,859 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang,
|
||||||
|
# Fangjun Kuang,
|
||||||
|
# Zengwei Yao,
|
||||||
|
# Zengrui Jin,)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./zipformer/streaming_decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 32 \
|
||||||
|
--left-context-frames 256 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--num-decode-streams 2000
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import numpy as np
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from asr_datamodule import CommonVoiceAsrDataModule
|
||||||
|
from decode_stream import DecodeStream
|
||||||
|
from kaldifeat import Fbank, FbankOptions
|
||||||
|
from lhotse import CutSet
|
||||||
|
from streaming_beam_search import (
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from torch import Tensor, nn
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
make_pad_mask,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Supported decoding methods are:
|
||||||
|
greedy_search
|
||||||
|
modified_beam_search
|
||||||
|
fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num_active_paths",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An interger indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=32,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-decode-streams",
|
||||||
|
type=int,
|
||||||
|
default=2000,
|
||||||
|
help="The number of streams that can be decoded parallel.",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_init_states(
|
||||||
|
model: nn.Module,
|
||||||
|
batch_size: int = 1,
|
||||||
|
device: torch.device = torch.device("cpu"),
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||||
|
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||||
|
states[-2] is the cached left padding for ConvNeXt module,
|
||||||
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||||
|
states[-1] is processed_lens of shape (batch,), which records the number
|
||||||
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||||
|
"""
|
||||||
|
states = model.encoder.get_init_states(batch_size, device)
|
||||||
|
|
||||||
|
embed_states = model.encoder_embed.get_init_states(batch_size, device)
|
||||||
|
states.append(embed_states)
|
||||||
|
|
||||||
|
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||||
|
states.append(processed_lens)
|
||||||
|
|
||||||
|
return states
|
||||||
|
|
||||||
|
|
||||||
|
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
|
||||||
|
"""Stack list of zipformer states that correspond to separate utterances
|
||||||
|
into a single emformer state, so that it can be used as an input for
|
||||||
|
zipformer when those utterances are formed into a batch.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_list:
|
||||||
|
Each element in state_list corresponding to the internal state
|
||||||
|
of the zipformer model for a single utterance. For element-n,
|
||||||
|
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
|
||||||
|
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
|
||||||
|
cached_val2, cached_conv1, cached_conv2).
|
||||||
|
state_list[n][-2] is the cached left padding for ConvNeXt module,
|
||||||
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||||
|
state_list[n][-1] is processed_lens of shape (batch,), which records the number
|
||||||
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
It is the inverse of :func:`unstack_states`.
|
||||||
|
"""
|
||||||
|
batch_size = len(state_list)
|
||||||
|
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
|
||||||
|
tot_num_layers = (len(state_list[0]) - 2) // 6
|
||||||
|
|
||||||
|
batch_states = []
|
||||||
|
for layer in range(tot_num_layers):
|
||||||
|
layer_offset = layer * 6
|
||||||
|
# cached_key: (left_context_len, batch_size, key_dim)
|
||||||
|
cached_key = torch.cat(
|
||||||
|
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||||
|
cached_nonlin_attn = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val1 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val2 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_conv1: (#batch, channels, left_pad)
|
||||||
|
cached_conv1 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
|
||||||
|
)
|
||||||
|
# cached_conv2: (#batch, channels, left_pad)
|
||||||
|
cached_conv2 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
|
||||||
|
)
|
||||||
|
batch_states += [
|
||||||
|
cached_key,
|
||||||
|
cached_nonlin_attn,
|
||||||
|
cached_val1,
|
||||||
|
cached_val2,
|
||||||
|
cached_conv1,
|
||||||
|
cached_conv2,
|
||||||
|
]
|
||||||
|
|
||||||
|
cached_embed_left_pad = torch.cat(
|
||||||
|
[state_list[i][-2] for i in range(batch_size)], dim=0
|
||||||
|
)
|
||||||
|
batch_states.append(cached_embed_left_pad)
|
||||||
|
|
||||||
|
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
|
||||||
|
batch_states.append(processed_lens)
|
||||||
|
|
||||||
|
return batch_states
|
||||||
|
|
||||||
|
|
||||||
|
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
||||||
|
"""Unstack the zipformer state corresponding to a batch of utterances
|
||||||
|
into a list of states, where the i-th entry is the state from the i-th
|
||||||
|
utterance in the batch.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
It is the inverse of :func:`stack_states`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
batch_states: A list of cached tensors of all encoder layers. For layer-i,
|
||||||
|
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
|
||||||
|
cached_conv1, cached_conv2).
