diff --git a/.github/workflows/run-yesno-recipe.yml b/.github/workflows/run-yesno-recipe.yml index 39a6a0e80..876b95e71 100644 --- a/.github/workflows/run-yesno-recipe.yml +++ b/.github/workflows/run-yesno-recipe.yml @@ -21,11 +21,11 @@ on: branches: - master pull_request: - branches: - - master + types: [labeled] jobs: run-yesno-recipe: + if: github.event.label.name == 'ready' || github.event_name == 'push' runs-on: ${{ matrix.os }} strategy: matrix: @@ -33,6 +33,8 @@ jobs: # TODO: enable macOS for CPU testing os: [ubuntu-18.04] python-version: [3.8] + torch: ["1.8.1"] + k2-version: ["1.9.dev20210919"] fail-fast: false steps: @@ -54,10 +56,8 @@ jobs: - name: Install Python dependencies run: | - python3 -m pip install --upgrade pip black flake8 python3 -m pip install -U pip - python3 -m pip install k2==1.4.dev20210822+cpu.torch1.7.1 -f https://k2-fsa.org/nightly/ - python3 -m pip install torchaudio==0.7.2 + pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/ python3 -m pip install git+https://github.com/lhotse-speech/lhotse # We are in ./icefall and there is a file: requirements.txt in it diff --git a/.github/workflows/style_check.yml b/.github/workflows/style_check.yml index 20c3363b4..2a743705a 100644 --- a/.github/workflows/style_check.yml +++ b/.github/workflows/style_check.yml @@ -45,7 +45,7 @@ jobs: - name: Install Python dependencies run: | - python3 -m pip install --upgrade pip black flake8 + python3 -m pip install --upgrade pip black==21.6b0 flake8==3.9.2 - name: Run flake8 shell: bash diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 9110e7db4..150b5258a 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -21,18 +21,19 @@ on: branches: - master pull_request: - branches: - - master + types: [labeled] jobs: test: + if: github.event.label.name == 'ready' || github.event_name == 'push' runs-on: ${{ matrix.os }} strategy: matrix: os: [ubuntu-18.04, macos-10.15] python-version: [3.6, 3.7, 3.8, 3.9] torch: ["1.8.1"] - k2-version: ["1.4.dev20210822"] + k2-version: ["1.9.dev20210919"] + fail-fast: false steps: @@ -52,6 +53,20 @@ jobs: # icefall requirements pip install -r requirements.txt + - name: Install graphviz + if: startsWith(matrix.os, 'ubuntu') + shell: bash + run: | + python3 -m pip install -qq graphviz + sudo apt-get -qq install graphviz + + - name: Install graphviz + if: startsWith(matrix.os, 'macos') + shell: bash + run: | + python3 -m pip install -qq graphviz + brew install -q graphviz + - name: Run tests if: startsWith(matrix.os, 'ubuntu') run: | diff --git a/.gitignore b/.gitignore index 839a1c34a..e6c84ca5e 100644 --- a/.gitignore +++ b/.gitignore @@ -4,4 +4,4 @@ path.sh exp exp*/ *.pt -download/ +download diff --git a/README.md b/README.md index 0a9b657b3..dc03c5883 100644 --- a/README.md +++ b/README.md @@ -1,80 +1,61 @@ - -# Table of Contents - -- [Installation](#installation) - * [Install k2](#install-k2) - * [Install lhotse](#install-lhotse) - * [Install icefall](#install-icefall) -- [Run recipes](#run-recipes) +
+ +
## Installation -`icefall` depends on [k2][k2] for FSA operations and [lhotse][lhotse] for -data preparations. To use `icefall`, you have to install its dependencies first. -The following subsections describe how to setup the environment. - -CAUTION: There are various ways to setup the environment. What we describe -here is just one alternative. - -### Install k2 - -Please refer to [k2's installation documentation][k2-install] to install k2. -If you have any issues about installing k2, please open an issue at -. - -### Install lhotse - -Please refer to [lhotse's installation documentation][lhotse-install] to install -lhotse. - -### Install icefall - -`icefall` is a set of Python scripts. What you need to do is just to set -the environment variable `PYTHONPATH`: - -```bash -cd $HOME/open-source -git clone https://github.com/k2-fsa/icefall -cd icefall -pip install -r requirements.txt -export PYTHONPATH=$HOME/open-source/icefall:$PYTHONPATHON -``` - -To verify `icefall` was installed successfully, you can run: - -```bash -python3 -c "import icefall; print(icefall.__file__)" -``` - -It should print the path to `icefall`. +Please refer to +for installation. ## Recipes -At present, two recipes are provided: +Please refer to +for more information. - - [LibriSpeech][LibriSpeech] - - [yesno][yesno] [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing) +We provide two recipes at present: -### Yesno + - [yesno][yesno] + - [LibriSpeech][librispeech] -For the yesno recipe, training with 50 epochs takes less than 2 minutes using **CPU**. +### yesno -The WER is +This is the simplest ASR recipe in `icefall` and can be run on CPU. +Training takes less than 30 seconds and gives you the following WER: ``` [test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ] ``` +We do provide a Colab notebook for this recipe. -## Use Pre-trained models - -See [egs/librispeech/ASR/conformer_ctc/README.md](egs/librispeech/ASR/conformer_ctc/README.md) -for how to use pre-trained models. -[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing) +[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing) -[yesno]: egs/yesno/ASR/README.md -[LibriSpeech]: egs/librispeech/ASR/README.md -[k2-install]: https://k2.readthedocs.io/en/latest/installation/index.html# -[k2]: https://github.com/k2-fsa/k2 -[lhotse]: https://github.com/lhotse-speech/lhotse -[lhotse-install]: https://lhotse.readthedocs.io/en/latest/getting-started.html#installation +### LibriSpeech + +We provide two models for this recipe: [conformer CTC model][LibriSpeech_conformer_ctc] +and [TDNN LSTM CTC model][LibriSpeech_tdnn_lstm_ctc]. + +#### Conformer CTC Model + +The best WER we currently have is: + +||test-clean|test-other| +|--|--|--| +|WER| 2.57% | 5.94% | + +We provide a Colab notebook to run a pre-trained conformer CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing) + +#### TDNN LSTM CTC Model + +The WER for this model is: + +||test-clean|test-other| +|--|--|--| +|WER| 6.59% | 17.69% | + +We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd?usp=sharing) + +[LibriSpeech_tdnn_lstm_ctc]: egs/librispeech/ASR/tdnn_lstm_ctc +[LibriSpeech_conformer_ctc]: egs/librispeech/ASR/conformer_ctc +[yesno]: egs/yesno/ASR +[librispeech]: egs/librispeech/ASR diff --git a/docs/.gitignore b/docs/.gitignore new file mode 100644 index 000000000..567609b12 --- /dev/null +++ b/docs/.gitignore @@ -0,0 +1 @@ +build/ diff --git a/docs/Makefile b/docs/Makefile new file mode 100644 index 000000000..d0c3cbf10 --- /dev/null +++ b/docs/Makefile @@ -0,0 +1,20 @@ +# Minimal makefile for Sphinx documentation +# + +# You can set these variables from the command line, and also +# from the environment for the first two. +SPHINXOPTS ?= +SPHINXBUILD ?= sphinx-build +SOURCEDIR = source +BUILDDIR = build + +# Put it first so that "make" without argument is like "make help". +help: + @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) + +.PHONY: help Makefile + +# Catch-all target: route all unknown targets to Sphinx using the new +# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). +%: Makefile + @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) diff --git a/docs/make.bat b/docs/make.bat new file mode 100644 index 000000000..6247f7e23 --- /dev/null +++ b/docs/make.bat @@ -0,0 +1,35 @@ +@ECHO OFF + +pushd %~dp0 + +REM Command file for Sphinx documentation + +if "%SPHINXBUILD%" == "" ( + set SPHINXBUILD=sphinx-build +) +set SOURCEDIR=source +set BUILDDIR=build + +if "%1" == "" goto help + +%SPHINXBUILD% >NUL 2>NUL +if errorlevel 9009 ( + echo. + echo.The 'sphinx-build' command was not found. Make sure you have Sphinx + echo.installed, then set the SPHINXBUILD environment variable to point + echo.to the full path of the 'sphinx-build' executable. Alternatively you + echo.may add the Sphinx directory to PATH. + echo. + echo.If you don't have Sphinx installed, grab it from + echo.http://sphinx-doc.org/ + exit /b 1 +) + +%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% +goto end + +:help +%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% + +:end +popd diff --git a/docs/requirements.txt b/docs/requirements.txt new file mode 100644 index 000000000..74640391e --- /dev/null +++ b/docs/requirements.txt @@ -0,0 +1,2 @@ +sphinx_rtd_theme +sphinx diff --git a/docs/source/_static/logo.png b/docs/source/_static/logo.png new file mode 100644 index 000000000..84d42568c Binary files /dev/null and b/docs/source/_static/logo.png differ diff --git a/docs/source/conf.py b/docs/source/conf.py new file mode 100644 index 000000000..599df8b3e --- /dev/null +++ b/docs/source/conf.py @@ -0,0 +1,76 @@ +# Configuration file for the Sphinx documentation builder. +# +# This file only contains a selection of the most common options. For a full +# list see the documentation: +# https://www.sphinx-doc.org/en/master/usage/configuration.html + +# -- Path setup -------------------------------------------------------------- + +# If extensions (or modules to document with autodoc) are in another directory, +# add these directories to sys.path here. If the directory is relative to the +# documentation root, use os.path.abspath to make it absolute, like shown here. +# +# import os +# import sys +# sys.path.insert(0, os.path.abspath('.')) + +import sphinx_rtd_theme + +# -- Project information ----------------------------------------------------- + +project = "icefall" +copyright = "2021, icefall development team" +author = "icefall development team" + +# The full version, including alpha/beta/rc tags +release = "0.1" + + +# -- General configuration --------------------------------------------------- + +# Add any Sphinx extension module names here, as strings. They can be +# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom +# ones. +extensions = [ + "sphinx_rtd_theme", +] + +# Add any paths that contain templates here, relative to this directory. +templates_path = ["_templates"] + +# List of patterns, relative to source directory, that match files and +# directories to ignore when looking for source files. +# This pattern also affects html_static_path and html_extra_path. +exclude_patterns = [] + +source_suffix = { + ".rst": "restructuredtext", +} +master_doc = "index" + + +# -- Options for HTML output ------------------------------------------------- + +# The theme to use for HTML and HTML Help pages. See the documentation for +# a list of builtin themes. +# +html_theme = "sphinx_rtd_theme" +html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] +html_show_sourcelink = True + +# Add any paths that contain custom static files (such as style sheets) here, +# relative to this directory. They are copied after the builtin static files, +# so a file named "default.css" will overwrite the builtin "default.css". +html_static_path = ["_static", "installation/images"] + +pygments_style = "sphinx" + +numfig = True + +html_context = { + "display_github": True, + "github_user": "k2-fsa", + "github_repo": "icefall", + "github_version": "master", + "conf_py_path": "/icefall/docs/source/", +} diff --git a/docs/source/contributing/code-style.rst b/docs/source/contributing/code-style.rst new file mode 100644 index 000000000..7d61a3ba1 --- /dev/null +++ b/docs/source/contributing/code-style.rst @@ -0,0 +1,67 @@ +.. _follow the code style: + +Follow the code style +===================== + +We use the following tools to make the code style to be as consistent as possible: + + - `black `_, to format the code + - `flake8 `_, to check the style and quality of the code + - `isort `_, to sort ``imports`` + +The following versions of the above tools are used: + + - ``black == 12.6b0`` + - ``flake8 == 3.9.2`` + - ``isort == 5.9.2`` + +After running the following commands: + + .. code-block:: + + $ git clone https://github.com/k2-fsa/icefall + $ cd icefall + $ pip install pre-commit + $ pre-commit install + +it will run the following checks whenever you run ``git commit``, **automatically**: + + .. figure:: images/pre-commit-check.png + :width: 600 + :align: center + + pre-commit hooks invoked by ``git commit`` (Failed). + +If any of the above checks failed, your ``git commit`` was not successful. +Please fix any issues reported by the check tools. + +.. HINT:: + + Some of the check tools, i.e., ``black`` and ``isort`` will modify + the files to be commited **in-place**. So please run ``git status`` + after failure to see which file has been modified by the tools + before you make any further changes. + +After fixing all the failures, run ``git commit`` again and +it should succeed this time: + + .. figure:: images/pre-commit-check-success.png + :width: 600 + :align: center + + pre-commit hooks invoked by ``git commit`` (Succeeded). + +If you want to check the style of your code before ``git commit``, you +can do the following: + + .. code-block:: bash + + $ cd icefall + $ pip install black==21.6b0 flake8==3.9.2 isort==5.9.2 + $ black --check your_changed_file.py + $ black your_changed_file.py # modify it in-place + $ + $ flake8 your_changed_file.py + $ + $ isort --check your_changed_file.py # modify it in-place + $ isort your_changed_file.py diff --git a/docs/source/contributing/doc.rst b/docs/source/contributing/doc.rst new file mode 100644 index 000000000..893d8a15e --- /dev/null +++ b/docs/source/contributing/doc.rst @@ -0,0 +1,45 @@ +Contributing to Documentation +============================= + +We use `sphinx `_ +for documentation. + +Before writing documentation, you have to prepare the environment: + + .. code-block:: bash + + $ cd docs + $ pip install -r requirements.txt + +After setting up the environment, you are ready to write documentation. +Please refer to `reStructuredText Primer `_ +if you are not familiar with ``reStructuredText``. + +After writing some documentation, you can build the documentation **locally** +to preview what it looks like if it is published: + + .. code-block:: bash + + $ cd docs + $ make html + +The generated documentation is in ``docs/build/html`` and can be viewed +with the following commands: + + .. code-block:: bash + + $ cd docs/build/html + $ python3 -m http.server + +It will print:: + + Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ... + +Open your browser, go to ``_, and you will see +the following: + + .. figure:: images/doc-contrib.png + :width: 600 + :align: center + + View generated documentation locally with ``python3 -m http.server``. diff --git a/docs/source/contributing/how-to-create-a-recipe.rst b/docs/source/contributing/how-to-create-a-recipe.rst new file mode 100644 index 000000000..a30fb9056 --- /dev/null +++ b/docs/source/contributing/how-to-create-a-recipe.rst @@ -0,0 +1,156 @@ +How to create a recipe +====================== + +.. HINT:: + + Please read :ref:`follow the code style` to adjust your code sytle. + +.. CAUTION:: + + ``icefall`` is designed to be as Pythonic as possible. Please use + Python in your recipe if possible. + +Data Preparation +---------------- + +We recommend you to prepare your training/test/validate dataset +with `lhotse `_. + +Please refer to ``_ +for how to create a recipe in ``lhotse``. + +.. HINT:: + + The ``yesno`` recipe in ``lhotse`` is a very good example. + + Please refer to ``_, + which shows how to add a new recipe to ``lhotse``. + +Suppose you would like to add a recipe for a dataset named ``foo``. +You can do the following: + +.. code-block:: + + $ cd egs + $ mkdir -p foo/ASR + $ cd foo/ASR + $ touch prepare.sh + $ chmod +x prepare.sh + +If your dataset is very simple, please follow +`egs/yesno/ASR/prepare.sh `_ +to write your own ``prepare.sh``. +Otherwise, please refer to +`egs/librispeech/ASR/prepare.sh `_ +to prepare your data. + + +Training +-------- + +Assume you have a fancy model, called ``bar`` for the ``foo`` recipe, you can +organize your files in the following way: + +.. code-block:: + + $ cd egs/foo/ASR + $ mkdir bar + $ cd bar + $ touch README.md model.py train.py decode.py asr_datamodule.py pretrained.py + +For instance , the ``yesno`` recipe has a ``tdnn`` model and its directory structure +looks like the following: + +.. code-block:: bash + + egs/yesno/ASR/tdnn/ + |-- README.md + |-- asr_datamodule.py + |-- decode.py + |-- model.py + |-- pretrained.py + `-- train.py + +**File description**: + + - ``README.md`` + + It contains information of this recipe, e.g., how to run it, what the WER is, etc. + + - ``asr_datamodule.py`` + + It provides code to create PyTorch dataloaders with train/test/validation dataset. + + - ``decode.py`` + + It takes as inputs the checkpoints saved during the training stage to decode the test + dataset(s). + + - ``model.py`` + + It contains the definition of your fancy neural network model. + + - ``pretrained.py`` + + We can use this script to do inference with a pre-trained model. + + - ``train.py`` + + It contains training code. + + +.. HINT:: + + Please take a look at + + - `egs/yesno/tdnn `_ + - `egs/librispeech/tdnn_lstm_ctc `_ + - `egs/librispeech/conformer_ctc `_ + + to get a feel what the resulting files look like. + +.. NOTE:: + + Every model in a recipe is kept to be as self-contained as possible. + We tolerate duplicate code among different recipes. + + +The training stage should be invocable by: + + .. code-block:: + + $ cd egs/foo/ASR + $ ./bar/train.py + $ ./bar/train.py --help + + +Decoding +-------- + +Please refer to + + - ``_ + + If your model is transformer/conformer based. + + - ``_ + + If your model is TDNN/LSTM based, i.e., there is no attention decoder. + + - ``_ + + If there is no LM rescoring. + +The decoding stage should be invocable by: + + .. code-block:: + + $ cd egs/foo/ASR + $ ./bar/decode.py + $ ./bar/decode.py --help + +Pre-trained model +----------------- + +Please demonstrate how to use your model for inference in ``egs/foo/ASR/bar/pretrained.py``. +If possible, please consider creating a Colab notebook to show that. diff --git a/docs/source/contributing/images/doc-contrib.png b/docs/source/contributing/images/doc-contrib.png new file mode 100644 index 000000000..00906ab83 Binary files /dev/null and b/docs/source/contributing/images/doc-contrib.png differ diff --git a/docs/source/contributing/images/pre-commit-check-success.png b/docs/source/contributing/images/pre-commit-check-success.png new file mode 100644 index 000000000..3c6ee9b1c Binary files /dev/null and b/docs/source/contributing/images/pre-commit-check-success.png differ diff --git a/docs/source/contributing/images/pre-commit-check.png b/docs/source/contributing/images/pre-commit-check.png new file mode 100644 index 000000000..80784eced Binary files /dev/null and b/docs/source/contributing/images/pre-commit-check.png differ diff --git a/docs/source/contributing/index.rst b/docs/source/contributing/index.rst new file mode 100644 index 000000000..21c747d33 --- /dev/null +++ b/docs/source/contributing/index.rst @@ -0,0 +1,22 @@ +Contributing +============ + +Contributions to ``icefall`` are very welcomed. +There are many possible ways to make contributions and +two of them are: + + - To write documentation + - To write code + + - (1) To follow the code style in the repository + - (2) To write a new recipe + +In this page, we describe how to contribute documentation +and code to ``icefall``. + +.. toctree:: + :maxdepth: 2 + + doc + code-style + how-to-create-a-recipe diff --git a/docs/source/index.rst b/docs/source/index.rst new file mode 100644 index 000000000..b06047a89 --- /dev/null +++ b/docs/source/index.rst @@ -0,0 +1,25 @@ +.. icefall documentation master file, created by + sphinx-quickstart on Mon Aug 23 16:07:39 2021. + You can adapt this file completely to your liking, but it should at least + contain the root `toctree` directive. + +Icefall +======= + +.. image:: _static/logo.png + :alt: icefall logo + :width: 168px + :align: center + :target: https://github.com/k2-fsa/icefall + + +Documentation for `icefall `_, containing +speech recognition recipes using `k2 `_. + +.. toctree:: + :maxdepth: 2 + :caption: Contents: + + installation/index + recipes/index + contributing/index diff --git a/docs/source/installation/images/device-CPU_CUDA-orange.svg b/docs/source/installation/images/device-CPU_CUDA-orange.svg new file mode 100644 index 000000000..a023a1283 --- /dev/null +++ b/docs/source/installation/images/device-CPU_CUDA-orange.svg @@ -0,0 +1 @@ +device: CPU | CUDAdeviceCPU | CUDA diff --git a/docs/source/installation/images/k2-v1.9-blueviolet.svg b/docs/source/installation/images/k2-v1.9-blueviolet.svg new file mode 100644 index 000000000..5a207b370 --- /dev/null +++ b/docs/source/installation/images/k2-v1.9-blueviolet.svg @@ -0,0 +1 @@ +k2: v1.9k2v1.9 \ No newline at end of file diff --git a/docs/source/installation/images/os-Linux_macOS-ff69b4.svg b/docs/source/installation/images/os-Linux_macOS-ff69b4.svg new file mode 100644 index 000000000..178813ed4 --- /dev/null +++ b/docs/source/installation/images/os-Linux_macOS-ff69b4.svg @@ -0,0 +1 @@ +os: Linux | macOSosLinux | macOS diff --git a/docs/source/installation/images/python-3.6_3.7_3.8_3.9-blue.svg b/docs/source/installation/images/python-3.6_3.7_3.8_3.9-blue.svg new file mode 100644 index 000000000..befc1e19e --- /dev/null +++ b/docs/source/installation/images/python-3.6_3.7_3.8_3.9-blue.svg @@ -0,0 +1 @@ +python: 3.6 | 3.7 | 3.8 | 3.9python3.6 | 3.7 | 3.8 | 3.9 diff --git a/docs/source/installation/images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg b/docs/source/installation/images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg new file mode 100644 index 000000000..496e5a9ef --- /dev/null +++ b/docs/source/installation/images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg @@ -0,0 +1 @@ +torch: 1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0torch1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0 diff --git a/docs/source/installation/index.rst b/docs/source/installation/index.rst new file mode 100644 index 000000000..f960033e8 --- /dev/null +++ b/docs/source/installation/index.rst @@ -0,0 +1,466 @@ +.. _install icefall: + +Installation +============ + +- |os| +- |device| +- |python_versions| +- |torch_versions| +- |k2_versions| + +.. |os| image:: ./images/os-Linux_macOS-ff69b4.svg + :alt: Supported operating systems + +.. |device| image:: ./images/device-CPU_CUDA-orange.svg + :alt: Supported devices + +.. |python_versions| image:: ./images/python-3.6_3.7_3.8_3.9-blue.svg + :alt: Supported python versions + +.. |torch_versions| image:: ./images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg + :alt: Supported PyTorch versions + +.. |k2_versions| image:: ./images/k2-v1.9-blueviolet.svg + :alt: Supported k2 versions + +``icefall`` depends on `k2 `_ and +`lhotse `_. + +We recommend you to install ``k2`` first, as ``k2`` is bound to +a specific version of PyTorch after compilation. Install ``k2`` also +installs its dependency PyTorch, which can be reused by ``lhotse``. + + +(1) Install k2 +-------------- + +Please refer to ``_ +to install ``k2``. + +.. CAUTION:: + + You need to install ``k2`` with a version at least **v1.9**. + +.. HINT:: + + If you have already installed PyTorch and don't want to replace it, + please install a version of ``k2`` that is compiled against the version + of PyTorch you are using. + +(2) Install lhotse +------------------ + +Please refer to ``_ +to install ``lhotse``. + +.. HINT:: + + Install ``lhotse`` also installs its dependency `torchaudio `_. + +.. CAUTION:: + + If you have installed ``torchaudio``, please consider uninstalling it before + installing ``lhotse``. Otherwise, it may update your already installed PyTorch. + +(3) Download icefall +-------------------- + +``icefall`` is a collection of Python scripts, so you don't need to install it +and we don't provide a ``setup.py`` to install it. + +What you need is to download it and set the environment variable ``PYTHONPATH`` +to point to it. + +Assume you want to place ``icefall`` in the folder ``/tmp``. The +following commands show you how to setup ``icefall``: + + +.. code-block:: bash + + cd /tmp + git clone https://github.com/k2-fsa/icefall + cd icefall + pip install -r requirements.txt + export PYTHONPATH=/tmp/icefall:$PYTHONPATH + +.. HINT:: + + You can put several versions of ``icefall`` in the same virtual environment. + To switch among different versions of ``icefall``, just set ``PYTHONPATH`` + to point to the version you want. + + +Installation example +-------------------- + +The following shows an example about setting up the environment. + + +(1) Create a virtual environment +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ virtualenv -p python3.8 test-icefall + + created virtual environment CPython3.8.6.final.0-64 in 1540ms + creator CPython3Posix(dest=/ceph-fj/fangjun/test-icefall, clear=False, no_vcs_ignore=False, global=False) + seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle, via=copy, app_data_dir=/root/fangjun/.local/share/v + irtualenv) + added seed packages: pip==21.1.3, setuptools==57.4.0, wheel==0.36.2 + activators BashActivator,CShellActivator,FishActivator,PowerShellActivator,PythonActivator,XonshActivator + + +(2) Activate your virtual environment +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ source test-icefall/bin/activate + +(3) Install k2 +~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ pip install k2==1.4.dev20210822+cpu.torch1.9.0 -f https://k2-fsa.org/nightly/index.html + + Looking in links: https://k2-fsa.org/nightly/index.html + Collecting k2==1.4.dev20210822+cpu.torch1.9.0 + Downloading https://k2-fsa.org/nightly/whl/k2-1.4.dev20210822%2Bcpu.torch1.9.0-cp38-cp38-linux_x86_64.whl (1.6 MB) + |________________________________| 1.6 MB 185 kB/s + Collecting graphviz + Downloading graphviz-0.17-py3-none-any.whl (18 kB) + Collecting torch==1.9.0 + Using cached torch-1.9.0-cp38-cp38-manylinux1_x86_64.whl (831.4 MB) + Collecting typing-extensions + Using cached typing_extensions-3.10.0.0-py3-none-any.whl (26 kB) + Installing collected packages: typing-extensions, torch, graphviz, k2 + Successfully installed graphviz-0.17 k2-1.4.dev20210822+cpu.torch1.9.0 torch-1.9.0 typing-extensions-3.10.0.0 + +.. WARNING:: + + We choose to install a CPU version of k2 for testing. You would probably want to install + a CUDA version of k2. + + +(4) Install lhotse +~~~~~~~~~~~~~~~~~~ + +.. code-block:: + + $ pip install git+https://github.com/lhotse-speech/lhotse + + Collecting git+https://github.com/lhotse-speech/lhotse + Cloning https://github.com/lhotse-speech/lhotse to /tmp/pip-req-build-7b1b76ge + Running command git clone -q https://github.com/lhotse-speech/lhotse /tmp/pip-req-build-7b1b76ge + Collecting audioread>=2.1.9 + Using cached audioread-2.1.9-py3-none-any.whl + Collecting SoundFile>=0.10 + Using cached SoundFile-0.10.3.post1-py2.py3-none-any.whl (21 kB) + Collecting click>=7.1.1 + Using cached click-8.0.1-py3-none-any.whl (97 kB) + Collecting cytoolz>=0.10.1 + Using cached cytoolz-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB) + Collecting dataclasses + Using cached dataclasses-0.6-py3-none-any.whl (14 kB) + Collecting h5py>=2.10.0 + Downloading h5py-3.4.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (4.5 MB) + |________________________________| 4.5 MB 684 kB/s + Collecting intervaltree>=3.1.0 + Using cached intervaltree-3.1.0-py2.py3-none-any.whl + Collecting lilcom>=1.1.0 + Using cached lilcom-1.1.1-cp38-cp38-linux_x86_64.whl + Collecting numpy>=1.18.1 + Using cached numpy-1.21.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.8 MB) + Collecting packaging + Using cached packaging-21.0-py3-none-any.whl (40 kB) + Collecting pyyaml>=5.3.1 + Using cached PyYAML-5.4.1-cp38-cp38-manylinux1_x86_64.whl (662 kB) + Collecting tqdm + Downloading tqdm-4.62.1-py2.py3-none-any.whl (76 kB) + |________________________________| 76 kB 2.7 MB/s + Collecting torchaudio==0.9.0 + Downloading torchaudio-0.9.0-cp38-cp38-manylinux1_x86_64.whl (1.9 MB) + |________________________________| 1.9 MB 73.1 MB/s + Requirement already satisfied: torch==1.9.0 in ./test-icefall/lib/python3.8/site-packages (from torchaudio==0.9.0->lhotse===0.8.0.dev + -2a1410b-clean) (1.9.0) + Requirement already satisfied: typing-extensions in ./test-icefall/lib/python3.8/site-packages (from torch==1.9.0->torchaudio==0.9.0- + >lhotse===0.8.0.dev-2a1410b-clean) (3.10.0.0) + Collecting toolz>=0.8.0 + Using cached toolz-0.11.1-py3-none-any.whl (55 kB) + Collecting sortedcontainers<3.0,>=2.0 + Using cached sortedcontainers-2.4.0-py2.py3-none-any.whl (29 kB) + Collecting cffi>=1.0 + Using cached cffi-1.14.6-cp38-cp38-manylinux1_x86_64.whl (411 kB) + Collecting pycparser + Using cached pycparser-2.20-py2.py3-none-any.whl (112 kB) + Collecting pyparsing>=2.0.2 + Using cached pyparsing-2.4.7-py2.py3-none-any.whl (67 kB) + Building wheels for collected packages: lhotse + Building wheel for lhotse (setup.py) ... done + Created wheel for lhotse: filename=lhotse-0.8.0.dev_2a1410b_clean-py3-none-any.whl size=342242 sha256=f683444afa4dc0881133206b4646a + 9d0f774224cc84000f55d0a67f6e4a37997 + Stored in directory: /tmp/pip-ephem-wheel-cache-ftu0qysz/wheels/7f/7a/8e/a0bf241336e2e3cb573e1e21e5600952d49f5162454f2e612f + WARNING: Built wheel for lhotse is invalid: Metadata 1.2 mandates PEP 440 version, but '0.8.0.dev-2a1410b-clean' is not + Failed to build lhotse + Installing collected packages: pycparser, toolz, sortedcontainers, pyparsing, numpy, cffi, tqdm, torchaudio, SoundFile, pyyaml, packa + ging, lilcom, intervaltree, h5py, dataclasses, cytoolz, click, audioread, lhotse + Running setup.py install for lhotse ... done + DEPRECATION: lhotse was installed using the legacy 'setup.py install' method, because a wheel could not be built for it. A possible + replacement is to fix the wheel build issue reported above. You can find discussion regarding this at https://github.com/pypa/pip/is + sues/8368. + Successfully installed SoundFile-0.10.3.post1 audioread-2.1.9 cffi-1.14.6 click-8.0.1 cytoolz-0.11.0 dataclasses-0.6 h5py-3.4.0 inter + valtree-3.1.0 lhotse-0.8.0.dev-2a1410b-clean lilcom-1.1.1 numpy-1.21.2 packaging-21.0 pycparser-2.20 pyparsing-2.4.7 pyyaml-5.4.1 sor + tedcontainers-2.4.0 toolz-0.11.1 torchaudio-0.9.0 tqdm-4.62.1 + +(5) Download icefall +~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: + + $ cd /tmp + $ git clone https://github.com/k2-fsa/icefall + + Cloning into 'icefall'... + remote: Enumerating objects: 500, done. + remote: Counting objects: 100% (500/500), done. + remote: Compressing objects: 100% (308/308), done. + remote: Total 500 (delta 263), reused 307 (delta 102), pack-reused 0 + Receiving objects: 100% (500/500), 172.49 KiB | 385.00 KiB/s, done. + Resolving deltas: 100% (263/263), done. + + $ cd icefall + $ pip install -r requirements.txt + + Collecting kaldilm + Downloading kaldilm-1.8.tar.gz (48 kB) + |________________________________| 48 kB 574 kB/s + Collecting kaldialign + Using cached kaldialign-0.2-cp38-cp38-linux_x86_64.whl + Collecting sentencepiece>=0.1.96 + Using cached sentencepiece-0.1.96-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB) + Collecting tensorboard + Using cached tensorboard-2.6.0-py3-none-any.whl (5.6 MB) + Requirement already satisfied: setuptools>=41.0.0 in /ceph-fj/fangjun/test-icefall/lib/python3.8/site-packages (from tensorboard->-r + requirements.txt (line 4)) (57.4.0) + Collecting absl-py>=0.4 + Using cached absl_py-0.13.0-py3-none-any.whl (132 kB) + Collecting google-auth-oauthlib<0.5,>=0.4.1 + Using cached google_auth_oauthlib-0.4.5-py2.py3-none-any.whl (18 kB) + Collecting grpcio>=1.24.3 + Using cached grpcio-1.39.0-cp38-cp38-manylinux2014_x86_64.whl (4.3 MB) + Requirement already satisfied: wheel>=0.26 in /ceph-fj/fangjun/test-icefall/lib/python3.8/site-packages (from tensorboard->-r require + ments.txt (line 4)) (0.36.2) + Requirement already satisfied: numpy>=1.12.0 in /ceph-fj/fangjun/test-icefall/lib/python3.8/site-packages (from tensorboard->-r requi + rements.txt (line 4)) (1.21.2) + Collecting protobuf>=3.6.0 + Using cached protobuf-3.17.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB) + Collecting werkzeug>=0.11.15 + Using cached Werkzeug-2.0.1-py3-none-any.whl (288 kB) + Collecting tensorboard-data-server<0.7.0,>=0.6.0 + Using cached tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl (4.9 MB) + Collecting google-auth<2,>=1.6.3 + Downloading google_auth-1.35.0-py2.py3-none-any.whl (152 kB) + |________________________________| 152 kB 1.4 MB/s + Collecting requests<3,>=2.21.0 + Using cached requests-2.26.0-py2.py3-none-any.whl (62 kB) + Collecting tensorboard-plugin-wit>=1.6.0 + Using cached tensorboard_plugin_wit-1.8.0-py3-none-any.whl (781 kB) + Collecting markdown>=2.6.8 + Using cached Markdown-3.3.4-py3-none-any.whl (97 kB) + Collecting six + Using cached six-1.16.0-py2.py3-none-any.whl (11 kB) + Collecting cachetools<5.0,>=2.0.0 + Using cached cachetools-4.2.2-py3-none-any.whl (11 kB) + Collecting rsa<5,>=3.1.4 + Using cached rsa-4.7.2-py3-none-any.whl (34 kB) + Collecting pyasn1-modules>=0.2.1 + Using cached pyasn1_modules-0.2.8-py2.py3-none-any.whl (155 kB) + Collecting requests-oauthlib>=0.7.0 + Using cached requests_oauthlib-1.3.0-py2.py3-none-any.whl (23 kB) + Collecting pyasn1<0.5.0,>=0.4.6 + Using cached pyasn1-0.4.8-py2.py3-none-any.whl (77 kB) + Collecting urllib3<1.27,>=1.21.1 + Using cached urllib3-1.26.6-py2.py3-none-any.whl (138 kB) + Collecting certifi>=2017.4.17 + Using cached certifi-2021.5.30-py2.py3-none-any.whl (145 kB) + Collecting charset-normalizer~=2.0.0 + Using cached charset_normalizer-2.0.4-py3-none-any.whl (36 kB) + Collecting idna<4,>=2.5 + Using cached idna-3.2-py3-none-any.whl (59 kB) + Collecting oauthlib>=3.0.0 + Using cached oauthlib-3.1.1-py2.py3-none-any.whl (146 kB) + Building wheels for collected packages: kaldilm + Building wheel for kaldilm (setup.py) ... done + Created wheel for kaldilm: filename=kaldilm-1.8-cp38-cp38-linux_x86_64.whl size=897233 sha256=eccb906cafcd45bf9a7e1a1718e4534254bfb + f4c0d0cbc66eee6c88d68a63862 + Stored in directory: /root/fangjun/.cache/pip/wheels/85/7d/63/f2dd586369b8797cb36d213bf3a84a789eeb92db93d2e723c9 + Successfully built kaldilm + Installing collected packages: urllib3, pyasn1, idna, charset-normalizer, certifi, six, rsa, requests, pyasn1-modules, oauthlib, cach + etools, requests-oauthlib, google-auth, werkzeug, tensorboard-plugin-wit, tensorboard-data-server, protobuf, markdown, grpcio, google + -auth-oauthlib, absl-py, tensorboard, sentencepiece, kaldilm, kaldialign + Successfully installed absl-py-0.13.0 cachetools-4.2.2 certifi-2021.5.30 charset-normalizer-2.0.4 google-auth-1.35.0 google-auth-oaut + hlib-0.4.5 grpcio-1.39.0 idna-3.2 kaldialign-0.2 kaldilm-1.8 markdown-3.3.4 oauthlib-3.1.1 protobuf-3.17.3 pyasn1-0.4.8 pyasn1-module + s-0.2.8 requests-2.26.0 requests-oauthlib-1.3.0 rsa-4.7.2 sentencepiece-0.1.96 six-1.16.0 tensorboard-2.6.0 tensorboard-data-server-0 + .6.1 tensorboard-plugin-wit-1.8.0 urllib3-1.26.6 werkzeug-2.0.1 + + +Test Your Installation +---------------------- + +To test that your installation is successful, let us run +the `yesno recipe `_ +on CPU. + +Data preparation +~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ export PYTHONPATH=/tmp/icefall:$PYTHONPATH + $ cd /tmp/icefall + $ cd egs/yesno/ASR + $ ./prepare.sh + +The log of running ``./prepare.sh`` is: + +.. code-block:: + + 2021-08-23 19:27:26 (prepare.sh:24:main) dl_dir: /tmp/icefall/egs/yesno/ASR/download + 2021-08-23 19:27:26 (prepare.sh:27:main) stage 0: Download data + Downloading waves_yesno.tar.gz: 4.49MB [00:03, 1.39MB/s] + 2021-08-23 19:27:30 (prepare.sh:36:main) Stage 1: Prepare yesno manifest + 2021-08-23 19:27:31 (prepare.sh:42:main) Stage 2: Compute fbank for yesno + 2021-08-23 19:27:32,803 INFO [compute_fbank_yesno.py:52] Processing train + Extracting and storing features: 100%|_______________________________________________________________| 90/90 [00:01<00:00, 80.57it/s] + 2021-08-23 19:27:34,085 INFO [compute_fbank_yesno.py:52] Processing test + Extracting and storing features: 100%|______________________________________________________________| 30/30 [00:00<00:00, 248.21it/s] + 2021-08-23 19:27:34 (prepare.sh:48:main) Stage 3: Prepare lang + 2021-08-23 19:27:35 (prepare.sh:63:main) Stage 4: Prepare G + /tmp/pip-install-fcordre9/kaldilm_6899d26f2d684ad48f21025950cd2866/kaldilm/csrc/arpa_file_parser.cc:void kaldilm::ArpaFileParser::Rea + d(std::istream&):79 + [I] Reading \data\ section. + /tmp/pip-install-fcordre9/kaldilm_6899d26f2d684ad48f21025950cd2866/kaldilm/csrc/arpa_file_parser.cc:void kaldilm::ArpaFileParser::Rea + d(std::istream&):140 + [I] Reading \1-grams: section. + 2021-08-23 19:27:35 (prepare.sh:89:main) Stage 5: Compile HLG + 2021-08-23 19:27:35,928 INFO [compile_hlg.py:120] Processing data/lang_phone + 2021-08-23 19:27:35,929 INFO [lexicon.py:116] Converting L.pt to Linv.pt + 2021-08-23 19:27:35,931 INFO [compile_hlg.py:48] Building