|
||||||
|
state_list[-2] is the cached left padding for ConvNeXt module,
|
||||||
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||||
|
states[-1] is processed_lens of shape (batch,), which records the number
|
||||||
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
state_list: A list of list. Each element in state_list corresponding to the internal state
|
||||||
|
of the zipformer model for a single utterance.
|
||||||
|
"""
|
||||||
|
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
|
||||||
|
tot_num_layers = (len(batch_states) - 2) // 6
|
||||||
|
|
||||||
|
processed_lens = batch_states[-1]
|
||||||
|
batch_size = processed_lens.shape[0]
|
||||||
|
|
||||||
|
state_list = [[] for _ in range(batch_size)]
|
||||||
|
|
||||||
|
for layer in range(tot_num_layers):
|
||||||
|
layer_offset = layer * 6
|
||||||
|
# cached_key: (left_context_len, batch_size, key_dim)
|
||||||
|
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
|
||||||
|
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||||
|
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
|
||||||
|
chunks=batch_size, dim=1
|
||||||
|
)
|
||||||
|
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val1_list = batch_states[layer_offset + 2].chunk(
|
||||||
|
chunks=batch_size, dim=1
|
||||||
|
)
|
||||||
|
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val2_list = batch_states[layer_offset + 3].chunk(
|
||||||
|
chunks=batch_size, dim=1
|
||||||
|
)
|
||||||
|
# cached_conv1: (#batch, channels, left_pad)
|
||||||
|
cached_conv1_list = batch_states[layer_offset + 4].chunk(
|
||||||
|
chunks=batch_size, dim=0
|
||||||
|
)
|
||||||
|
# cached_conv2: (#batch, channels, left_pad)
|
||||||
|
cached_conv2_list = batch_states[layer_offset + 5].chunk(
|
||||||
|
chunks=batch_size, dim=0
|
||||||
|
)
|
||||||
|
for i in range(batch_size):
|
||||||
|
state_list[i] += [
|
||||||
|
cached_key_list[i],
|
||||||
|
cached_nonlin_attn_list[i],
|
||||||
|
cached_val1_list[i],
|
||||||
|
cached_val2_list[i],
|
||||||
|
cached_conv1_list[i],
|
||||||
|
cached_conv2_list[i],
|
||||||
|
]
|
||||||
|
|
||||||
|
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
|
||||||
|
for i in range(batch_size):
|
||||||
|
state_list[i].append(cached_embed_left_pad_list[i])
|
||||||
|
|
||||||
|
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
|
||||||
|
for i in range(batch_size):
|
||||||
|
state_list[i].append(processed_lens_list[i])
|
||||||
|
|
||||||
|
return state_list
|
||||||
|
|
||||||
|
|
||||||
|
def streaming_forward(
|
||||||
|
features: Tensor,
|
||||||
|
feature_lens: Tensor,
|
||||||
|
model: nn.Module,
|
||||||
|
states: List[Tensor],
|
||||||
|
chunk_size: int,
|
||||||
|
left_context_len: int,
|
||||||
|
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||||
|
"""
|
||||||
|
Returns encoder outputs, output lengths, and updated states.