ctc_topo. max_token_id: 3 + 2021-08-23 19:27:35,932 INFO [compile_hlg.py:52] Loading G.fst.txt + 2021-08-23 19:27:35,932 INFO [compile_hlg.py:62] Intersecting L and G + 2021-08-23 19:27:35,933 INFO [compile_hlg.py:64] LG shape: (4, None) + 2021-08-23 19:27:35,933 INFO [compile_hlg.py:66] Connecting LG + 2021-08-23 19:27:35,933 INFO [compile_hlg.py:68] LG shape after k2.connect: (4, None) + 2021-08-23 19:27:35,933 INFO [compile_hlg.py:70] + 2021-08-23 19:27:35,933 INFO [compile_hlg.py:71] Determinizing LG + 2021-08-23 19:27:35,934 INFO [compile_hlg.py:74] + 2021-08-23 19:27:35,934 INFO [compile_hlg.py:76] Connecting LG after k2.determinize + 2021-08-23 19:27:35,934 INFO [compile_hlg.py:79] Removing disambiguation symbols on LG + 2021-08-23 19:27:35,934 INFO [compile_hlg.py:87] LG shape after k2.remove_epsilon: (6, None) + 2021-08-23 19:27:35,935 INFO [compile_hlg.py:92] Arc sorting LG + 2021-08-23 19:27:35,935 INFO [compile_hlg.py:95] Composing H and LG + 2021-08-23 19:27:35,935 INFO [compile_hlg.py:102] Connecting LG + 2021-08-23 19:27:35,935 INFO [compile_hlg.py:105] Arc sorting LG + 2021-08-23 19:27:35,936 INFO [compile_hlg.py:107] HLG.shape: (8, None) + 2021-08-23 19:27:35,936 INFO [compile_hlg.py:123] Saving HLG.pt to data/lang_phone + + +Training +~~~~~~~~ + +Now let us run the training part: + +.. code-block:: + + $ export CUDA_VISIBLE_DEVICES="" + $ ./tdnn/train.py + +.. CAUTION:: + + We use ``export CUDA_VISIBLE_DEVICES=""`` so that ``icefall`` uses CPU + even if there are GPUs available. + +The training log is given below: + +.. code-block:: + + 2021-08-23 19:30:31,072 INFO [train.py:465] Training started + 2021-08-23 19:30:31,072 INFO [train.py:466] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'lr': 0.01, + 'feature_dim': 23, 'weight_decay': 1e-06, 'start_epoch': 0, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, ' + best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 10, 'valid_interval': 10, 'beam_size': 10, 'reduction': 'sum', 'use_doub + le_scores': True, 'world_size': 1, 'master_port': 12354, 'tensorboard': True, 'num_epochs': 15, 'feature_dir': PosixPath('data/fbank' + ), 'max_duration': 30.0, 'bucketing_sampler': False, 'num_buckets': 10, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0 + , 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 2} + 2021-08-23 19:30:31,074 INFO [lexicon.py:113] Loading pre-compiled data/lang_phone/Linv.pt + 2021-08-23 19:30:31,098 INFO [asr_datamodule.py:146] About to get train cuts + 2021-08-23 19:30:31,098 INFO [asr_datamodule.py:240] About to get train cuts + 2021-08-23 19:30:31,102 INFO [asr_datamodule.py:149] About to create train dataset + 2021-08-23 19:30:31,102 INFO [asr_datamodule.py:200] Using SingleCutSampler. + 2021-08-23 19:30:31,102 INFO [asr_datamodule.py:206] About to create train dataloader + 2021-08-23 19:30:31,102 INFO [asr_datamodule.py:219] About to get test cuts + 2021-08-23 19:30:31,102 INFO [asr_datamodule.py:246] About to get test cuts + 2021-08-23 19:30:31,357 INFO [train.py:416] Epoch 0, batch 0, batch avg loss 1.0789, total avg loss: 1.0789, batch size: 4 + 2021-08-23 19:30:31,848 INFO [train.py:416] Epoch 0, batch 10, batch avg loss 0.5356, total avg loss: 0.7556, batch size: 4 + 2021-08-23 19:30:32,301 INFO [train.py:432] Epoch 0, valid loss 0.9972, best valid loss: 0.9972 best valid epoch: 0 + 2021-08-23 19:30:32,805 INFO [train.py:416] Epoch 0, batch 20, batch avg loss 0.2436, total avg loss: 0.5717, batch size: 3 + 2021-08-23 19:30:33,109 INFO [train.py:432] Epoch 0, valid loss 0.4167, best valid loss: 0.4167 best valid epoch: 0 + 2021-08-23 19:30:33,121 INFO [checkpoint.py:62] Saving checkpoint to tdnn/exp/epoch-0.pt + 2021-08-23 19:30:33,325 INFO [train.py:416] Epoch 1, batch 0, batch avg loss 0.2214, total avg loss: 0.2214, batch size: 5 + 2021-08-23 19:30:33,798 INFO [train.py:416] Epoch 1, batch 10, batch avg loss 0.0781, total avg loss: 0.1343, batch size: 5 + 2021-08-23 19:30:34,065 INFO [train.py:432] Epoch 1, valid loss 0.0859, best valid loss: 0.0859 best valid epoch: 1 + 2021-08-23 19:30:34,556 INFO [train.py:416] Epoch 1, batch 20, batch avg loss 0.0421, total avg loss: 0.0975, batch size: 3 + 2021-08-23 19:30:34,810 INFO [train.py:432] Epoch 1, valid loss 0.0431, best valid loss: 0.0431 best valid epoch: 1 + 2021-08-23 19:30:34,824 INFO [checkpoint.py:62] Saving checkpoint to tdnn/exp/epoch-1.pt + + ... ... + + 2021-08-23 19:30:49,657 INFO [train.py:416] Epoch 13, batch 0, batch avg loss 0.0109, total avg loss: 0.0109, batch size: 5 + 2021-08-23 19:30:49,984 INFO [train.py:416] Epoch 13, batch 10, batch avg loss 0.0093, total avg loss: 0.0096, batch size: 4 + 2021-08-23 19:30:50,239 INFO [train.py:432] Epoch 13, valid loss 0.0104, best valid loss: 0.0101 best valid epoch: 12 + 2021-08-23 19:30:50,569 INFO [train.py:416] Epoch 13, batch 20, batch avg loss 0.0092, total avg loss: 0.0096, batch size: 2 + 2021-08-23 19:30:50,819 INFO [train.py:432] Epoch 13, valid loss 0.0101, best valid loss: 0.0101 best valid epoch: 13 + 2021-08-23 19:30:50,835 INFO [checkpoint.py:62] Saving checkpoint to tdnn/exp/epoch-13.pt + 2021-08-23 19:30:51,024 INFO [train.py:416] Epoch 14, batch 0, batch avg loss 0.0105, total avg loss: 0.0105, batch size: 5 + 2021-08-23 19:30:51,317 INFO [train.py:416] Epoch 14, batch 10, batch avg loss 0.0099, total avg loss: 0.0097, batch size: 4 + 2021-08-23 19:30:51,552 INFO [train.py:432] Epoch 14, valid loss 0.0108, best valid loss: 0.0101 best valid epoch: 13 + 2021-08-23 19:30:51,869 INFO [train.py:416] Epoch 14, batch 20, batch avg loss 0.0096, total avg loss: 0.0097, batch size: 5 + 2021-08-23 19:30:52,107 INFO [train.py:432] Epoch 14, valid loss 0.0102, best valid loss: 0.0101 best valid epoch: 13 + 2021-08-23 19:30:52,126 INFO [checkpoint.py:62] Saving checkpoint to tdnn/exp/epoch-14.pt + 2021-08-23 19:30:52,128 INFO [train.py:537] Done! + +Decoding +~~~~~~~~ + +Let us use the trained model to decode the test set: + +.. code-block:: + + $ ./tdnn/decode.py + +The decoding log is: + +.. code-block:: + + 2021-08-23 19:35:30,192 INFO [decode.py:249] Decoding started + 2021-08-23 19:35:30,192 INFO [decode.py:250] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'lm_dir': PosixPath('data/lm'), 'feature_dim': 23, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'epoch': 14, 'avg': 2, 'feature_dir': PosixPath('data/fbank'), 'max_duration': 30.0, 'bucketing_sampler': False, 'num_buckets': 10, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 2} + 2021-08-23 19:35:30,193 INFO [lexicon.py:113] Loading pre-compiled data/lang_phone/Linv.pt + 2021-08-23 19:35:30,213 INFO [decode.py:259] device: cpu + 2021-08-23 19:35:30,217 INFO [decode.py:279] averaging ['tdnn/exp/epoch-13.pt', 'tdnn/exp/epoch-14.pt'] + /tmp/icefall/icefall/checkpoint.py:146: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. + It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. + To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at /pytorch/aten/src/ATen/native/BinaryOps.cpp:450.) + avg[k] //= n + 2021-08-23 19:35:30,220 INFO [asr_datamodule.py:219] About to get test cuts + 2021-08-23 19:35:30,220 INFO [asr_datamodule.py:246] About to get test cuts + 2021-08-23 19:35:30,409 INFO [decode.py:190] batch 0/8, cuts processed until now is 4 + 2021-08-23 19:35:30,571 INFO [decode.py:228] The transcripts are stored in tdnn/exp/recogs-test_set.txt + 2021-08-23 19:35:30,572 INFO [utils.py:317] [test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ] + 2021-08-23 19:35:30,573 INFO [decode.py:236] Wrote detailed error stats to tdnn/exp/errs-test_set.txt + 2021-08-23 19:35:30,573 INFO [decode.py:299] Done! + +**Congratulations!** You have successfully setup the environment and have run the first recipe in ``icefall``. + +Have fun with ``icefall``! diff --git a/docs/source/recipes/images/yesno-tdnn-tensorboard-log.png b/docs/source/recipes/images/yesno-tdnn-tensorboard-log.png new file mode 100644 index 000000000..3d2612c9c Binary files /dev/null and b/docs/source/recipes/images/yesno-tdnn-tensorboard-log.png differ diff --git a/docs/source/recipes/index.rst b/docs/source/recipes/index.rst new file mode 100644 index 000000000..36f8dfc39 --- /dev/null +++ b/docs/source/recipes/index.rst @@ -0,0 +1,17 @@ +Recipes +======= + +This page contains various recipes in ``icefall``. +Currently, only speech recognition recipes are provided. + +We may add recipes for other tasks as well in the future. + +.. we put the yesno recipe as the first recipe since it is the simplest one. +.. Other recipes are listed in a alphabetical order. + +.. toctree:: + :maxdepth: 2 + + yesno + + librispeech diff --git a/docs/source/recipes/librispeech.rst b/docs/source/recipes/librispeech.rst new file mode 100644 index 000000000..946b23407 --- /dev/null +++ b/docs/source/recipes/librispeech.rst @@ -0,0 +1,10 @@ +LibriSpeech +=========== + +We provide the following models for the LibriSpeech dataset: + +.. toctree:: + :maxdepth: 2 + + librispeech/tdnn_lstm_ctc + librispeech/conformer_ctc diff --git a/docs/source/recipes/librispeech/conformer_ctc.rst b/docs/source/recipes/librispeech/conformer_ctc.rst new file mode 100644 index 000000000..40100bc5a --- /dev/null +++ b/docs/source/recipes/librispeech/conformer_ctc.rst @@ -0,0 +1,631 @@ +Confromer CTC +============= + +This tutorial shows you how to run a conformer ctc model +with the `LibriSpeech `_ dataset. + + +.. HINT:: + + We assume you have read the page :ref:`install icefall` and have setup + the environment for ``icefall``. + +.. HINT:: + + We recommend you to use a GPU or several GPUs to run this recipe. + +In this tutorial, you will learn: + + - (1) How to prepare data for training and decoding + - (2) How to start the training, either with a single GPU or multiple GPUs + - (3) How to do decoding after training, with n-gram LM rescoring and attention decoder rescoring + - (4) How to use a pre-trained model, provided by us + +Data preparation +---------------- + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh + +The script ``./prepare.sh`` handles the data preparation for you, **automagically**. +All you need to do is to run it. + +The data preparation contains several stages, you can use the following two +options: + + - ``--stage`` + - ``--stop-stage`` + +to control which stage(s) should be run. By default, all stages are executed. + + +For example, + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh --stage 0 --stop-stage 0 + +means to run only stage 0. + +To run stage 2 to stage 5, use: + +.. code-block:: bash + + $ ./prepare.sh --stage 2 --stop-stage 5 + +.. HINT:: + + If you have pre-downloaded the `LibriSpeech `_ + dataset and the `musan `_ dataset, say, + they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify + the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that + ``./prepare.sh`` won't re-download them. + +.. NOTE:: + + All generated files by ``./prepare.sh``, e.g., features, lexicon, etc, + are saved in ``./data`` directory. + + +Training +-------- + +Configurable options +~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./conformer_ctc/train.py --help + +shows you the training options that can be passed from the commandline. +The following options are used quite often: + + - ``--full-libri`` + + If it's True, the training part uses all the training data, i.e., + 960 hours. Otherwise, the training part uses only the subset + ``train-clean-100``, which has 100 hours of training data. + + .. CAUTION:: + + The training set is perturbed by speed with two factors: 0.9 and 1.1. + If ``--full-libri`` is True, each epoch actually processes + ``3x960 == 2880`` hours of data. + + - ``--num-epochs`` + + It is the number of epochs to train. For instance, + ``./conformer_ctc/train.py --num-epochs 30`` trains for 30 epochs + and generates ``epoch-0.pt``, ``epoch-1.pt``, ..., ``epoch-29.pt`` + in the folder ``./conformer_ctc/exp``. + + - ``--start-epoch`` + + It's used to resume training. + ``./conformer_ctc/train.py --start-epoch 10`` loads the + checkpoint ``./conformer_ctc/exp/epoch-9.pt`` and starts + training from epoch 10, based on the state from epoch 9. + + - ``--world-size`` + + It is used for multi-GPU single-machine DDP training. + + - (a) If it is 1, then no DDP training is used. + + - (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training. + + The following shows some use cases with it. + + **Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and + GPU 2 for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ export CUDA_VISIBLE_DEVICES="0,2" + $ ./conformer_ctc/train.py --world-size 2 + + **Use case 2**: You have 4 GPUs and you want to use all of them + for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./conformer_ctc/train.py --world-size 4 + + **Use case 3**: You have 4 GPUs but you only want to use GPU 3 + for training. You can do the following: + + .. code-block:: bash + + $ cd egs/librispeech/ASR + $ export CUDA_VISIBLE_DEVICES="3" + $ ./conformer_ctc/train.py --world-size 1 + + .. CAUTION:: + + Only multi-GPU single-machine DDP training is implemented at present. + Multi-GPU multi-machine DDP training will be added later. + + - ``--max-duration`` + + It specifies the number of seconds over all utterances in a + batch, before **padding**. + If you encounter CUDA OOM, please reduce it. For instance, if + your are using V100 NVIDIA GPU, we recommend you to set it to ``200``. + + .. HINT:: + + Due to padding, the number of seconds of all utterances in a + batch will usually be larger than ``--max-duration``. + + A larger value for ``--max-duration`` may cause OOM during training, + while a smaller value may increase the training time. You have to + tune it. + + +Pre-configured options +~~~~~~~~~~~~~~~~~~~~~~ + +There are some training options, e.g., weight decay, +number of warmup steps, results dir, etc, +that are not passed from the commandline. +They are pre-configured by the function ``get_params()`` in +`conformer_ctc/train.py `_ + +You don't need to change these pre-configured parameters. If you really need to change +them, please modify ``./conformer_ctc/train.py`` directly. + + +Training logs +~~~~~~~~~~~~~ + +Training logs and checkpoints are saved in ``conformer_ctc/exp``. +You will find the following files in that directory: + + - ``epoch-0.pt``, ``epoch-1.pt``, ... + + These are checkpoint files, containing model ``state_dict`` and optimizer ``state_dict``. + To resume training from some checkpoint, say ``epoch-10.pt``, you can use: + + .. code-block:: bash + + $ ./conformer_ctc/train.py --start-epoch 11 + + - ``tensorboard/`` + + This folder contains TensorBoard logs. Training loss, validation loss, learning + rate, etc, are recorded in these logs. You can visualize them by: + + .. code-block:: bash + + $ cd conformer_ctc/exp/tensorboard + $ tensorboard dev upload --logdir . --description "Conformer CTC training for LibriSpeech with icefall" + + It will print something like below: + + .. code-block:: + + TensorFlow installation not found - running with reduced feature set. + Upload started and will continue reading any new data as it's added to the logdir. + + To stop uploading, press Ctrl-C. + + New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/lzGnETjwRxC3yghNMd4kPw/ + + [2021-08-24T16:42:43] Started scanning logdir. + Uploading 4540 scalars... + + Note there is a URL in the above output, click it and you will see + the following screenshot: + + .. figure:: images/librispeech-conformer-ctc-tensorboard-log.png + :width: 600 + :alt: TensorBoard screenshot + :align: center + :target: https://tensorboard.dev/experiment/lzGnETjwRxC3yghNMd4kPw/ + + TensorBoard screenshot. + + - ``log/log-train-xxxx`` + + It is the detailed training log in text format, same as the one + you saw printed to the console during training. + +Usage examples +~~~~~~~~~~~~~~ + +The following shows typical use cases: + +**Case 1** +^^^^^^^^^^ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./conformer_ctc/train.py --max-duration 200 --full-libri 0 + +It uses ``--max-duration`` of 200 to avoid OOM. Also, it uses only +a subset of the LibriSpeech data for training. + + +**Case 2** +^^^^^^^^^^ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ export CUDA_VISIBLE_DEVICES="0,3" + $ ./conformer_ctc/train.py --world-size 2 + +It uses GPU 0 and GPU 3 for DDP training. + +**Case 3** +^^^^^^^^^^ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./conformer_ctc/train.py --num-epochs 10 --start-epoch 3 + +It loads checkpoint ``./conformer_ctc/exp/epoch-2.pt`` and starts +training from epoch 3. Also, it trains for 10 epochs. + +Decoding +-------- + +The decoding part uses checkpoints saved by the training part, so you have +to run the training part first. + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./conformer_ctc/decode.py --help + +shows the options for decoding. + +The commonly used options are: + + - ``--method`` + + This specifies the decoding method. + + The following command uses attention decoder for rescoring: + + .. code-block:: + + $ cd egs/librispeech/ASR + $ ./conformer_ctc/decode.py --method attention-decoder --max-duration 30 --lattice-score-scale 0.5 + + - ``--lattice-score-scale`` + + It is used to scale down lattice scores so that there are more unique + paths for rescoring. + + - ``--max-duration`` + + It has the same meaning as the one during training. A larger + value may cause OOM. + +Pre-trained Model +----------------- + +We have uploaded a pre-trained model to +``_. + +We describe how to use the pre-trained model to transcribe a sound file or +multiple sound files in the following. + +Install kaldifeat +~~~~~~~~~~~~~~~~~ + +`kaldifeat `_ is used to +extract features for a single sound file or multiple sound files +at the same time. + +Please refer to ``_ for installation. + +Download the pre-trained model +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The following commands describe how to download the pre-trained model: + +.. code-block:: + + $ cd egs/librispeech/ASR + $ mkdir tmp + $ cd tmp + $ git lfs install + $ git clone https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc + +.. CAUTION:: + + You have to use ``git lfs`` to download the pre-trained model. + +.. CAUTION:: + + In order to use this pre-trained model, your k2 version has to be v1.7 or later. + +After downloading, you will have the following files: + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ tree