|
||||||
|
"""
|
||||||
|
cached_embed_left_pad = states[-2]
|
||||||
|
(x, x_lens, new_cached_embed_left_pad) = model.encoder_embed.streaming_forward(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
cached_left_pad=cached_embed_left_pad,
|
||||||
|
)
|
||||||
|
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||||
|
|
||||||
|
src_key_padding_mask = make_pad_mask(x_lens)
|
||||||
|
|
||||||
|
# processed_mask is used to mask out initial states
|
||||||
|
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||||
|
x.size(0), left_context_len
|
||||||
|
)
|
||||||
|
processed_lens = states[-1] # (batch,)
|
||||||
|
# (batch, left_context_size)
|
||||||
|
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||||
|
# Update processed lengths
|
||||||
|
new_processed_lens = processed_lens + x_lens
|
||||||
|
|
||||||
|
# (batch, left_context_size + chunk_size)
|
||||||
|
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||||
|
|
||||||
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
encoder_states = states[:-2]
|
||||||
|
(
|
||||||
|
encoder_out,
|
||||||
|
encoder_out_lens,
|
||||||
|
new_encoder_states,
|
||||||
|
) = model.encoder.streaming_forward(
|
||||||
|
x=x,
|
||||||
|
x_lens=x_lens,
|
||||||
|
states=encoder_states,
|
||||||
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
|
)
|
||||||
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
|
||||||
|
new_states = new_encoder_states + [
|
||||||
|
new_cached_embed_left_pad,
|
||||||
|
new_processed_lens,
|
||||||
|
]
|
||||||
|
return encoder_out, encoder_out_lens, new_states
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_chunk(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
decode_streams: List[DecodeStream],
|
||||||
|
) -> List[int]:
|
||||||
|
"""Decode one chunk frames of features for each decode_streams and
|
||||||
|
return the indexes of finished streams in a List.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
decode_streams:
|
||||||
|
A List of DecodeStream, each belonging to a utterance.
|
||||||
|
Returns:
|
||||||
|
Return a List containing which DecodeStreams are finished.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
chunk_size = int(params.chunk_size)
|
||||||
|
left_context_len = int(params.left_context_frames)
|
||||||
|
|
||||||
|
features = []
|
||||||
|
feature_lens = []
|
||||||
|
states = []
|
||||||
|
processed_lens = [] # Used in fast-beam-search
|
||||||
|
|
||||||
|
for stream in decode_streams:
|
||||||
|
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
|
||||||
|
features.append(feat)
|
||||||
|
feature_lens.append(feat_len)
|
||||||
|
states.append(stream.states)
|
||||||
|
processed_lens.append(stream.done_frames)
|
||||||
|
|
||||||
|
feature_lens = torch.tensor(feature_lens, device=device)
|
||||||
|
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||||
|
|
||||||
|
# Make sure the length after encoder_embed is at least 1.
|
||||||
|
# The encoder_embed subsample features (T - 7) // 2
|
||||||
|
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||||
|
tail_length = chunk_size * 2 + 7 + 2 * 3
|
||||||
|
if features.size(1) < tail_length:
|
||||||
|
pad_length = tail_length - features.size(1)
|
||||||
|
feature_lens += pad_length
|
||||||
|
features = torch.nn.functional.pad(
|
||||||
|
features,
|
||||||
|
(0, 0, 0, pad_length),
|
||||||
|
mode="constant",
|
||||||
|
value=LOG_EPS,
|
||||||
|
)
|
||||||
|
|
||||||
|
states = stack_states(states)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens, new_states = streaming_forward(
|
||||||
|
features=features,
|
||||||
|
feature_lens=feature_lens,
|
||||||
|
model=model,
|
||||||
|
states=states,
|
||||||
|
chunk_size=chunk_size,
|
||||||
|
left_context_len=left_context_len,
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
processed_lens = torch.tensor(processed_lens, device=device)
|
||||||
|
processed_lens = processed_lens + encoder_out_lens
|
||||||
|
fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
processed_lens=processed_lens,
|
||||||
|
streams=decode_streams,
|
||||||
|
beam=params.beam,
|
||||||
|
max_states=params.max_states,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
streams=decode_streams,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
num_active_paths=params.num_active_paths,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||||
|
|
||||||
|
states = unstack_states(new_states)
|
||||||
|
|
||||||
|
finished_streams = []
|
||||||
|
for i in range(len(decode_streams)):
|
||||||
|
decode_streams[i].states = states[i]
|
||||||
|
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||||
|
if decode_streams[i].done:
|
||||||
|
finished_streams.append(i)
|
||||||
|
|
||||||
|
return finished_streams
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
cuts: CutSet,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
cuts:
|
||||||
|
Lhotse Cutset containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
opts = FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = 16000
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
|
||||||
|
log_interval = 100
|
||||||
|
|
||||||
|
decode_results = []
|
||||||
|
# Contain decode streams currently running.
|
||||||
|
decode_streams = []
|
||||||
|
for num, cut in enumerate(cuts):