tmp + +.. code-block:: bash + + tmp + `-- icefall_asr_librispeech_conformer_ctc + |-- README.md + |-- data + | |-- lang_bpe + | | |-- HLG.pt + | | |-- bpe.model + | | |-- tokens.txt + | | `-- words.txt + | `-- lm + | `-- G_4_gram.pt + |-- exp + | `-- pretrained.pt + `-- test_wavs + |-- 1089-134686-0001.flac + |-- 1221-135766-0001.flac + |-- 1221-135766-0002.flac + `-- trans.txt + + 6 directories, 11 files + +**File descriptions**: + + - ``data/lang_bpe/HLG.pt`` + + It is the decoding graph. + + - ``data/lang_bpe/bpe.model`` + + It is a sentencepiece model. You can use it to reproduce our results. + + - ``data/lang_bpe/tokens.txt`` + + It contains tokens and their IDs, generated from ``bpe.model``. + Provided only for convenience so that you can look up the SOS/EOS ID easily. + + - ``data/lang_bpe/words.txt`` + + It contains words and their IDs. + + - ``data/lm/G_4_gram.pt`` + + It is a 4-gram LM, used for n-gram LM rescoring. + + - ``exp/pretrained.pt`` + + It contains pre-trained model parameters, obtained by averaging + checkpoints from ``epoch-15.pt`` to ``epoch-34.pt``. + Note: We have removed optimizer ``state_dict`` to reduce file size. + + - ``test_waves/*.flac`` + + It contains some test sound files from LibriSpeech ``test-clean`` dataset. + + - ``test_waves/trans.txt`` + + It contains the reference transcripts for the sound files in ``test_waves/``. + +The information of the test sound files is listed below: + +.. code-block:: bash + + $ soxi tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/*.flac + + Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac' + Channels : 1 + Sample Rate : 16000 + Precision : 16-bit + Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors + File Size : 116k + Bit Rate : 140k + Sample Encoding: 16-bit FLAC + + Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac' + Channels : 1 + Sample Rate : 16000 + Precision : 16-bit + Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors + File Size : 343k + Bit Rate : 164k + Sample Encoding: 16-bit FLAC + + Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac' + Channels : 1 + Sample Rate : 16000 + Precision : 16-bit + Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors + File Size : 105k + Bit Rate : 174k + Sample Encoding: 16-bit FLAC + + Total Duration of 3 files: 00:00:28.16 + +Usage +~~~~~ + +.. code-block:: + + $ cd egs/librispeech/ASR + $ ./conformer_ctc/pretrained.py --help + +displays the help information. + +It supports three decoding methods: + + - HLG decoding + - HLG + n-gram LM rescoring + - HLG + n-gram LM rescoring + attention decoder rescoring + +HLG decoding +^^^^^^^^^^^^ + +HLG decoding uses the best path of the decoding lattice as the decoding result. + +The command to run HLG decoding is: + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./conformer_ctc/pretrained.py \ + --checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \ + --words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \ + --HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \ + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \ + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \ + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac + +The output is given below: + +.. code-block:: + + 2021-08-20 11:03:05,712 INFO [pretrained.py:217] device: cuda:0 + 2021-08-20 11:03:05,712 INFO [pretrained.py:219] Creating model + 2021-08-20 11:03:11,345 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt + 2021-08-20 11:03:18,442 INFO [pretrained.py:255] Constructing Fbank computer + 2021-08-20 11:03:18,444 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac'] + 2021-08-20 11:03:18,507 INFO [pretrained.py:271] Decoding started + 2021-08-20 11:03:18,795 INFO [pretrained.py:300] Use HLG decoding + 2021-08-20 11:03:19,149 INFO [pretrained.py:339] + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac: + AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS + + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac: + GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED + BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN + + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac: + YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION + + 2021-08-20 11:03:19,149 INFO [pretrained.py:341] Decoding Done + +HLG decoding + LM rescoring +^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +It uses an n-gram LM to rescore the decoding lattice and the best +path of the rescored lattice is the decoding result. + +The command to run HLG decoding + LM rescoring is: + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./conformer_ctc/pretrained.py \ + --checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \ + --words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \ + --HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \ + --method whole-lattice-rescoring \ + --G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \ + --ngram-lm-scale 0.8 \ + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \ + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \ + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac + +Its output is: + +.. code-block:: + + 2021-08-20 11:12:17,565 INFO [pretrained.py:217] device: cuda:0 + 2021-08-20 11:12:17,565 INFO [pretrained.py:219] Creating model + 2021-08-20 11:12:23,728 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt + 2021-08-20 11:12:30,035 INFO [pretrained.py:246] Loading G from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt + 2021-08-20 11:13:10,779 INFO [pretrained.py:255] Constructing Fbank computer + 2021-08-20 11:13:10,787 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac'] + 2021-08-20 11:13:10,798 INFO [pretrained.py:271] Decoding started + 2021-08-20 11:13:11,085 INFO [pretrained.py:305] Use HLG decoding + LM rescoring + 2021-08-20 11:13:11,736 INFO [pretrained.py:339] + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac: + AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS + + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac: + GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED + BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN + + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac: + YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION + + 2021-08-20 11:13:11,737 INFO [pretrained.py:341] Decoding Done + +HLG decoding + LM rescoring + attention decoder rescoring +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +It uses an n-gram LM to rescore the decoding lattice, extracts +n paths from the rescored lattice, recores the extracted paths with +an attention decoder. The path with the highest score is the decoding result. + +The command to run HLG decoding + LM rescoring + attention decoder rescoring is: + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./conformer_ctc/pretrained.py \ + --checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \ + --words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \ + --HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \ + --method attention-decoder \ + --G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \ + --ngram-lm-scale 1.3 \ + --attention-decoder-scale 1.2 \ + --lattice-score-scale 0.5 \ + --num-paths 100 \ + --sos-id 1 \ + --eos-id 1 \ + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \ + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \ + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac + +The output is below: + +.. code-block:: + + 2021-08-20 11:19:11,397 INFO [pretrained.py:217] device: cuda:0 + 2021-08-20 11:19:11,397 INFO [pretrained.py:219] Creating model + 2021-08-20 11:19:17,354 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt + 2021-08-20 11:19:24,615 INFO [pretrained.py:246] Loading G from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt + 2021-08-20 11:20:04,576 INFO [pretrained.py:255] Constructing Fbank computer + 2021-08-20 11:20:04,584 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac'] + 2021-08-20 11:20:04,595 INFO [pretrained.py:271] Decoding started + 2021-08-20 11:20:04,854 INFO [pretrained.py:313] Use HLG + LM rescoring + attention decoder rescoring + 2021-08-20 11:20:05,805 INFO [pretrained.py:339] + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac: + AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS + + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac: + GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED + BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN + + ./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac: + YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION + + 2021-08-20 11:20:05,805 INFO [pretrained.py:341] Decoding Done + +Colab notebook +-------------- + +We do provide a colab notebook for this recipe showing how to use a pre-trained model. + +|librispeech asr conformer ctc colab notebook| + +.. |librispeech asr conformer ctc colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg + :target: https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing + +.. HINT:: + + Due to limited memory provided by Colab, you have to upgrade to Colab Pro to + run ``HLG decoding + LM rescoring`` and + ``HLG decoding + LM rescoring + attention decoder rescoring``. + Otherwise, you can only run ``HLG decoding`` with Colab. + +**Congratulations!** You have finished the librispeech ASR recipe with +conformer CTC models in ``icefall``. diff --git a/docs/source/recipes/librispeech/images/librispeech-conformer-ctc-tensorboard-log.png b/docs/source/recipes/librispeech/images/librispeech-conformer-ctc-tensorboard-log.png new file mode 100644 index 000000000..4e8c2ea7c Binary files /dev/null and b/docs/source/recipes/librispeech/images/librispeech-conformer-ctc-tensorboard-log.png differ diff --git a/docs/source/recipes/librispeech/tdnn_lstm_ctc.rst b/docs/source/recipes/librispeech/tdnn_lstm_ctc.rst new file mode 100644 index 000000000..848026802 --- /dev/null +++ b/docs/source/recipes/librispeech/tdnn_lstm_ctc.rst @@ -0,0 +1,394 @@ +TDNN-LSTM-CTC +============= + +This tutorial shows you how to run a TDNN-LSTM-CTC model with the `LibriSpeech `_ dataset. + + +.. HINT:: + + We assume you have read the page :ref:`install icefall` and have setup + the environment for ``icefall``. + + +Data preparation +---------------- + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh + +The script ``./prepare.sh`` handles the data preparation for you, **automagically**. +All you need to do is to run it. + +The data preparation contains several stages, you can use the following two +options: + + - ``--stage`` + - ``--stop-stage`` + +to control which stage(s) should be run. By default, all stages are executed. + + +For example, + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./prepare.sh --stage 0 --stop-stage 0 + +means to run only stage 0. + +To run stage 2 to stage 5, use: + +.. code-block:: bash + + $ ./prepare.sh --stage 2 --stop-stage 5 + + +Training +-------- + +Now describing the training of TDNN-LSTM-CTC model, contained in +the `tdnn_lstm_ctc `_ +folder. + +The command to run the training part is: + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ export CUDA_VISIBLE_DEVICES="0,1,2,3" + $ ./tdnn_lstm_ctc/train.py --world-size 4 + +By default, it will run ``20`` epochs. Training logs and checkpoints are saved +in ``tdnn_lstm_ctc/exp``. + +In ``tdnn_lstm_ctc/exp``, you will find the following files: + + - ``epoch-0.pt``, ``epoch-1.pt``, ..., ``epoch-19.pt`` + + These are checkpoint files, containing model ``state_dict`` and optimizer ``state_dict``. + To resume training from some checkpoint, say ``epoch-10.pt``, you can use: + + .. code-block:: bash + + $ ./tdnn_lstm_ctc/train.py --start-epoch 11 + + - ``tensorboard/`` + + This folder contains TensorBoard logs. Training loss, validation loss, learning + rate, etc, are recorded in these logs. You can visualize them by: + + .. code-block:: bash + + $ cd tdnn_lstm_ctc/exp/tensorboard + $ tensorboard dev upload --logdir . --description "TDNN LSTM training for librispeech with icefall" + + - ``log/log-train-xxxx`` + + It is the detailed training log in text format, same as the one + you saw printed to the console during training. + + +To see available training options, you can use: + +.. code-block:: bash + + $ ./tdnn_lstm_ctc/train.py --help + +Other training options, e.g., learning rate, results dir, etc., are +pre-configured in the function ``get_params()`` +in `tdnn_lstm_ctc/train.py `_. +Normally, you don't need to change them. You can change them by modifying the code, if +you want. + +Decoding +-------- + +The decoding part uses checkpoints saved by the training part, so you have +to run the training part first. + +The command for decoding is: + +.. code-block:: bash + + $ export CUDA_VISIBLE_DEVICES="0" + $ ./tdnn_lstm_ctc/decode.py + +You will see the WER in the output log. + +Decoded results are saved in ``tdnn_lstm_ctc/exp``. + +.. code-block:: bash + + $ ./tdnn_lstm_ctc/decode.py --help + +shows you the available decoding options. + +Some commonly used options are: + + - ``--epoch`` + + You can select which checkpoint to be used for decoding. + For instance, ``./tdnn_lstm_ctc/decode.py --epoch 10`` means to use + ``./tdnn_lstm_ctc/exp/epoch-10.pt`` for decoding. + + - ``--avg`` + + It's related to model averaging. It specifies number of checkpoints + to be averaged. The averaged model is used for decoding. + For example, the following command: + + .. code-block:: bash + + $ ./tdnn_lstm_ctc/decode.py --epoch 10 --avg 3 + + uses the average of ``epoch-8.pt``, ``epoch-9.pt`` and ``epoch-10.pt`` + for decoding. + + - ``--export`` + + If it is ``True``, i.e., ``./tdnn_lstm_ctc/decode.py --export 1``, the code + will save the averaged model to ``tdnn_lstm_ctc/exp/pretrained.pt``. + See :ref:`tdnn_lstm_ctc use a pre-trained model` for how to use it. + + +.. _tdnn_lstm_ctc use a pre-trained model: + +Pre-trained Model +----------------- + +We have uploaded the pre-trained model to +``_. + +The following shows you how to use the pre-trained model. + + +Install kaldifeat +~~~~~~~~~~~~~~~~~ + +`kaldifeat `_ is used to +extract features for a single sound file or multiple sound files +at the same time. + +Please refer to ``_ for installation. + +Download the pre-trained model +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ mkdir tmp + $ cd tmp + $ git lfs install + $ git clone https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc + +.. CAUTION:: + + You have to use ``git lfs`` to download the pre-trained model. + +.. CAUTION:: + + In order to use this pre-trained model, your k2 version has to be v1.7 or later. + +After downloading, you will have the following files: + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ tree tmp + +.. code-block:: bash + + tmp/ + `-- icefall_asr_librispeech_tdnn-lstm_ctc + |-- README.md + |-- data + | |-- lang_phone + | | |-- HLG.pt + | | |-- tokens.txt + | | `-- words.txt + | `-- lm + | `-- G_4_gram.pt + |-- exp + | `-- pretrained.pt + `-- test_wavs + |-- 1089-134686-0001.flac + |-- 1221-135766-0001.flac + |-- 1221-135766-0002.flac + `-- trans.txt + + 6 directories, 10 files + +**File descriptions**: + + - ``data/lang_phone/HLG.pt`` + + It is the decoding graph. + + - ``data/lang_phone/tokens.txt`` + + It contains tokens and their IDs. + + - ``data/lang_phone/words.txt`` + + It contains words and their IDs. + + - ``data/lm/G_4_gram.pt`` + + It is a 4-gram LM, useful for LM rescoring. + + - ``exp/pretrained.pt`` + + It contains pre-trained model parameters, obtained by averaging + checkpoints from ``epoch-14.pt`` to ``epoch-19.pt``. + Note: We have removed optimizer ``state_dict`` to reduce file size. + + - ``test_waves/*.flac`` + + It contains some test sound files from LibriSpeech ``test-clean`` dataset. + + - ``test_waves/trans.txt`` + + It contains the reference transcripts for the sound files in ``test_waves/``. + +The information of the test sound files is listed below: + +.. code-block:: bash + + $ soxi tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/*.flac + + Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac' + Channels : 1 + Sample Rate : 16000 + Precision : 16-bit + Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors + File Size : 116k + Bit Rate : 140k + Sample Encoding: 16-bit FLAC + + + Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac' + Channels : 1 + Sample Rate : 16000 + Precision : 16-bit + Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors + File Size : 343k + Bit Rate : 164k + Sample Encoding: 16-bit FLAC + + + Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac' + Channels : 1 + Sample Rate : 16000 + Precision : 16-bit + Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors + File Size : 105k + Bit Rate : 174k + Sample Encoding: 16-bit FLAC + + Total Duration of 3 files: 00:00:28.16 + + +Inference with a pre-trained model +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ cd egs/librispeech/ASR + $ ./tdnn_lstm_ctc/pretrained.py --help + +shows the usage information of ``./tdnn_lstm_ctc/pretrained.py``. + +To decode with ``1best`` method, we can use: + +.. code-block:: bash + + ./tdnn_lstm_ctc/pretrained.py \ + --checkpoint ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt \ + --words-file ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt \ + --HLG ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt \ + ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac \ + ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac \ + ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac + +The output is: + +.. code-block:: + + 2021-08-24 16:57:13,315 INFO [pretrained.py:168] device: cuda:0 + 2021-08-24 16:57:13,315 INFO [pretrained.py:170] Creating model + 2021-08-24 16:57:18,331 INFO [pretrained.py:182] Loading HLG from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt + 2021-08-24 16:57:27,581 INFO [pretrained.py:199] Constructing Fbank computer + 2021-08-24 16:57:27,584 INFO [pretrained.py:209] Reading sound files: ['./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac'] + 2021-08-24 16:57:27,599 INFO [pretrained.py:215] Decoding started + 2021-08-24 16:57:27,791 INFO [pretrained.py:245] Use HLG decoding + 2021-08-24 16:57:28,098 INFO [pretrained.py:266] + ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac: + AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS + + ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac: + GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN + + ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac: + YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION + + + 2021-08-24 16:57:28,099 INFO [pretrained.py:268] Decoding Done + + +To decode with ``whole-lattice-rescoring`` methond, you can use + +.. code-block:: bash + + ./tdnn_lstm_ctc/pretrained.py \ + --checkpoint ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt \ + --words-file ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt \ + --HLG ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt \ + --method whole-lattice-rescoring \ + --G ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt \ + --ngram-lm-scale 0.8 \ + ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac \ + ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac \ + ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac + +The decoding output is: + +.. code-block:: + + 2021-08-24 16:39:24,725 INFO [pretrained.py:168] device: cuda:0 + 2021-08-24 16:39:24,725 INFO [pretrained.py:170] Creating model + 2021-08-24 16:39:29,403 INFO [pretrained.py:182] Loading HLG from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt + 2021-08-24 16:39:40,631 INFO [pretrained.py:190] Loading G from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt + 2021-08-24 16:39:53,098 INFO [pretrained.py:199] Constructing Fbank computer + 2021-08-24 16:39:53,107 INFO [pretrained.py:209] Reading sound files: ['./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac'] + 2021-08-24 16:39:53,121 INFO [pretrained.py:215] Decoding started + 2021-08-24 16:39:53,443 INFO [pretrained.py:250] Use HLG decoding + LM rescoring + 2021-08-24 16:39:54,010 INFO [pretrained.py:266] + ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac: + AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS + + ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac: + GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN + + ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac: + YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION + + + 2021-08-24 16:39:54,010 INFO [pretrained.py:268] Decoding Done + + +Colab notebook +-------------- + +We provide a colab notebook for decoding with pre-trained model. + +|librispeech tdnn_lstm_ctc colab notebook| + +.. |librispeech tdnn_lstm_ctc colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg + :target: https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd + + +**Congratulations!