|
||||||
|
# each utterance has a DecodeStream.
|
||||||
|
initial_states = get_init_states(model=model, batch_size=1, device=device)
|
||||||
|
decode_stream = DecodeStream(
|
||||||
|
params=params,
|
||||||
|
cut_id=cut.id,
|
||||||
|
initial_states=initial_states,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
audio: np.ndarray = cut.load_audio()
|
||||||
|
# audio.shape: (1, num_samples)
|
||||||
|
assert len(audio.shape) == 2
|
||||||
|
assert audio.shape[0] == 1, "Should be single channel"
|
||||||
|
assert audio.dtype == np.float32, audio.dtype
|
||||||
|
|
||||||
|
# The trained model is using normalized samples
|
||||||
|
# - this is to avoid sending [-32k,+32k] signal in...
|
||||||
|
# - some lhotse AudioTransform classes can make the signal
|
||||||
|
# be out of range [-1, 1], hence the tolerance 10
|
||||||
|
assert (
|
||||||
|
np.abs(audio).max() <= 10
|
||||||
|
), "Should be normalized to [-1, 1], 10 for tolerance..."
|
||||||
|
|
||||||
|
samples = torch.from_numpy(audio).squeeze(0)
|
||||||
|
|
||||||
|
fbank = Fbank(opts)
|
||||||
|
feature = fbank(samples.to(device))
|
||||||
|
decode_stream.set_features(feature, tail_pad_len=30)
|
||||||
|
decode_stream.ground_truth = cut.supervisions[0].text
|
||||||
|
|
||||||
|
decode_streams.append(decode_stream)
|
||||||
|
|
||||||
|
while len(decode_streams) >= params.num_decode_streams:
|
||||||
|
finished_streams = decode_one_chunk(
|
||||||
|
params=params, model=model, decode_streams=decode_streams
|
||||||
|
)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
decode_streams[i].id,
|
||||||
|
decode_streams[i].ground_truth.split(),
|
||||||
|
sp.decode(decode_streams[i].decoding_result()).split(),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
if num % log_interval == 0:
|
||||||
|
logging.info(f"Cuts processed until now is {num}.")
|
||||||
|
|
||||||
|
# decode final chunks of last sequences
|
||||||
|
while len(decode_streams):
|
||||||
|
finished_streams = decode_one_chunk(
|
||||||
|
params=params, model=model, decode_streams=decode_streams
|
||||||
|
)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
decode_streams[i].id,
|
||||||
|
decode_streams[i].ground_truth.split(),
|
||||||
|
sp.decode(decode_streams[i].decoding_result()).split(),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
key = "greedy_search"
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
key = (
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
key = f"num_active_paths_{params.num_active_paths}"
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||||
|
return {key: decode_results}
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
CommonVoiceAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
assert params.causal, params.causal
|
||||||
|
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
|
||||||
|
assert (
|
||||||
|
"," not in params.left_context_frames
|
||||||
|
), "left_context_frames should be one value in decoding."
|
||||||
|
params.suffix += f"-chunk-{params.chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||||
|
|
||||||
|
# for fast_beam_search
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
|
||||||
|
if params.use_averaged_model:
|
||||||
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
decoding_graph = None
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
commonvoice = CommonVoiceAsrDataModule(args)
|
||||||
|
|
||||||
|
test_cuts = commonvoice.test_cuts()
|
||||||
|
dev_cuts = commonvoice.dev_cuts()
|
||||||
|
|
||||||
|
test_sets = ["test", "dev"]
|
||||||
|
test_cuts = [test_cuts, dev_cuts]
|
||||||
|
|
||||||
|
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
cuts=test_cut,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
861
egs/voxpopuli/ASR/zipformer/streaming_decode_char.py
Executable file
861
egs/voxpopuli/ASR/zipformer/streaming_decode_char.py
Executable file
@ -0,0 +1,861 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022-2024 Xiaomi Corporation (Authors: Wei Kang,
|
||||||
|
# Fangjun Kuang,
|
||||||
|
# Zengwei Yao,
|
||||||
|
# Zengrui Jin)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./zipformer/streaming_decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--causal 1 \
|
||||||
|
--chunk-size 32 \
|
||||||
|
--left-context-frames 256 \
|
||||||
|
--exp-dir ./zipformer/exp \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--num-decode-streams 2000
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from asr_datamodule import CommonVoiceAsrDataModule
|
||||||
|
from decode_stream import DecodeStream
|
||||||
|
from kaldifeat import Fbank, FbankOptions
|
||||||
|
from lhotse import CutSet
|
||||||
|
from streaming_beam_search import (
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from torch import Tensor, nn
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