** You have finished the TDNN-LSTM-CTC recipe on librispeech in ``icefall``. diff --git a/docs/source/recipes/yesno.rst b/docs/source/recipes/yesno.rst new file mode 100644 index 000000000..cb425ad1d --- /dev/null +++ b/docs/source/recipes/yesno.rst @@ -0,0 +1,445 @@ +yesno +===== + +This page shows you how to run the `yesno `_ recipe. It contains: + + - (1) Prepare data for training + - (2) Train a TDNN model + + - (a) View text format logs and visualize TensorBoard logs + - (b) Select device type, i.e., CPU and GPU, for training + - (c) Change training options + - (d) Resume training from a checkpoint + + - (3) Decode with a trained model + + - (a) Select a checkpoint for decoding + - (b) Model averaging + + - (4) Colab notebook + + - (a) It shows you step by step how to setup the environment, how to do training, + and how to do decoding + - (b) How to use a pre-trained model + + - (5) Inference with a pre-trained model + + - (a) Download a pre-trained model, provided by us + - (b) Decode a single sound file with a pre-trained model + - (c) Decode multiple sound files at the same time + +It does **NOT** show you: + + - (1) How to train with multiple GPUs + + The ``yesno`` dataset is so small that CPU is more than enough + for training as well as for decoding. + + - (2) How to use LM rescoring for decoding + + The dataset does not have an LM for rescoring. + +.. HINT:: + + We assume you have read the page :ref:`install icefall` and have setup + the environment for ``icefall``. + +.. HINT:: + + You **don't** need a **GPU** to run this recipe. It can be run on a **CPU**. + The training part takes less than 30 **seconds** on a CPU and you will get + the following WER at the end:: + + [test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ] + +Data preparation +---------------- + +.. code-block:: bash + + $ cd egs/yesno/ASR + $ ./prepare.sh + +The script ``./prepare.sh`` handles the data preparation for you, **automagically**. +All you need to do is to run it. + +The data preparation contains several stages, you can use the following two +options: + + - ``--stage`` + - ``--stop-stage`` + +to control which stage(s) should be run. By default, all stages are executed. + + +For example, + +.. code-block:: bash + + $ cd egs/yesno/ASR + $ ./prepare.sh --stage 0 --stop-stage 0 + +means to run only stage 0. + +To run stage 2 to stage 5, use: + +.. code-block:: bash + + $ ./prepare.sh --stage 2 --stop-stage 5 + + +Training +-------- + +We provide only a TDNN model, contained in +the `tdnn `_ +folder, for ``yesno``. + +The command to run the training part is: + +.. code-block:: bash + + $ cd egs/yesno/ASR + $ export CUDA_VISIBLE_DEVICES="" + $ ./tdnn/train.py + +By default, it will run ``15`` epochs. Training logs and checkpoints are saved +in ``tdnn/exp``. + +In ``tdnn/exp``, you will find the following files: + + - ``epoch-0.pt``, ``epoch-1.pt``, ... + + These are checkpoint files, containing model ``state_dict`` and optimizer ``state_dict``. + To resume training from some checkpoint, say ``epoch-10.pt``, you can use: + + .. code-block:: bash + + $ ./tdnn/train.py --start-epoch 11 + + - ``tensorboard/`` + + This folder contains TensorBoard logs. Training loss, validation loss, learning + rate, etc, are recorded in these logs. You can visualize them by: + + .. code-block:: bash + + $ cd tdnn/exp/tensorboard + $ tensorboard dev upload --logdir . --description "TDNN training for yesno with icefall" + + It will print something like below: + + .. code-block:: + + TensorFlow installation not found - running with reduced feature set. + Upload started and will continue reading any new data as it's added to the logdir. + + To stop uploading, press Ctrl-C. + + New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/yKUbhb5wRmOSXYkId1z9eg/ + + [2021-08-23T23:49:41] Started scanning logdir. + [2021-08-23T23:49:42] Total uploaded: 135 scalars, 0 tensors, 0 binary objects + Listening for new data in logdir... + + Note there is a URL in the above output, click it and you will see + the following screenshot: + + .. figure:: images/yesno-tdnn-tensorboard-log.png + :width: 600 + :alt: TensorBoard screenshot + :align: center + :target: https://tensorboard.dev/experiment/yKUbhb5wRmOSXYkId1z9eg/ + + TensorBoard screenshot. + + - ``log/log-train-xxxx`` + + It is the detailed training log in text format, same as the one + you saw printed to the console during training. + + + +.. NOTE:: + + By default, ``./tdnn/train.py`` uses GPU 0 for training if GPUs are available. + If you have two GPUs, say, GPU 0 and GPU 1, and you want to use GPU 1 for + training, you can run: + + .. code-block:: bash + + $ export CUDA_VISIBLE_DEVICES="1" + $ ./tdnn/train.py + + Since the ``yesno`` dataset is very small, containing only 30 sound files + for training, and the model in use is also very small, we use: + + .. code-block:: bash + + $ export CUDA_VISIBLE_DEVICES="" + + so that ``./tdnn/train.py`` uses CPU during training. + + If you don't have GPUs, then you don't need to + run ``export CUDA_VISIBLE_DEVICES=""``. + +To see available training options, you can use: + +.. code-block:: bash + + $ ./tdnn/train.py --help + +Other training options, e.g., learning rate, results dir, etc., are +pre-configured in the function ``get_params()`` +in `tdnn/train.py `_. +Normally, you don't need to change them. You can change them by modifying the code, if +you want. + +Decoding +-------- + +The decoding part uses checkpoints saved by the training part, so you have +to run the training part first. + +The command for decoding is: + +.. code-block:: bash + + $ export CUDA_VISIBLE_DEVICES="" + $ ./tdnn/decode.py + +You will see the WER in the output log. + +Decoded results are saved in ``tdnn/exp``. + +.. code-block:: bash + + $ ./tdnn/decode.py --help + +shows you the available decoding options. + +Some commonly used options are: + + - ``--epoch`` + + You can select which checkpoint to be used for decoding. + For instance, ``./tdnn/decode.py --epoch 10`` means to use + ``./tdnn/exp/epoch-10.pt`` for decoding. + + - ``--avg`` + + It's related to model averaging. It specifies number of checkpoints + to be averaged. The averaged model is used for decoding. + For example, the following command: + + .. code-block:: bash + + $ ./tdnn/decode.py --epoch 10 --avg 3 + + uses the average of ``epoch-8.pt``, ``epoch-9.pt`` and ``epoch-10.pt`` + for decoding. + + - ``--export`` + + If it is ``True``, i.e., ``./tdnn/decode.py --export 1``, the code + will save the averaged model to ``tdnn/exp/pretrained.pt``. + See :ref:`yesno use a pre-trained model` for how to use it. + + +.. _yesno use a pre-trained model: + +Pre-trained Model +----------------- + +We have uploaded the pre-trained model to +``_. + +The following shows you how to use the pre-trained model. + +Download the pre-trained model +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ cd egs/yesno/ASR + $ mkdir tmp + $ cd tmp + $ git lfs install + $ git clone https://huggingface.co/csukuangfj/icefall_asr_yesno_tdnn + +.. CAUTION:: + + You have to use ``git lfs`` to download the pre-trained model. + +After downloading, you will have the following files: + +.. code-block:: bash + + $ cd egs/yesno/ASR + $ tree tmp + +.. code-block:: bash + + tmp/ + `-- icefall_asr_yesno_tdnn + |-- README.md + |-- lang_phone + | |-- HLG.pt + | |-- L.pt + | |-- L_disambig.pt + | |-- Linv.pt + | |-- lexicon.txt + | |-- lexicon_disambig.txt + | |-- tokens.txt + | `-- words.txt + |-- lm + | |-- G.arpa + | `-- G.fst.txt + |-- pretrained.pt + `-- test_waves + |-- 0_0_0_1_0_0_0_1.wav + |-- 0_0_1_0_0_0_1_0.wav + |-- 0_0_1_0_0_1_1_1.wav + |-- 0_0_1_0_1_0_0_1.wav + |-- 0_0_1_1_0_0_0_1.wav + |-- 0_0_1_1_0_1_1_0.wav + |-- 0_0_1_1_1_0_0_0.wav + |-- 0_0_1_1_1_1_0_0.wav + |-- 0_1_0_0_0_1_0_0.wav + |-- 0_1_0_0_1_0_1_0.wav + |-- 0_1_0_1_0_0_0_0.wav + |-- 0_1_0_1_1_1_0_0.wav + |-- 0_1_1_0_0_1_1_1.wav + |-- 0_1_1_1_0_0_1_0.wav + |-- 0_1_1_1_1_0_1_0.wav + |-- 1_0_0_0_0_0_0_0.wav + |-- 1_0_0_0_0_0_1_1.wav + |-- 1_0_0_1_0_1_1_1.wav + |-- 1_0_1_1_0_1_1_1.wav + |-- 1_0_1_1_1_1_0_1.wav + |-- 1_1_0_0_0_1_1_1.wav + |-- 1_1_0_0_1_0_1_1.wav + |-- 1_1_0_1_0_1_0_0.wav + |-- 1_1_0_1_1_0_0_1.wav + |-- 1_1_0_1_1_1_1_0.wav + |-- 1_1_1_0_0_1_0_1.wav + |-- 1_1_1_0_1_0_1_0.wav + |-- 1_1_1_1_0_0_1_0.wav + |-- 1_1_1_1_1_0_0_0.wav + `-- 1_1_1_1_1_1_1_1.wav + + 4 directories, 42 files + +.. code-block:: bash + + $ soxi tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav + + Input File : 'tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav' + Channels : 1 + Sample Rate : 8000 + Precision : 16-bit + Duration : 00:00:06.76 = 54080 samples ~ 507 CDDA sectors + File Size : 108k + Bit Rate : 128k + Sample Encoding: 16-bit Signed Integer PCM + +- ``0_0_1_0_1_0_0_1.wav`` + + 0 means No; 1 means Yes. No and Yes are not in English, + but in `Hebrew `_. + So this file contains ``NO NO YES NO YES NO NO YES``. + +Download kaldifeat +~~~~~~~~~~~~~~~~~~ + +`kaldifeat `_ is used for extracting +features from a single or multiple sound files. Please refer to +``_ to install ``kaldifeat`` first. + +Inference with a pre-trained model +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. code-block:: bash + + $ cd egs/yesno/ASR + $ ./tdnn/pretrained.py --help + +shows the usage information of ``./tdnn/pretrained.py``. + +To decode a single file, we can use: + +.. code-block:: bash + + ./tdnn/pretrained.py \ + --checkpoint ./tmp/icefall_asr_yesno_tdnn/pretrained.pt \ + --words-file ./tmp/icefall_asr_yesno_tdnn/lang_phone/words.txt \ + --HLG ./tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt \ + ./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav + +The output is: + +.. code-block:: + + 2021-08-24 12:22:51,621 INFO [pretrained.py:119] {'feature_dim': 23, 'num_classes': 4, 'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './tmp/icefall_asr_yesno_tdnn/pretrained.pt', 'words_file': './tmp/icefall_asr_yesno_tdnn/lang_phone/words.txt', 'HLG': './tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt', 'sound_files': ['./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav']} + 2021-08-24 12:22:51,645 INFO [pretrained.py:125] device: cpu + 2021-08-24 12:22:51,645 INFO [pretrained.py:127] Creating model + 2021-08-24 12:22:51,650 INFO [pretrained.py:139] Loading HLG from ./tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt + 2021-08-24 12:22:51,651 INFO [pretrained.py:143] Constructing Fbank computer + 2021-08-24 12:22:51,652 INFO [pretrained.py:153] Reading sound files: ['./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav'] + 2021-08-24 12:22:51,684 INFO [pretrained.py:159] Decoding started + 2021-08-24 12:22:51,708 INFO [pretrained.py:198] + ./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav: + NO NO YES NO YES NO NO YES + + + 2021-08-24 12:22:51,708 INFO [pretrained.py:200] Decoding Done + +You can see that for the sound file ``0_0_1_0_1_0_0_1.wav``, the decoding result is +``NO NO YES NO YES NO NO YES``. + +To decode **multiple** files at the same time, you can use + +.. code-block:: bash + + ./tdnn/pretrained.py \ + --checkpoint ./tmp/icefall_asr_yesno_tdnn/pretrained.pt \ + --words-file ./tmp/icefall_asr_yesno_tdnn/lang_phone/words.txt \ + --HLG ./tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt \ + ./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav \ + ./tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav + +The decoding output is: + +.. code-block:: + + 2021-08-24 12:25:20,159 INFO [pretrained.py:119] {'feature_dim': 23, 'num_classes': 4, 'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './tmp/icefall_asr_yesno_tdnn/pretrained.pt', 'words_file': './tmp/icefall_asr_yesno_tdnn/lang_phone/words.txt', 'HLG': './tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt', 'sound_files': ['./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav', './tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav']} + 2021-08-24 12:25:20,181 INFO [pretrained.py:125] device: cpu + 2021-08-24 12:25:20,181 INFO [pretrained.py:127] Creating model + 2021-08-24 12:25:20,185 INFO [pretrained.py:139] Loading HLG from ./tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt + 2021-08-24 12:25:20,186 INFO [pretrained.py:143] Constructing Fbank computer + 2021-08-24 12:25:20,187 INFO [pretrained.py:153] Reading sound files: ['./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav', + './tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav'] + 2021-08-24 12:25:20,213 INFO [pretrained.py:159] Decoding started + 2021-08-24 12:25:20,287 INFO [pretrained.py:198] + ./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav: + NO NO YES NO YES NO NO YES + + ./tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav: + YES NO YES YES NO YES YES YES + + 2021-08-24 12:25:20,287 INFO [pretrained.py:200] Decoding Done + +You can see again that it decodes correctly. + +Colab notebook +-------------- + +We do provide a colab notebook for this recipe. + +|yesno colab notebook| + +.. |yesno colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg + :target: https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing + + +**Congratulations!** You have finished the simplest speech recognition recipe in ``icefall``. diff --git a/egs/librispeech/ASR/README.md b/egs/librispeech/ASR/README.md index 30778ed05..ae0c2684d 100644 --- a/egs/librispeech/ASR/README.md +++ b/egs/librispeech/ASR/README.md @@ -1,64 +1,3 @@ -## Data preparation - -If you want to use `./prepare.sh` to download everything for you, -you can just run - -``` -./prepare.sh -``` - -If you have pre-downloaded the LibriSpeech dataset, please -read `./prepare.sh` and modify it to point to the location -of your dataset so that it won't re-download it. After modification, -please run - -``` -./prepare.sh -``` - -The script `./prepare.sh` prepares features, lexicon, LMs, etc. -All generated files are saved in the folder `./data`. - -**HINT:** `./prepare.sh` supports options `--stage` and `--stop-stage`. - -## TDNN-LSTM CTC training - -The folder `tdnn_lstm_ctc` contains scripts for CTC training -with TDNN-LSTM models. - -Pre-configured parameters for training and decoding are set in the function -`get_params()` within `tdnn_lstm_ctc/train.py` -and `tdnn_lstm_ctc/decode.py`. - -Parameters that can be passed from the command-line can be found by - -``` -./tdnn_lstm_ctc/train.py --help -./tdnn_lstm_ctc/decode.py --help -``` - -If you have 4 GPUs on a machine and want to use GPU 0, 2, 3 for -mutli-GPU training, you can run - -``` -export CUDA_VISIBLE_DEVICES="0,2,3" -./tdnn_lstm_ctc/train.py \ - --master-port 12345 \ - --world-size 3 -``` - -If you want to decode by averaging checkpoints `epoch-8.pt`, -`epoch-9.pt` and `epoch-10.pt`, you can run - -``` -./tdnn_lstm_ctc/decode.py \ - --epoch 10 \ - --avg 3 -``` - -## Conformer CTC training - -The folder `conformer-ctc` contains scripts for CTC training -with conformer models. The steps of running the training and -decoding are similar to `tdnn_lstm_ctc`. +Please refer to +for how to run models in this recipe. diff --git a/egs/librispeech/ASR/RESULTS.md b/egs/librispeech/ASR/RESULTS.md index 159147a3e..d04e912bf 100644 --- a/egs/librispeech/ASR/RESULTS.md +++ b/egs/librispeech/ASR/RESULTS.md @@ -6,7 +6,7 @@ TensorBoard log is available at https://tensorboard.dev/experiment/GnRzq8WWQW62dK4bklXBTg/#scalars -Pretrained model is available at https://huggingface.co/pkufool/conformer_ctc +Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc The best decoding results (WER) are listed below, we got this results by averaging models from epoch 15 to 34, and using `attention-decoder` decoder with num_paths equals to 100. @@ -21,3 +21,51 @@ To get more unique paths, we scaled the lattice.scores with 0.5 (see https://git |test-clean|1.3|1.2| |test-other|1.2|1.1| +You can use the following commands to reproduce our results: + +```bash +git clone https://github.com/k2-fsa/icefall +cd icefall + +# It was using ef233486, you may not need to switch to it +# git