make_pad_mask,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="zipformer/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/zh-HK/lang_char",
|
||||||
|
help="Path to the lang dir(containing lexicon, tokens, etc.)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Supported decoding methods are:
|
||||||
|
greedy_search
|
||||||
|
modified_beam_search
|
||||||
|
fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num_active_paths",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An interger indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=32,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-decode-streams",
|
||||||
|
type=int,
|
||||||
|
default=2000,
|
||||||
|
help="The number of streams that can be decoded parallel.",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_init_states(
|
||||||
|
model: nn.Module,
|
||||||
|
batch_size: int = 1,
|
||||||
|
device: torch.device = torch.device("cpu"),
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||||
|
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||||
|
states[-2] is the cached left padding for ConvNeXt module,
|
||||||
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||||
|
states[-1] is processed_lens of shape (batch,), which records the number
|
||||||
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||||
|
"""
|
||||||
|
states = model.encoder.get_init_states(batch_size, device)
|
||||||
|
|
||||||
|
embed_states = model.encoder_embed.get_init_states(batch_size, device)
|
||||||
|
states.append(embed_states)
|
||||||
|
|
||||||
|
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||||
|
states.append(processed_lens)
|
||||||
|
|
||||||
|
return states
|
||||||
|
|
||||||
|
|
||||||
|
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
|
||||||
|
"""Stack list of zipformer states that correspond to separate utterances
|
||||||
|
into a single emformer state, so that it can be used as an input for
|
||||||
|
zipformer when those utterances are formed into a batch.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_list:
|
||||||
|
Each element in state_list corresponding to the internal state
|
||||||
|
of the zipformer model for a single utterance. For element-n,
|
||||||
|
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
|
||||||
|
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
|
||||||
|
cached_val2, cached_conv1, cached_conv2).
|
||||||
|
state_list[n][-2] is the cached left padding for ConvNeXt module,
|
||||||
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||||
|
state_list[n][-1] is processed_lens of shape (batch,), which records the number
|
||||||
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
It is the inverse of :func:`unstack_states`.
|
||||||
|
"""
|
||||||
|
batch_size = len(state_list)
|
||||||
|
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
|
||||||
|
tot_num_layers = (len(state_list[0]) - 2) // 6
|
||||||
|
|
||||||
|
batch_states = []
|
||||||
|
for layer in range(tot_num_layers):
|
||||||
|
layer_offset = layer * 6
|
||||||
|
# cached_key: (left_context_len, batch_size, key_dim)
|
||||||
|
cached_key = torch.cat(
|
||||||
|
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||||
|
cached_nonlin_attn = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val1 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val2 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
|
||||||
|
)
|
||||||
|
# cached_conv1: (#batch, channels, left_pad)
|
||||||
|
cached_conv1 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
|
||||||
|
)
|
||||||
|
# cached_conv2: (#batch, channels, left_pad)
|
||||||
|
cached_conv2 = torch.cat(
|
||||||
|
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
|
||||||
|
)
|
||||||
|
batch_states += [
|
||||||
|
cached_key,
|
||||||
|
cached_nonlin_attn,
|
||||||
|
cached_val1,
|
||||||
|
cached_val2,
|
||||||
|
cached_conv1,
|
||||||
|
cached_conv2,
|
||||||
|
]
|
||||||
|
|
||||||
|
cached_embed_left_pad = torch.cat(
|
||||||
|
[state_list[i][-2] for i in range(batch_size)], dim=0
|
||||||
|
)
|
||||||
|
batch_states.append(cached_embed_left_pad)
|
||||||
|
|
||||||
|
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
|
||||||
|
batch_states.append(processed_lens)
|
||||||
|
|
||||||
|
return batch_states
|
||||||
|
|
||||||
|
|
||||||
|
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
||||||
|
"""Unstack the zipformer state corresponding to a batch of utterances
|
||||||
|
into a list of states, where the i-th entry is the state from the i-th
|
||||||
|
utterance in the batch.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
It is the inverse of :func:`stack_states`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
batch_states: A list of cached tensors of all encoder layers. For layer-i,
|
||||||
|
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
|
||||||
|
cached_conv1, cached_conv2).
|
||||||
|
state_list[-2] is the cached left padding for ConvNeXt module,
|
||||||
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||||
|
states[-1] is processed_lens of shape (batch,), which records the number
|
||||||
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
state_list: A list of list. Each element in state_list corresponding to the internal state
|
||||||
|
of the zipformer model for a single utterance.
|
||||||
|
"""
|
||||||
|
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
|
||||||
|
tot_num_layers = (len(batch_states) - 2) // 6
|
||||||
|
|
||||||
|
processed_lens = batch_states[-1]
|
||||||
|
batch_size = processed_lens.shape[0]
|
||||||
|
|
||||||
|
state_list = [[] for _ in range(batch_size)]
|
||||||
|
|
||||||
|
for layer in range(tot_num_layers):
|
||||||
|
layer_offset = layer * 6
|
||||||
|
# cached_key: (left_context_len, batch_size, key_dim)
|
||||||
|
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
|
||||||
|
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||||
|
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
|
||||||
|
chunks=batch_size, dim=1
|
||||||
|
)
|
||||||
|
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val1_list = batch_states[layer_offset + 2].chunk(
|
||||||
|
chunks=batch_size, dim=1
|
||||||
|
)
|
||||||
|
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||||
|
cached_val2_list = batch_states[layer_offset + 3].chunk(
|
||||||
|
chunks=batch_size, dim=1
|
||||||
|
)
|
||||||
|
# cached_conv1: (#batch, channels, left_pad)
|
||||||
|
cached_conv1_list = batch_states[layer_offset + 4].chunk(
|
||||||
|
chunks=batch_size, dim=0
|
||||||
|
)
|
||||||
|
# cached_conv2: (#batch, channels, left_pad)
|
||||||
|
cached_conv2_list = batch_states[layer_offset + 5].chunk(
|
||||||
|
chunks=batch_size, dim=0
|
||||||
|
)
|
||||||
|
for i in range(batch_size):
|
||||||
|
state_list[i] += [
|
||||||
|
cached_key_list[i],
|
||||||
|
cached_nonlin_attn_list[i],
|
||||||
|
cached_val1_list[i],
|
||||||
|
cached_val2_list[i],
|
||||||
|
cached_conv1_list[i],
|
||||||
|
cached_conv2_list[i],
|
||||||
|
]
|
||||||
|
|
||||||
|
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
|
||||||
|
for i in range(batch_size):
|
||||||
|
state_list[i].append(cached_embed_left_pad_list[i])
|
||||||
|
|
||||||
|
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
|
||||||
|
for i in range(batch_size):
|
||||||
|
state_list[i].append(processed_lens_list[i])
|
||||||
|
|
||||||
|
return state_list
|
||||||
|
|
||||||
|
|
||||||
|
def streaming_forward(
|
||||||
|
features: Tensor,
|
||||||
|
feature_lens: Tensor,
|
||||||
|
model: nn.Module,
|
||||||
|
states: List[Tensor],
|
||||||
|
chunk_size: int,
|
||||||
|
left_context_len: int,
|
||||||
|
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||||
|
"""
|
||||||
|
Returns encoder outputs, output lengths, and updated states.
|
||||||
|
"""
|
||||||
|
cached_embed_left_pad = states[-2]
|
||||||
|
(x, x_lens, new_cached_embed_left_pad) = model.encoder_embed.streaming_forward(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
cached_left_pad=cached_embed_left_pad,
|
||||||
|
)
|
||||||
|
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||||
|
|
||||||
|
src_key_padding_mask = make_pad_mask(x_lens)
|
||||||
|
|
||||||
|
# processed_mask is used to mask out initial states
|
||||||
|
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||||
|
x.size(0), left_context_len
|
||||||
|
)
|
||||||
|
processed_lens = states[-1] # (batch,)
|
||||||
|
# (batch, left_context_size)
|
||||||
|
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||||
|
# Update processed lengths
|
||||||
|
new_processed_lens = processed_lens + x_lens
|
||||||
|
|
||||||
|
# (batch, left_context_size + chunk_size)
|
||||||
|
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||||
|
|
||||||
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
encoder_states = states[:-2]
|
||||||
|
(
|
||||||
|
encoder_out,
|
||||||
|
encoder_out_lens,
|
||||||
|
new_encoder_states,
|
||||||
|
) = model.encoder.streaming_forward(
|
||||||
|
x=x,
|
||||||
|
x_lens=x_lens,
|
||||||
|
states=encoder_states,
|
||||||
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
|
)
|
||||||
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
|
|
||||||
|
new_states = new_encoder_states + [
|
||||||
|
new_cached_embed_left_pad,
|
||||||
|
new_processed_lens,
|
||||||
|
]
|
||||||
|
return encoder_out, encoder_out_lens, new_states
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_chunk(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
decode_streams: List[DecodeStream],
|
||||||
|
) -> List[int]:
|
||||||
|
"""Decode one chunk frames of features for each decode_streams and
|
||||||
|
return the indexes of finished streams in a List.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
decode_streams:
|
||||||
|
A List of DecodeStream, each belonging to a utterance.
|
||||||
|
Returns:
|
||||||
|
Return a List containing which DecodeStreams are finished.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
chunk_size = int(params.chunk_size)
|
||||||
|
left_context_len = int(params.left_context_frames)
|
||||||
|
|
||||||
|
features = []
|
||||||
|
feature_lens = []
|
||||||
|
states = []
|
||||||
|
processed_lens = [] # Used in fast-beam-search
|
||||||
|
|
||||||
|
for stream in decode_streams:
|
||||||
|
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
|
||||||
|
features.append(feat)
|
||||||
|
feature_lens.append(feat_len)
|
||||||
|
states.append(stream.states)
|
||||||
|
processed_lens.append(stream.done_frames)
|
||||||
|
|
||||||
|
feature_lens = torch.tensor(feature_lens, device=device)
|
||||||
|
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||||
|
|
||||||
|
# Make sure the length after encoder_embed is at least 1.
|
||||||
|
# The encoder_embed subsample features (T - 7) // 2
|
||||||
|
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||||
|
tail_length = chunk_size * 2 + 7 + 2 * 3
|
||||||
|
if features.size(1) < tail_length:
|
||||||
|
pad_length = tail_length - features.size(1)
|
||||||
|
feature_lens += pad_length
|
||||||
|
features = torch.nn.functional.pad(
|
||||||
|
features,
|
||||||
|
(0, 0, 0, pad_length),
|
||||||
|
mode="constant",
|
||||||
|
value=LOG_EPS,
|
||||||
|
)
|
||||||
|
|
||||||
|
states = stack_states(states)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens, new_states = streaming_forward(
|
||||||
|
features=features,
|
||||||
|
feature_lens=feature_lens,
|
||||||
|
model=model,
|
||||||
|
states=states,
|
||||||
|
chunk_size=chunk_size,
|
||||||
|
left_context_len=left_context_len,
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
processed_lens = torch.tensor(processed_lens, device=device)
|
||||||
|
processed_lens = processed_lens + encoder_out_lens
|
||||||
|
fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
processed_lens=processed_lens,
|
||||||
|
streams=decode_streams,
|
||||||
|
beam=params.beam,
|
||||||
|
max_states=params.max_states,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
streams=decode_streams,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
num_active_paths=params.num_active_paths,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||||
|
|
||||||
|
states = unstack_states(new_states)
|
||||||
|
|
||||||
|
finished_streams = []
|
||||||
|
for i in range(len(decode_streams)):
|
||||||
|
decode_streams[i].states = states[i]
|
||||||
|
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||||
|
if decode_streams[i].done:
|
||||||
|
finished_streams.append(i)
|
||||||
|
|
||||||
|
return finished_streams
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
cuts: CutSet,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
lexicon: Lexicon,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
cuts:
|
||||||
|
Lhotse Cutset containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
opts = FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = 16000
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
|
||||||
|
log_interval = 100
|
||||||
|
|
||||||
|
decode_results = []
|
||||||
|
# Contain decode streams currently running.
|
||||||
|
decode_streams = []
|
||||||
|
for num, cut in enumerate(cuts):
|
||||||
|
# each utterance has a DecodeStream.
|
||||||
|
initial_states = get_init_states(model=model, batch_size=1, device=device)
|
||||||
|
decode_stream = DecodeStream(
|
||||||
|
params=params,
|
||||||
|
cut_id=cut.id,
|
||||||
|
initial_states=initial_states,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
audio: np.ndarray = cut.load_audio()
|
||||||
|
# audio.shape: (1, num_samples)
|
||||||
|
assert len(audio.shape) == 2
|
||||||
|
assert audio.shape[0] == 1, "Should be single channel"
|
||||||
|
assert audio.dtype == np.float32, audio.dtype
|
||||||
|
|
||||||
|
# The trained model is using normalized samples
|
||||||
|
# - this is to avoid sending [-32k,+32k] signal in...
|
||||||
|
# - some lhotse AudioTransform classes can make the signal
|
||||||
|
# be out of range [-1, 1], hence the tolerance 10
|
||||||
|
assert (
|
||||||
|
np.abs(audio).max() <= 10
|
||||||
|
), "Should be normalized to [-1, 1], 10 for tolerance..."
|
||||||
|
|
||||||
|
samples = torch.from_numpy(audio).squeeze(0)
|
||||||
|
|
||||||
|
fbank = Fbank(opts)
|
||||||
|
feature = fbank(samples.to(device))
|
||||||
|
decode_stream.set_features(feature, tail_pad_len=30)
|
||||||
|
decode_stream.ground_truth = cut.supervisions[0].text
|
||||||
|
|
||||||
|
decode_streams.append(decode_stream)
|
||||||
|
|
||||||
|
while len(decode_streams) >= params.num_decode_streams:
|
||||||
|
finished_streams = decode_one_chunk(
|
||||||
|
params=params, model=model, decode_streams=decode_streams
|
||||||
|
)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
decode_streams[i].id,
|
||||||
|
decode_streams[i].ground_truth.split(),
|
||||||
|
[
|
||||||
|
lexicon.token_table[idx]
|
||||||
|
for idx in decode_streams[i].decoding_result()
|
||||||
|
],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
if num % log_interval == 0:
|
||||||
|
logging.info(f"Cuts processed until now is {num}.")
|
||||||
|
|
||||||
|
# decode final chunks of last sequences
|
||||||
|
while len(decode_streams):
|
||||||
|
finished_streams = decode_one_chunk(
|
||||||
|
params=params, model=model, decode_streams=decode_streams
|
||||||
|
)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
decode_streams[i].id,
|
||||||
|
decode_streams[i].ground_truth.split(),
|
||||||
|
[
|
||||||
|
lexicon.token_table[idx]
|
||||||
|
for idx in decode_streams[i].decoding_result()
|
||||||
|
],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
key = "greedy_search"
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
key = (
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
key = f"num_active_paths_{params.num_active_paths}"
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||||
|
return {key: decode_results}
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
CommonVoiceAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
assert params.causal, params.causal
|
||||||
|
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
|
||||||
|
assert (
|
||||||
|
"," not in params.left_context_frames
|
||||||
|
), "left_context_frames should be one value in decoding."
|
||||||
|
params.suffix += f"-chunk-{params.chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||||
|
|
||||||
|
# for fast_beam_search
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
|
||||||
|
if params.use_averaged_model:
|
||||||
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
params.blank_id = lexicon.token_table["<blk>"]
|
||||||
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
decoding_graph = None
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
commonvoice = CommonVoiceAsrDataModule(args)
|
||||||
|
|
||||||
|
test_cuts = commonvoice.test_cuts()
|
||||||
|
dev_cuts = commonvoice.dev_cuts()
|
||||||
|
|
||||||
|
test_sets = ["test", "dev"]
|
||||||
|
test_cuts = [test_cuts, dev_cuts]
|
||||||
|
|
||||||
|
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
cuts=test_cut,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
lexicon=lexicon,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/voxpopuli/ASR/zipformer/subsampling.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/subsampling.py
|
1411
egs/voxpopuli/ASR/zipformer/train.py
Executable file
1411
egs/voxpopuli/ASR/zipformer/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1051
egs/voxpopuli/ASR/zipformer/train_char.py
Executable file
1051
egs/voxpopuli/ASR/zipformer/train_char.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/voxpopuli/ASR/zipformer/zipformer.py
Symbolic link
1
egs/voxpopuli/ASR/zipformer/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/zipformer.py
|
Loading…
x
Reference in New Issue
Block a user