checkout ef233486 + +cd egs/librispeech/ASR +./prepare.sh + +export CUDA_VISIBLE_DEVICES="0,1,2,3" +python conformer_ctc/train.py --bucketing-sampler True \ + --concatenate-cuts False \ + --max-duration 200 \ + --full-libri True \ + --world-size 4 + +python conformer_ctc/decode.py --lattice-score-scale 0.5 \ + --epoch 34 \ + --avg 20 \ + --method attention-decoder \ + --max-duration 20 \ + --num-paths 100 +``` + +### LibriSpeech training results (Tdnn-Lstm) +#### 2021-08-24 + +(Wei Kang): Result of phone based Tdnn-Lstm model. + +Icefall version: https://github.com/k2-fsa/icefall/commit/caa0b9e9425af27e0c6211048acb55a76ed5d315 + +Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc + +The best decoding results (WER) are listed below, we got this results by averaging models from epoch 19 to 14, and using `whole-lattice-rescoring` decoding method. + +||test-clean|test-other| +|--|--|--| +|WER| 6.59% | 17.69% | + +We searched the lm_score_scale for best results, the scales that produced the WER above are also listed below. + +||lm_scale| +|--|--| +|test-clean|0.8| +|test-other|0.9| diff --git a/egs/librispeech/ASR/conformer_ctc/README.md b/egs/librispeech/ASR/conformer_ctc/README.md index 130d21351..23b51167b 100644 --- a/egs/librispeech/ASR/conformer_ctc/README.md +++ b/egs/librispeech/ASR/conformer_ctc/README.md @@ -1,351 +1,3 @@ - -# How to use a pre-trained model to transcribe a sound file or multiple sound files - -(See the bottom of this document for the link to a colab notebook.) - -You need to prepare 4 files: - - - a model checkpoint file, e.g., epoch-20.pt - - HLG.pt, the decoding graph - - words.txt, the word symbol table - - a sound file, whose sampling rate has to be 16 kHz. - Supported formats are those supported by `torchaudio.load()`, - e.g., wav and flac. - -Also, you need to install `kaldifeat`. Please refer to - for installation. - -```bash -./conformer_ctc/pretrained.py --help -``` - -displays the help information. - -## HLG decoding - -Once you have the above files ready and have `kaldifeat` installed, -you can run: - -```bash -./conformer_ctc/pretrained.py \ - --checkpoint /path/to/your/checkpoint.pt \ - --words-file /path/to/words.txt \ - --HLG /path/to/HLG.pt \ - /path/to/your/sound.wav -``` - -and you will see the transcribed result. - -If you want to transcribe multiple files at the same time, you can use: - -```bash -./conformer_ctc/pretrained.py \ - --checkpoint /path/to/your/checkpoint.pt \ - --words-file /path/to/words.txt \ - --HLG /path/to/HLG.pt \ - /path/to/your/sound1.wav \ - /path/to/your/sound2.wav \ - /path/to/your/sound3.wav -``` - -**Note**: This is the fastest decoding method. - -## HLG decoding + LM rescoring - -`./conformer_ctc/pretrained.py` also supports `whole lattice LM rescoring` -and `attention decoder rescoring`. - -To use whole lattice LM rescoring, you also need the following files: - - - G.pt, e.g., `data/lm/G_4_gram.pt` if you have run `./prepare.sh` - -The command to run decoding with LM rescoring is: - -```bash -./conformer_ctc/pretrained.py \ - --checkpoint /path/to/your/checkpoint.pt \ - --words-file /path/to/words.txt \ - --HLG /path/to/HLG.pt \ - --method whole-lattice-rescoring \ - --G data/lm/G_4_gram.pt \ - --ngram-lm-scale 0.8 \ - /path/to/your/sound1.wav \ - /path/to/your/sound2.wav \ - /path/to/your/sound3.wav -``` - -## HLG Decoding + LM rescoring + attention decoder rescoring - -To use attention decoder for rescoring, you need the following extra information: - - - sos token ID - - eos token ID - -The command to run decoding with attention decoder rescoring is: - -```bash -./conformer_ctc/pretrained.py \ - --checkpoint /path/to/your/checkpoint.pt \ - --words-file /path/to/words.txt \ - --HLG /path/to/HLG.pt \ - --method attention-decoder \ - --G data/lm/G_4_gram.pt \ - --ngram-lm-scale 1.3 \ - --attention-decoder-scale 1.2 \ - --lattice-score-scale 0.5 \ - --num-paths 100 \ - --sos-id 1 \ - --eos-id 1 \ - /path/to/your/sound1.wav \ - /path/to/your/sound2.wav \ - /path/to/your/sound3.wav -``` - -# Decoding with a pre-trained model in action - -We have uploaded a pre-trained model to - -The following shows the steps about the usage of the provided pre-trained model. - -### (1) Download the pre-trained model - -```bash -sudo apt-get install git-lfs -cd /path/to/icefall/egs/librispeech/ASR -git lfs install -mkdir tmp -cd tmp -git clone https://huggingface.co/pkufool/conformer_ctc -``` - -**CAUTION**: You have to install `git-lfst` to download the pre-trained model. - -You will find the following files: - -``` -tmp -`-- conformer_ctc - |-- README.md - |-- data - | |-- lang_bpe - | | |-- HLG.pt - | | |-- bpe.model - | | |-- tokens.txt - | | `-- words.txt - | `-- lm - | `-- G_4_gram.pt - |-- exp - | `-- pretraind.pt - `-- test_wavs - |-- 1089-134686-0001.flac - |-- 1221-135766-0001.flac - |-- 1221-135766-0002.flac - `-- trans.txt - -6 directories, 11 files -``` - -**File descriptions**: - - - `data/lang_bpe/HLG.pt` - - It is the decoding graph. - - - `data/lang_bpe/bpe.model` - - It is a sentencepiece model. You can use it to reproduce our results. - - - `data/lang_bpe/tokens.txt` - - It contains tokens and their IDs, generated from `bpe.model`. - Provided only for convienice so that you can look up the SOS/EOS ID easily. - - - `data/lang_bpe/words.txt` - - It contains words and their IDs. - - - `data/lm/G_4_gram.pt` - - It is a 4-gram LM, useful for LM rescoring. - - - `exp/pretrained.pt` - - It contains pre-trained model parameters, obtained by averaging - checkpoints from `epoch-15.pt` to `epoch-34.pt`. - Note: We have removed optimizer `state_dict` to reduce file size. - - - `test_waves/*.flac` - - It contains some test sound files from LibriSpeech `test-clean` dataset. - - - `test_waves/trans.txt` - - It contains the reference transcripts for the sound files in `test_waves/`. - -The information of the test sound files is listed below: - -``` -$ soxi tmp/conformer_ctc/test_wavs/*.flac - -Input File : 'tmp/conformer_ctc/test_wavs/1089-134686-0001.flac' -Channels : 1 -Sample Rate : 16000 -Precision : 16-bit -Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors -File Size : 116k -Bit Rate : 140k -Sample Encoding: 16-bit FLAC - -Input File : 'tmp/conformer_ctc/test_wavs/1221-135766-0001.flac' -Channels : 1 -Sample Rate : 16000 -Precision : 16-bit -Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors -File Size : 343k -Bit Rate : 164k -Sample Encoding: 16-bit FLAC - -Input File : 'tmp/conformer_ctc/test_wavs/1221-135766-0002.flac' -Channels : 1 -Sample Rate : 16000 -Precision : 16-bit -Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors -File Size : 105k -Bit Rate : 174k -Sample Encoding: 16-bit FLAC - -Total Duration of 3 files: 00:00:28.16 -``` - -### (2) Use HLG decoding - -```bash -cd /path/to/icefall/egs/librispeech/ASR - -./conformer_ctc/pretrained.py \ - --checkpoint ./tmp/conformer_ctc/exp/pretraind.pt \ - --words-file ./tmp/conformer_ctc/data/lang_bpe/words.txt \ - --HLG ./tmp/conformer_ctc/data/lang_bpe/HLG.pt \ - ./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac \ - ./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac \ - ./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac -``` - -The output is given below: - -``` -2021-08-20 11:03:05,712 INFO [pretrained.py:217] device: cuda:0 -2021-08-20 11:03:05,712 INFO [pretrained.py:219] Creating model -2021-08-20 11:03:11,345 INFO [pretrained.py:238] Loading HLG from ./tmp/conformer_ctc/data/lang_bpe/HLG.pt -2021-08-20 11:03:18,442 INFO [pretrained.py:255] Constructing Fbank computer -2021-08-20 11:03:18,444 INFO [pretrained.py:265] Reading sound files: ['./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0002.flac'] -2021-08-20 11:03:18,507 INFO [pretrained.py:271] Decoding started -2021-08-20 11:03:18,795 INFO [pretrained.py:300] Use HLG decoding -2021-08-20 11:03:19,149 INFO [pretrained.py:339] -./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac: -AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS - -./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac: -GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED -BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN - -./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac: -YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION - - -2021-08-20 11:03:19,149 INFO [pretrained.py:341] Decoding Done -``` - -### (3) Use HLG decoding + LM rescoring - -```bash -./conformer_ctc/pretrained.py \ - --checkpoint ./tmp/conformer_ctc/exp/pretraind.pt \ - --words-file ./tmp/conformer_ctc/data/lang_bpe/words.txt \ - --HLG ./tmp/conformer_ctc/data/lang_bpe/HLG.pt \ - --method whole-lattice-rescoring \ - --G ./tmp/conformer_ctc/data/lm/G_4_gram.pt \ - --ngram-lm-scale 0.8 \ - ./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac \ - ./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac \ - ./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac -``` - -The output is: - -``` -2021-08-20 11:12:17,565 INFO [pretrained.py:217] device: cuda:0 -2021-08-20 11:12:17,565 INFO [pretrained.py:219] Creating model -2021-08-20 11:12:23,728 INFO [pretrained.py:238] Loading HLG from ./tmp/conformer_ctc/data/lang_bpe/HLG.pt -2021-08-20 11:12:30,035 INFO [pretrained.py:246] Loading G from ./tmp/conformer_ctc/data/lm/G_4_gram.pt -2021-08-20 11:13:10,779 INFO [pretrained.py:255] Constructing Fbank computer -2021-08-20 11:13:10,787 INFO [pretrained.py:265] Reading sound files: ['./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0002.flac'] -2021-08-20 11:13:10,798 INFO [pretrained.py:271] Decoding started -2021-08-20 11:13:11,085 INFO [pretrained.py:305] Use HLG decoding + LM rescoring -2021-08-20 11:13:11,736 INFO [pretrained.py:339] -./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac: -AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS - -./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac: -GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED -BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN - -./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac: -YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION - - -2021-08-20 11:13:11,737 INFO [pretrained.py:341] Decoding Done -``` - -### (4) Use HLG decoding + LM rescoring + attention decoder rescoring - -```bash -./conformer_ctc/pretrained.py \ - --checkpoint ./tmp/conformer_ctc/exp/pretraind.pt \ - --words-file ./tmp/conformer_ctc/data/lang_bpe/words.txt \ - --HLG ./tmp/conformer_ctc/data/lang_bpe/HLG.pt \ - --method attention-decoder \ - --G ./tmp/conformer_ctc/data/lm/G_4_gram.pt \ - --ngram-lm-scale 1.3 \ - --attention-decoder-scale 1.2 \ - --lattice-score-scale 0.5 \ - --num-paths 100 \ - --sos-id 1 \ - --eos-id 1 \ - ./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac \ - ./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac \ - ./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac -``` - -The output is: - -``` -2021-08-20 11:19:11,397 INFO [pretrained.py:217] device: cuda:0 -2021-08-20 11:19:11,397 INFO [pretrained.py:219] Creating model -2021-08-20 11:19:17,354 INFO [pretrained.py:238] Loading HLG from ./tmp/conformer_ctc/data/lang_bpe/HLG.pt -2021-08-20 11:19:24,615 INFO [pretrained.py:246] Loading G from ./tmp/conformer_ctc/data/lm/G_4_gram.pt -2021-08-20 11:20:04,576 INFO [pretrained.py:255] Constructing Fbank computer -2021-08-20 11:20:04,584 INFO [pretrained.py:265] Reading sound files: ['./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0002.flac'] -2021-08-20 11:20:04,595 INFO [pretrained.py:271] Decoding started -2021-08-20 11:20:04,854 INFO [pretrained.py:313] Use HLG + LM rescoring + attention decoder rescoring -2021-08-20 11:20:05,805 INFO [pretrained.py:339] -./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac: -AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS - -./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac: -GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED -BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN - -./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac: -YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION - - -2021-08-20 11:20:05,805 INFO [pretrained.py:341] Decoding Done -``` - -**NOTE**: We provide a colab notebook for demonstration. -[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing) - -Due to limited memory provided by Colab, you have to upgrade to Colab Pro to -run `HLG decoding + LM rescoring` and `HLG decoding + LM rescoring + attention decoder rescoring`. -Otherwise, you can only run `HLG decoding` with Colab. +Please visit + +for how to run this recipe. diff --git a/egs/librispeech/ASR/conformer_ctc/conformer.py b/egs/librispeech/ASR/conformer_ctc/conformer.py index 08287d686..b19b94db1 100644 --- a/egs/librispeech/ASR/conformer_ctc/conformer.py +++ b/egs/librispeech/ASR/conformer_ctc/conformer.py @@ -56,8 +56,6 @@ class Conformer(Transformer): cnn_module_kernel: int = 31, normalize_before: bool = True, vgg_frontend: bool = False, - is_espnet_structure: bool = False, - mmi_loss: bool = True, use_feat_batchnorm: bool = False, ) -> None: super(Conformer, self).__init__( @@ -72,7 +70,6 @@ class Conformer(Transformer): dropout=dropout, normalize_before=normalize_before, vgg_frontend=vgg_frontend, - mmi_loss=mmi_loss, use_feat_batchnorm=use_feat_batchnorm, ) @@ -85,12 +82,10 @@ class Conformer(Transformer): dropout, cnn_module_kernel, normalize_before, - is_espnet_structure, ) self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers) self.normalize_before = normalize_before - self.is_espnet_structure = is_espnet_structure - if self.normalize_before and self.is_espnet_structure: + if self.normalize_before: self.after_norm = nn.LayerNorm(d_model) else: # Note: TorchScript detects that self.after_norm could be used inside forward() @@ -103,7 +98,7 @@ class Conformer(Transformer): """ Args: x: - The model input. Its shape is [N, T, C]. + The model input. Its shape is (N, T, C). supervisions: Supervision in lhotse format. See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa @@ -125,7 +120,7 @@ class Conformer(Transformer): mask = mask.to(x.device) x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, B, F) - if self.normalize_before and self.is_espnet_structure: + if self.normalize_before: x = self.after_norm(x) return x, mask @@ -159,11 +154,10 @@ class ConformerEncoderLayer(nn.Module): dropout: float = 0.1, cnn_module_kernel: int = 31, normalize_before: bool = True, - is_espnet_structure: bool = False, ) -> None: super(ConformerEncoderLayer, self).__init__() self.self_attn = RelPositionMultiheadAttention( - d_model, nhead, dropout=0.0, is_espnet_structure=is_espnet_structure + d_model, nhead, dropout=0.0 ) self.feed_forward = nn.Sequential( @@ -436,7 +430,6 @@ class RelPositionMultiheadAttention(nn.Module): embed_dim: int, num_heads: int, dropout: float = 0.0, - is_espnet_structure: bool = False, ) -> None: super(RelPositionMultiheadAttention, self).__init__() self.embed_dim = embed_dim @@ -459,8 +452,6 @@ class RelPositionMultiheadAttention(nn.Module): self._reset_parameters() - self.is_espnet_structure = is_espnet_structure - def _reset_parameters(self) -> None: nn.init.xavier_uniform_(self.in_proj.weight) nn.init.constant_(self.in_proj.bias, 0.0) @@ -690,9 +681,6 @@ class RelPositionMultiheadAttention(nn.Module): _b = _b[_start:] v = nn.functional.linear(value, _w, _b) - if not self.is_espnet_structure: - q = q * scaling - if attn_mask is not None: assert ( attn_mask.dtype == torch.float32 @@ -785,14 +773,9 @@ class RelPositionMultiheadAttention(nn.Module): ) # (batch, head, time1, 2*time1-1) matrix_bd = self.rel_shift(matrix_bd) - if not self.is_espnet_structure: - attn_output_weights = ( - matrix_ac + matrix_bd - ) # (batch, head, time1, time2) - else: - attn_output_weights = ( - matrix_ac + matrix_bd - ) * scaling # (batch, head, time1, time2) + attn_output_weights = ( + matrix_ac + matrix_bd + ) * scaling # (batch, head, time1, time2) attn_output_weights = attn_output_weights.view( bsz * num_heads, tgt_len, -1 diff --git a/egs/librispeech/ASR/conformer_ctc/decode.py b/egs/librispeech/ASR/conformer_ctc/decode.py index 6abcf3385..b5b41c82e 100755 --- a/egs/librispeech/ASR/conformer_ctc/decode.py +++ b/egs/librispeech/ASR/conformer_ctc/decode.py @@ -45,6 +45,7 @@ from icefall.utils import ( get_texts, setup_logger, store_transcripts, + str2bool, write_error_stats, ) @@ -57,28 +58,74 @@ def get_parser(): parser.add_argument( "--epoch", type=int, - default=9, + default=34, help="It specifies the checkpoint to use for decoding." "Note: Epoch counts from 0.", ) parser.add_argument( "--avg", type=int, - default=1, + default=20, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch'. ", ) + parser.add_argument( + "--method", + type=str, + default="attention-decoder", + help="""Decoding method. + Supported values are: + - (1) 1best. Extract the best path from the decoding lattice as the + decoding result. + - (2) nbest. Extract n paths from the decoding lattice; the path + with the highest score is the decoding result. + - (3) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an n-gram LM (e.g., a 4-gram LM), the path with + the highest score is the decoding result. + - (4) whole-lattice-rescoring. Rescore the decoding lattice with an + n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice + is the decoding result. + - (5) attention-decoder. Extract n paths from the LM rescored + lattice, the path with the highest score is the decoding result. + - (6) nbest-oracle. Its WER is the lower bound of any n-best + rescoring method can achieve. Useful for debugging n-best + rescoring method. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help="""Number of paths for n-best based decoding method. + Used only when "method" is one of the following values: + nbest, nbest-rescoring, attention-decoder, and nbest-oracle + """, + ) + parser.add_argument( "--lattice-score-scale", type=float, - default=1.0, - help="The scale to be applied to `lattice.scores`." - "It's needed if you use any kinds of n-best based rescoring. " - "Currently, it is used when the decoding method is: nbest, " - "nbest-rescoring, attention-decoder, and nbest-oracle. " - "A smaller value results in more unique paths.", + default=0.5, + help="""The scale to be applied to `lattice.scores`. + It's needed if you use any kinds of n-best based rescoring. + Used only when "method" is one of the following values: + nbest, nbest-rescoring, attention-decoder, and nbest-oracle + A smaller value results in more unique paths. + """, + ) + + parser.add_argument( + "--export", + type=str2bool, + default=False, + help="""When enabled, the averaged model is saved to + conformer_ctc/exp/pretrained.pt. Note: only model.state_dict() is saved. + pretrained.pt contains a dict {"model": model.state_dict()}, + which can be loaded by `icefall.checkpoint.load_checkpoint()`. + """, ) return parser @@ -90,35 +137,20 @@ def get_params() -> AttributeDict: "exp_dir": Path("conformer_ctc/exp"), "lang_dir": Path("data/lang_bpe"), "lm_dir": Path("data/lm"), + # parameters for conformer + "subsampling_factor": 4, + "vgg_frontend": False, + "use_feat_batchnorm": True, "feature_dim": 80, "nhead": 8, "attention_dim": 512, - "subsampling_factor": 4, "num_decoder_layers": 6, - "vgg_frontend": False, - "is_espnet_structure": True, - "mmi_loss": False, - "use_feat_batchnorm": True, + # parameters for decoding "search_beam": 20, "output_beam": 8, "min_active_states": 30, "max_active_states": 10000, "use_double_scores": True, - # Possible values for method: - # - 1best - # - nbest - # - nbest-rescoring - # - whole-lattice-rescoring - # - attention-decoder - # - nbest-oracle - # "method": "nbest", - # "method": "nbest-rescoring", - # "method": "whole-lattice-rescoring", - "method": "attention-decoder", - # "method": "nbest-oracle", - # num_paths is used when method is "nbest", "nbest-rescoring", - # attention-decoder, and nbest-oracle - "num_paths": 100, } ) return params @@ -129,7 +161,7 @@ def decode_one_batch( model: nn.Module, HLG: k2.Fsa, batch: dict, - lexicon: Lexicon, + word_table: k2.SymbolTable, sos_id: int, eos_id: int, G: Optional[k2.Fsa] = None, @@ -163,8 +195,8 @@ def decode_one_batch( It is the return value from iterating `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation for the format of the `batch`. - lexicon: - It contains word symbol table. + word_table: + The word symbol table. sos_id: The token ID of the SOS. eos_id: @@ -181,12 +213,12 @@ def decode_one_batch( feature = batch["inputs"] assert feature.ndim == 3 feature = feature.to(device) - # at entry, feature is [N, T, C] + # at entry, feature is (N, T, C) supervisions = batch["supervisions"] nnet_output, memory, memory_key_padding_mask = model(feature, supervisions) - # nnet_output is [N, T, C] + # nnet_output is (N, T, C) supervision_segments = torch.stack( ( @@ -212,14 +244,19 @@ def decode_one_batch( # Note: You can also pass rescored lattices to it. # We choose the HLG decoded lattice for speed reasons # as HLG decoding is faster and the oracle WER - # is slightly worse than that of rescored lattices. - return nbest_oracle( + # is only slightly worse than that of rescored lattices. + best_path = nbest_oracle( lattice=lattice, num_paths=params.num_paths, ref_texts=supervisions["text"], - lexicon=lexicon, - scale=params.lattice_score_scale, + word_table=word_table, + lattice_score_scale=params.lattice_score_scale, + oov="", ) + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + key = f"oracle_{params.num_paths}_lattice_score_scale_{params.lattice_score_scale}" # noqa + return {key: hyps} if params.method in ["1best", "nbest"]: if params.method == "1best": @@ -232,12 +269,12 @@ def decode_one_batch( lattice=lattice, num_paths=params.num_paths, use_double_scores=params.use_double_scores, - scale=params.lattice_score_scale, + lattice_score_scale=params.lattice_score_scale, ) key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa hyps = get_texts(best_path) - hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps] + hyps = [[word_table[i] for i in ids] for ids in hyps] return {key: hyps} assert params.method in [ @@ -246,7 +283,8 @@ def decode_one_batch( "attention-decoder", ] - lm_scale_list = [0.8, 0.9, 1.0, 1.1, 1.2, 1.3] + lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] + lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3] lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] if params.method == "nbest-rescoring": @@ -255,17 +293,23 @@ def decode_one_batch( G=G, num_paths=params.num_paths, lm_scale_list=lm_scale_list, - scale=params.lattice_score_scale, + lattice_score_scale=params.lattice_score_scale, ) elif params.method == "whole-lattice-rescoring": best_path_dict = rescore_with_whole_lattice( - lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=lm_scale_list + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=lm_scale_list, ) elif params.method == "attention-decoder": # lattice uses a 3-gram Lm. We rescore it with a 4-gram LM. rescored_lattice = rescore_with_whole_lattice( - lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=None, ) + # TODO: pass `lattice` instead of `rescored_lattice` to + # `rescore_with_attention_decoder` best_path_dict = rescore_with_attention_decoder( lattice=rescored_lattice, @@ -275,16 +319,20 @@ def decode_one_batch( memory_key_padding_mask=memory_key_padding_mask, sos_id=sos_id, eos_id=eos_id, - scale=params.lattice_score_scale, + lattice_score_scale=params.lattice_score_scale, ) else: assert False, f"Unsupported decoding method: {params.method}" ans = dict() - for lm_scale_str, best_path in best_path_dict.items(): - hyps = get_texts(best_path) - hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps] - ans[lm_scale_str] = hyps + if best_path_dict is not None: + for lm_scale_str, best_path in best_path_dict.items(): + hyps = get_texts(best_path) + hyps = [[word_table[i] for i in ids] for ids in hyps] + ans[lm_scale_str] = hyps + else: + for lm_scale in lm_scale_list: + ans[lm_scale_str] = [[] * lattice.shape[0]] return ans @@ -293,7 +341,7 @@ def decode_dataset( params: AttributeDict, model: nn.Module, HLG: k2.Fsa, - lexicon: Lexicon, + word_table: k2.SymbolTable, sos_id: int, eos_id: int, G: Optional[k2.Fsa] = None, @@ -309,8 +357,8 @@ def decode_dataset( The neural model. HLG: The decoding graph. - lexicon: - It contains word symbol table. + word_table: + It is the word symbol table. sos_id: The token ID for SOS. eos_id: @@ -344,7 +392,7 @@ def decode_dataset( model=model, HLG=HLG, batch=batch, - lexicon=lexicon, + word_table=word_table, G=G, sos_id=sos_id, eos_id=eos_id, @@ -505,8 +553,6 @@ def main(): subsampling_factor=params.subsampling_factor, num_decoder_layers=params.num_decoder_layers, vgg_frontend=params.vgg_frontend, - is_espnet_structure=params.is_espnet_structure, - mmi_loss=params.mmi_loss, use_feat_batchnorm=params.use_feat_batchnorm, ) @@ -521,6 +567,13 @@ def main(): logging.info(f"averaging {filenames}") model.load_state_dict(average_checkpoints(filenames)) + if params.export: + logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt") + torch.save( + {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt" + ) + return + model.to(device) model.eval() num_param = sum([p.numel() for p in model.parameters()]) @@ -540,7 +593,7 @@ def main(): params=params, model=model, HLG=HLG, - lexicon=lexicon, + word_table=lexicon.word_table, G=G, sos_id=sos_id, eos_id=eos_id, diff --git a/egs/librispeech/ASR/conformer_ctc/pretrained.py b/egs/librispeech/ASR/conformer_ctc/pretrained.py index 95029fadb..c924b87bb 100755 --- a/egs/librispeech/ASR/conformer_ctc/pretrained.py +++ b/egs/librispeech/ASR/conformer_ctc/pretrained.py @@ -173,17 +173,17 @@ def get_parser(): def get_params() -> AttributeDict: params = AttributeDict( { + "sample_rate": 16000, + # parameters for conformer + "subsampling_factor": 4, + "vgg_frontend": False, + "use_feat_batchnorm": True, "feature_dim": 80, "nhead": 8, "num_classes": 5000, - "sample_rate": 16000, "attention_dim": 512, - "subsampling_factor": 4, "num_decoder_layers": 6, - "vgg_frontend": False, - "is_espnet_structure": True, - "mmi_loss": False, - "use_feat_batchnorm": True, + # parameters for decoding "search_beam": 20, "output_beam": 8, "min_active_states": 30, @@ -241,8 +241,6 @@ def main(): subsampling_factor=params.subsampling_factor, num_decoder_layers=params.num_decoder_layers, vgg_frontend=params.vgg_frontend, - is_espnet_structure=params.is_espnet_structure, - mmi_loss=params.mmi_loss, use_feat_batchnorm=params.use_feat_batchnorm, ) @@ -338,7 +336,7 @@ def main(): memory_key_padding_mask=memory_key_padding_mask, sos_id=params.sos_id, eos_id=params.eos_id, - scale=params.lattice_score_scale, + lattice_score_scale=params.lattice_score_scale, ngram_lm_scale=params.ngram_lm_scale, attention_scale=params.attention_decoder_scale, ) diff --git a/egs/librispeech/ASR/conformer_ctc/subsampling.py b/egs/librispeech/ASR/conformer_ctc/subsampling.py index 720ed6c22..542fb0364 100644 --- a/egs/librispeech/ASR/conformer_ctc/subsampling.py +++ b/egs/librispeech/ASR/conformer_ctc/subsampling.py @@ -22,8 +22,8 @@ import torch.nn as nn class Conv2dSubsampling(nn.Module): """Convolutional 2D subsampling (to 1/4 length). - Convert an input of shape [N, T, idim] to an output - with shape [N, T', odim], where + Convert an input of shape (N, T, idim) to an output + with shape (N, T', odim), where T' = ((T-1)//2 - 1)//2, which approximates T' == T//4 It is based on @@ -34,10 +34,10 @@ class Conv2dSubsampling(nn.Module): """ Args: idim: - Input dim. The input shape is [N, T, idim]. + Input dim. The input shape is (N, T, idim). Caution: It requires: T >=7, idim >=7 odim: - Output dim. The output shape is [N, ((T-1)//2 - 1)//2, odim] + Output dim. The output shape is (N, ((T-1)//2 - 1)//2, odim) """ assert idim >= 7 super().__init__() @@ -58,18 +58,18 @@ class Conv2dSubsampling(nn.Module): Args: x: - Its shape is [N, T, idim]. + Its shape is (N, T, idim). Returns: - Return a tensor of shape [N, ((T-1)//2 - 1)//2, odim] + Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim) """ - # On entry, x is [N, T, idim] - x = x.unsqueeze(1) # [N, T, idim] -> [N, 1, T, idim] i.e., [N, C, H, W] + # On entry, x is (N, T, idim) + x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W) x = self.conv(x) - # Now x is of shape [N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2] + # Now x is of shape (N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2) b, c, t, f = x.size() x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) - # Now x is of shape [N, ((T-1)//2 - 1))//2, odim] + # Now x is of shape (N, ((T-1)//2 - 1))//2, odim) return x @@ -80,8 +80,8 @@ class VggSubsampling(nn.Module): This paper is not 100% explicit so I am guessing to some extent, and trying to compare with other VGG implementations. - Convert an input of shape [N, T, idim] to an output - with shape [N, T', odim], where + Convert an input of shape (N, T, idim) to an output + with shape (N, T', odim), where T' = ((T-1)//2 - 1)//2, which approximates T' = T//4 """ @@ -93,10 +93,10 @@ class VggSubsampling(nn.Module): Args: idim: - Input dim. The input shape is [N, T, idim]. + Input dim. The input shape is (N, T, idim). Caution: It requires: T >=7, idim >=7 odim: - Output dim. The output shape is [N, ((T-1)//2 - 1)//2, odim] + Output dim. The output shape is (N, ((T-1)//2 - 1)//2, odim) """ super().__init__() @@ -149,10 +149,10 @@ class VggSubsampling(nn.Module): Args: x: - Its shape is [N, T, idim]. + Its shape is (N, T, idim). Returns: - Return a tensor of shape [N, ((T-1)//2 - 1)//2, odim] + Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim) """ x = x.unsqueeze(1) x = self.layers(x) diff --git a/egs/librispeech/ASR/conformer_ctc/test_subsampling.py b/egs/librispeech/ASR/conformer_ctc/test_subsampling.py index e3361d0c9..81fa234dd 100755 --- a/egs/librispeech/ASR/conformer_ctc/test_subsampling.py +++ b/egs/librispeech/ASR/conformer_ctc/test_subsampling.py @@ -16,9 +16,8 @@ # limitations under the License. -from subsampling import Conv2dSubsampling -from subsampling import VggSubsampling import torch +from subsampling import Conv2dSubsampling, VggSubsampling def test_conv2d_subsampling(): diff --git a/egs/librispeech/ASR/conformer_ctc/test_transformer.py b/egs/librispeech/ASR/conformer_ctc/test_transformer.py index b90215274..667057c51 100644 --- a/egs/librispeech/ASR/conformer_ctc/test_transformer.py +++ b/egs/librispeech/ASR/conformer_ctc/test_transformer.py @@ -17,17 +17,16 @@ import torch +from torch.nn.utils.rnn import pad_sequence from transformer import ( Transformer, + add_eos, + add_sos, + decoder_padding_mask, encoder_padding_mask, generate_square_subsequent_mask, - decoder_padding_mask, - add_sos, - add_eos, ) -from torch.nn.utils.rnn import pad_sequence - def test_encoder_padding_mask(): supervisions = { diff --git a/egs/librispeech/ASR/conformer_ctc/train.py b/egs/librispeech/ASR/conformer_ctc/train.py index df9637c34..80b2d924a 100755 --- a/egs/librispeech/ASR/conformer_ctc/train.py +++ b/egs/librispeech/ASR/conformer_ctc/train.py @@ -1,5 +1,6 @@ #!/usr/bin/env python3 -# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang) # # See ../../../../LICENSE for clarification regarding multiple authors # @@ -74,6 +75,23 @@ def get_parser(): help="Should various information be logged in tensorboard.", ) + parser.add_argument( + "--num-epochs", + type=int, + default=35, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=0, + help="""Resume training from from this epoch. + If it is positive, it will load checkpoint from + conformer_ctc/exp/epoch-{start_epoch-1}.pt + """, + ) + return parser @@ -94,20 +112,6 @@ def get_params() -> AttributeDict: - lang_dir: It contains language related input files such as "lexicon.txt" - - lr: It specifies the initial learning rate - - - feature_dim: The model input dim. It has to match the one used - in computing features. - - - weight_decay: The weight_decay for the optimizer. - - - subsampling_factor: The subsampling factor for the model. - - - start_epoch: If it is not zero, load checkpoint `start_epoch-1` - and continue training from that checkpoint. - - - num_epochs: Number of epochs to train. - - best_train_loss: Best training loss so far. It is used to select the model that has the lowest training loss. It is updated during the training. @@ -126,25 +130,40 @@ def get_params() -> AttributeDict: - log_interval: Print training loss if batch_idx % log_interval` is 0 + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + - valid_interval: Run validation if batch_idx % valid_interval is 0 - - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - subsampling_factor: The subsampling factor for the model. + + - use_feat_batchnorm: Whether to do batch normalization for the + input features. + + - attention_dim: Hidden dim for multi-head attention model. + + - head: Number of heads of multi-head attention model. + + - num_decoder_layers: Number of decoder layer of transformer decoder. - beam_size: It is used in k2.ctc_loss - reduction: It is used in k2.ctc_loss - use_double_scores: It is used in k2.ctc_loss + + - weight_decay: The weight_decay for the optimizer. + + - lr_factor: The lr_factor for Noam optimizer. + + - warm_step: The warm_step for Noam optimizer. """ params = AttributeDict( { "exp_dir": Path("conformer_ctc/exp"), "lang_dir": Path("data/lang_bpe"), - "feature_dim": 80, - "weight_decay": 1e-6, - "subsampling_factor": 4, - "start_epoch": 0, - "num_epochs": 20, "best_train_loss": float("inf"), "best_valid_loss": float("inf"), "best_train_epoch": -1, @@ -153,17 +172,20 @@ def get_params() -> AttributeDict: "log_interval": 10, "reset_interval": 200, "valid_interval": 3000, - "beam_size": 10, - "reduction": "sum", - "use_double_scores": True, - "accum_grad": 1, - "att_rate": 0.7, + # parameters for conformer + "feature_dim": 80, + "subsampling_factor": 4, + "use_feat_batchnorm": True, "attention_dim": 512, "nhead": 8, "num_decoder_layers": 6, - "is_espnet_structure": True, - "mmi_loss": False, - "use_feat_batchnorm": True, + # parameters for loss + "beam_size": 10, + "reduction": "sum", + "use_double_scores": True, + "att_rate": 0.7, + # parameters for Noam + "weight_decay": 1e-6, "lr_factor": 5.0, "warm_step": 80000, } @@ -288,14 +310,14 @@ def compute_loss( """ device = graph_compiler.device feature = batch["inputs"] - # at entry, feature is [N, T, C] + # at entry, feature is (N, T, C) assert feature.ndim == 3 feature = feature.to(device) supervisions = batch["supervisions"] with torch.set_grad_enabled(is_training): nnet_output, encoder_memory, memory_mask = model(feature, supervisions) - # nnet_output is [N, T, C] + # nnet_output is (N, T, C) # NOTE: We need `encode_supervisions` to sort sequences with # different duration in decreasing order, required by @@ -636,8 +658,6 @@ def run(rank, world_size, args): subsampling_factor=params.subsampling_factor, num_decoder_layers=params.num_decoder_layers, vgg_frontend=False, - is_espnet_structure=params.is_espnet_structure, - mmi_loss=params.mmi_loss, use_feat_batchnorm=params.use_feat_batchnorm, ) diff --git a/egs/librispeech/ASR/conformer_ctc/transformer.py b/egs/librispeech/ASR/conformer_ctc/transformer.py index 191d2d612..68a4ff65c 100644 --- a/egs/librispeech/ASR/conformer_ctc/transformer.py +++ b/egs/librispeech/ASR/conformer_ctc/transformer.py @@ -41,7 +41,6 @@ class Transformer(nn.Module): dropout: float = 0.1, normalize_before: bool = True, vgg_frontend: bool = False, - mmi_loss: bool = True, use_feat_batchnorm: bool = False, ) -> None: """ @@ -70,7 +69,6 @@ class Transformer(nn.Module): If True, use pre-layer norm; False to use post-layer norm. vgg_frontend: True to use vgg style frontend for subsampling. - mmi_loss: use_feat_batchnorm: True to use batchnorm for the input layer. """ @@ -85,8 +83,8 @@ class Transformer(nn.Module): if subsampling_factor != 4: raise NotImplementedError("Support only 'subsampling_factor=4'.") - # self.encoder_embed converts the input of shape [N, T, num_classes] - # to the shape [N, T//subsampling_factor, d_model]. + # self.encoder_embed converts the input of shape (N, T, num_classes) + # to the shape (N, T//subsampling_factor, d_model). # That is, it does two things simultaneously: # (1) subsampling: T -> T//subsampling_factor # (2) embedding: num_classes -> d_model @@ -122,14 +120,9 @@ class Transformer(nn.Module): ) if num_decoder_layers > 0: - if mmi_loss: - self.decoder_num_class = ( - self.num_classes + 1 - ) # +1 for the sos/eos symbol - else: - self.decoder_num_class = ( - self.num_classes - ) # bpe model already has sos/eos symbol + self.decoder_num_class = ( + self.num_classes + ) # bpe model already has sos/eos symbol self.decoder_embed = nn.Embedding( num_embeddings=self.decoder_num_class, embedding_dim=d_model @@ -169,7 +162,7 @@ class Transformer(nn.Module): """ Args: x: - The input tensor. Its shape is [N, T, C]. + The input tensor. Its shape is (N, T, C). supervision: Supervision in lhotse format. See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa @@ -178,17 +171,17 @@ class Transformer(nn.Module): Returns: Return a tuple containing 3 tensors: - - CTC output for ctc decoding. Its shape is [N, T, C] - - Encoder output with shape [T, N, C]. It can be used as key and + - CTC output for ctc decoding. Its shape is (N, T, C) + - Encoder output with shape (T, N, C). It can be used as key and value for the decoder. - Encoder output padding mask. It can be used as - memory_key_padding_mask for the decoder. Its shape is [N, T]. + memory_key_padding_mask for the decoder. Its shape is (N, T). It is None if `supervision` is None. """ if self.use_feat_batchnorm: - x = x.permute(0, 2, 1) # [N, T, C] -> [N, C, T] + x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T) x = self.feat_batchnorm(x) - x = x.permute(0, 2, 1) # [N, C, T] -> [N, T, C] + x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C) encoder_memory, memory_key_padding_mask = self.run_encoder( x, supervision ) @@ -202,7 +195,7 @@ class Transformer(nn.Module): Args: x: - The model input. Its shape is [N, T, C]. + The model input. Its shape is (N, T, C). supervisions: Supervision in lhotse format. See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa @@ -213,8 +206,8 @@ class Transformer(nn.Module): padding mask for the decoder. Returns: Return a tuple with two tensors: - - The encoder output, with shape [T, N, C] - - encoder padding mask, with shape [N, T]. + - The encoder output, with shape (T, N, C) + - encoder padding mask, with shape (N, T). The mask is None if `supervisions` is None. It is used as memory key padding mask in the decoder. """ @@ -232,11 +225,11 @@ class Transformer(nn.Module): Args: x: The output tensor from the transformer encoder. - Its shape is [T, N, C] + Its shape is (T, N, C) Returns: Return a tensor that can be used for CTC decoding. - Its shape is [N, T, C] + Its shape is (N, T, C) """ x = self.encoder_output_layer(x) x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C) @@ -254,7 +247,7 @@ class Transformer(nn.Module): """ Args: memory: - It's the output of the encoder with shape [T, N, C] + It's the output of the encoder with shape (T, N, C) memory_key_padding_mask: The padding mask from the encoder. token_ids: @@ -319,7 +312,7 @@ class Transformer(nn.Module): """ Args: memory: - It's the output of the encoder with shape [T, N, C] + It's the output of the encoder with shape (T, N, C) memory_key_padding_mask: The padding mask from the encoder. token_ids: @@ -661,13 +654,13 @@ class PositionalEncoding(nn.Module): def extend_pe(self, x: torch.Tensor) -> None: """Extend the time t in the positional encoding if required. - The shape of `self.pe` is [1, T1, d_model]. The shape of the input x - is [N, T, d_model]. If T > T1, then we change the shape of self.pe - to [N, T, d_model]. Otherwise, nothing is done. + The shape of `self.pe` is (1, T1, d_model). The shape of the input x + is (N, T, d_model). If T > T1, then we change the shape of self.pe + to (N, T, d_model). Otherwise, nothing is done. Args: x: - It is a tensor of shape [N, T, C]. + It is a tensor of shape (N, T, C). Returns: Return None. """ @@ -685,7 +678,7 @@ class PositionalEncoding(nn.Module): pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) - # Now pe is of shape [1, T, d_model], where T is x.size(1) + # Now pe is of shape (1, T, d_model), where T is x.size(1) self.pe = pe.to(device=x.device, dtype=x.dtype) def forward(self, x: torch.Tensor) -> torch.Tensor: @@ -694,10 +687,10 @@ class PositionalEncoding(nn.Module): Args: x: - Its shape is [N, T, C] + Its shape is (N, T, C) Returns: - Return a tensor of shape [N, T, C] + Return a tensor of shape (N, T, C) """ self.extend_pe(x) x = x * self.xscale + self.pe[:, : x.size(1), :] diff --git a/egs/librispeech/ASR/local/compile_hlg.py b/egs/librispeech/ASR/local/compile_hlg.py index 19a1ddd23..098d5d6a3 100755 --- a/egs/librispeech/ASR/local/compile_hlg.py +++ b/egs/librispeech/ASR/local/compile_hlg.py @@ -102,14 +102,14 @@ def compile_HLG(lang_dir: str) -> k2.Fsa: LG.labels[LG.labels >= first_token_disambig_id] = 0 - assert isinstance(LG.aux_labels, k2.RaggedInt) - LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0 + assert isinstance(LG.aux_labels, k2.RaggedTensor) + LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0 LG = k2.remove_epsilon(LG) logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}") LG = k2.connect(LG) - LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0) + LG.aux_labels = LG.aux_labels.remove_values_eq(0) logging.info("Arc sorting LG") LG = k2.arc_sort(LG) diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/README.md b/egs/librispeech/ASR/tdnn_lstm_ctc/README.md index df98a0e11..94d4ed6a3 100644 --- a/egs/librispeech/ASR/tdnn_lstm_ctc/README.md +++ b/egs/librispeech/ASR/tdnn_lstm_ctc/README.md @@ -1,2 +1,4 @@ -Will add results later. +Please visit + +for how to run this recipe. diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py b/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py index 91c1d6a96..8290e71d1 100644 --- a/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py +++ b/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py @@ -82,14 +82,14 @@ class LibriSpeechAsrDataModule(DataModule): group.add_argument( "--max-duration", type=int, - default=500.0, + default=200.0, help="Maximum pooled recordings duration (seconds) in a " "single batch. You can reduce it if it causes CUDA OOM.", ) group.add_argument( "--bucketing-sampler", type=str2bool, - default=False, + default=True, help="When enabled, the batches will come from buckets of " "similar duration (saves padding frames).", ) diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py b/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py index 27e0b9643..1e91b1008 100755 --- a/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py +++ b/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py @@ -42,6 +42,7 @@ from icefall.utils import ( get_texts, setup_logger, store_transcripts, + str2bool, write_error_stats, ) @@ -54,7 +55,7 @@ def get_parser(): parser.add_argument( "--epoch", type=int, - default=9, + default=19, help="It specifies the checkpoint to use for decoding." "Note: Epoch counts from 0.", ) @@ -66,6 +67,57 @@ def get_parser(): "consecutive checkpoints before the checkpoint specified by " "'--epoch'. ", ) + parser.add_argument( + "--method", + type=str, + default="whole-lattice-rescoring", + help="""Decoding method. + Supported values are: + - (1) 1best. Extract the best path from the decoding lattice as the + decoding result. + - (2) nbest. Extract n paths from the decoding lattice; the path + with the highest score is the decoding result. + - (3) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an n-gram LM (e.g., a 4-gram LM), the path with + the highest score is the decoding result. + - (4) whole-lattice-rescoring. Rescore the decoding lattice with an + n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice + is the decoding result. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help="""Number of paths for n-best based decoding method. + Used only when "method" is one of the following values: + nbest, nbest-rescoring + """, + ) + + parser.add_argument( + "--lattice-score-scale", + type=float, + default=0.5, + help="""The scale to be applied to `lattice.scores`. + It's needed if you use any kinds of n-best based rescoring. + Used only when "method" is one of the following values: + nbest, nbest-rescoring + A smaller value results in more unique paths. + """, + ) + + parser.add_argument( + "--export", + type=str2bool, + default=False, + help="""When enabled, the averaged model is saved to + tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved. + pretrained.pt contains a dict {"model": model.state_dict()}, + which can be loaded by `icefall.checkpoint.load_checkpoint()`. + """, + ) return parser @@ -82,14 +134,6 @@ def get_params() -> AttributeDict: "min_active_states": 30, "max_active_states": 10000, "use_double_scores": True, - # Possible values for method: - # - 1best - # - nbest - # - nbest-rescoring - # - whole-lattice-rescoring - "method": "1best", - # num_paths is used when method is "nbest" and "nbest-rescoring" - "num_paths": 30, } ) return params @@ -146,12 +190,12 @@ def decode_one_batch( feature = batch["inputs"] assert feature.ndim == 3 feature = feature.to(device) - # at entry, feature is [N, T, C] + # at entry, feature is (N, T, C) - feature = feature.permute(0, 2, 1) # now feature is [N, C, T] + feature = feature.permute(0, 2, 1) # now feature is (N, C, T) nnet_output = model(feature) - # nnet_output is [N, T, C] + # nnet_output is (N, T, C) supervisions = batch["supervisions"] @@ -185,6 +229,7 @@ def decode_one_batch( lattice=lattice, num_paths=params.num_paths, use_double_scores=params.use_double_scores, + lattice_score_scale=params.lattice_score_scale, ) key = f"no_rescore-{params.num_paths}" hyps = get_texts(best_path) @@ -193,7 +238,8 @@ def decode_one_batch( assert params.method in ["nbest-rescoring", "whole-lattice-rescoring"] - lm_scale_list = [0.8, 0.9, 1.0, 1.1, 1.2, 1.3] + lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] + lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3] lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] if params.method == "nbest-rescoring": @@ -202,10 +248,13 @@ def decode_one_batch( G=G, num_paths=params.num_paths, lm_scale_list=lm_scale_list, + lattice_score_scale=params.lattice_score_scale, ) else: best_path_dict = rescore_with_whole_lattice( - lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=lm_scale_list + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=lm_scale_list, ) ans = dict() @@ -408,6 +457,13 @@ def main(): logging.info(f"averaging {filenames}") model.load_state_dict(average_checkpoints(filenames)) + if params.export: + logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt") + torch.save( + {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt" + ) + return + model.to(device) model.eval() diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py b/egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py new file mode 100755 index 000000000..0a543d859 --- /dev/null +++ b/egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py @@ -0,0 +1,277 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +import math +from typing import List + +import k2 +import kaldifeat +import torch +import torchaudio +from model import TdnnLstm +from torch.nn.utils.rnn import pad_sequence + +from icefall.decode import ( + get_lattice, + one_best_decoding, + rescore_with_whole_lattice, +) +from icefall.utils import AttributeDict, get_texts + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--words-file", + type=str, + required=True, + help="Path to words.txt", + ) + + parser.add_argument( + "--HLG", type=str, required=True, help="Path to HLG.pt." + ) + + parser.add_argument( + "--method", + type=str, + default="1best", + help="""Decoding method. + Possible values are: + (1) 1best - Use the best path as decoding output. Only + the transformer encoder output is used for decoding. + We call it HLG decoding. + (2) whole-lattice-rescoring - Use an LM to rescore the + decoding lattice and then use 1best to decode the + rescored lattice. + We call it HLG decoding + n-gram LM rescoring. + """, + ) + + parser.add_argument( + "--G", + type=str, + help="""An LM for rescoring. + Used only when method is + whole-lattice-rescoring. + It's usually a 4-gram LM. + """, + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.8, + help=""" + Used only when method is whole-lattice-rescoring. + It specifies the scale for n-gram LM scores. + (Note: You need to tune it on a dataset.) + """, + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "feature_dim": 80, + "subsampling_factor": 3, + "num_classes": 72, + "sample_rate": 16000, + "search_beam": 20, + "output_beam": 5, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + } + ) + return params + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert sample_rate == expected_sample_rate, ( + f"expected sample rate: {expected_sample_rate}. " + f"Given: {sample_rate}" + ) + # We use only the first channel + ans.append(wave[0]) + return ans + + +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + params.update(vars(args)) + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + model = TdnnLstm( + num_features=params.feature_dim, + num_classes=params.num_classes, + subsampling_factor=params.subsampling_factor, + ) + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"]) + model.to(device) + model.eval() + + logging.info(f"Loading HLG from {params.HLG}") + HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu")) + HLG = HLG.to(device) + if not hasattr(HLG, "lm_scores"): + # For whole-lattice-rescoring and attention-decoder + HLG.lm_scores = HLG.scores.clone() + + if params.method == "whole-lattice-rescoring": + logging.info(f"Loading G from {params.G}") + G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu")) + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = G.to(device) + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + G.lm_scores = G.scores.clone() + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + + features = pad_sequence( + features, batch_first=True, padding_value=math.log(1e-10) + ) + features = features.permute(0, 2, 1) # now features is (N, C, T) + + with torch.no_grad(): + nnet_output = model(features) + # nnet_output is (N, T, C) + + batch_size = nnet_output.shape[0] + supervision_segments = torch.tensor( + [[i, 0, nnet_output.shape[1]] for i in range(batch_size)], + dtype=torch.int32, + ) + + lattice = get_lattice( + nnet_output=nnet_output, + HLG=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + if params.method == "1best": + logging.info("Use HLG decoding") + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + elif params.method == "whole-lattice-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=[params.ngram_lm_scale], + ) + best_path = next(iter(best_path_dict.values())) + + hyps = get_texts(best_path) + word_sym_table = k2.SymbolTable.from_file(params.words_file) + hyps = [[word_sym_table[i] for i in ids] for ids in hyps] + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = ( + "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + ) + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/train.py b/egs/librispeech/ASR/tdnn_lstm_ctc/train.py index 23e224f76..695ee5130 100755 --- a/egs/librispeech/ASR/tdnn_lstm_ctc/train.py +++ b/egs/librispeech/ASR/tdnn_lstm_ctc/train.py @@ -75,6 +75,23 @@ def get_parser(): help="Should various information be logged in tensorboard.", ) + parser.add_argument( + "--num-epochs", + type=int, + default=20, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=0, + help="""Resume training from from this epoch. + If it is positive, it will load checkpoint from + tdnn_lstm_ctc/exp/epoch-{start_epoch-1}.pt + """, + ) + return parser @@ -104,11 +121,6 @@ def get_params() -> AttributeDict: - subsampling_factor: The subsampling factor for the model. - - start_epoch: If it is not zero, load checkpoint `start_epoch-1` - and continue training from that checkpoint. - - - num_epochs: Number of epochs to train. - - best_train_loss: Best training loss so far. It is used to select the model that has the lowest training loss. It is updated during the training. @@ -127,6 +139,8 @@ def get_params() -> AttributeDict: - log_interval: Print training loss if batch_idx % log_interval` is 0 + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + - valid_interval: Run validation if batch_idx % valid_interval` is 0 - beam_size: It is used in k2.ctc_loss @@ -143,14 +157,13 @@ def get_params() -> AttributeDict: "feature_dim": 80, "weight_decay": 5e-4, "subsampling_factor": 3, - "start_epoch": 0, - "num_epochs": 10, "best_train_loss": float("inf"), "best_valid_loss": float("inf"), "best_train_epoch": -1, "best_valid_epoch": -1, "batch_idx_train": 0, "log_interval": 10, + "reset_interval": 200, "valid_interval": 1000, "beam_size": 10, "reduction": "sum", @@ -277,14 +290,14 @@ def compute_loss( """ device = graph_compiler.device feature = batch["inputs"] - # at entry, feature is [N, T, C] - feature = feature.permute(0, 2, 1) # now feature is [N, C, T] + # at entry, feature is (N, T, C) + feature = feature.permute(0, 2, 1) # now feature is (N, C, T) assert feature.ndim == 3 feature = feature.to(device) with torch.set_grad_enabled(is_training): nnet_output = model(feature) - # nnet_output is [N, T, C] + # nnet_output is (N, T, C) # NOTE: We need `encode_supervisions` to sort sequences with # different duration in decreasing order, required by @@ -398,8 +411,12 @@ def train_one_epoch( """ model.train() - tot_loss = 0.0 # sum of losses over all batches - tot_frames = 0.0 # sum of frames over all batches + tot_loss = 0.0 # reset after params.reset_interval of batches + tot_frames = 0.0 # reset after params.reset_interval of batches + + params.tot_loss = 0.0 + params.tot_frames = 0.0 + for batch_idx, batch in enumerate(train_dl): params.batch_idx_train += 1 batch_size = len(batch["supervisions"]["text"]) @@ -426,6 +443,9 @@ def train_one_epoch( tot_loss += loss_cpu tot_avg_loss = tot_loss / tot_frames + params.tot_frames += params.train_frames + params.tot_loss += loss_cpu + if batch_idx % params.log_interval == 0: logging.info( f"Epoch {params.cur_epoch}, batch {batch_idx}, " @@ -433,6 +453,22 @@ def train_one_epoch( f"total avg loss: {tot_avg_loss:.4f}, " f"batch size: {batch_size}" ) + if tb_writer is not None: + tb_writer.add_scalar( + "train/current_loss", + loss_cpu / params.train_frames, + params.batch_idx_train, + ) + + tb_writer.add_scalar( + "train/tot_avg_loss", + tot_avg_loss, + params.batch_idx_train, + ) + + if batch_idx > 0 and batch_idx % params.reset_interval == 0: + tot_loss = 0 + tot_frames = 0 if batch_idx > 0 and batch_idx % params.valid_interval == 0: compute_validation_loss( @@ -449,7 +485,7 @@ def train_one_epoch( f"best valid epoch: {params.best_valid_epoch}" ) - params.train_loss = tot_loss / tot_frames + params.train_loss = params.tot_loss / params.tot_frames if params.train_loss < params.best_train_loss: params.best_train_epoch = params.cur_epoch diff --git a/egs/yesno/ASR/README.md b/egs/yesno/ASR/README.md index 653c576fa..6f57412c0 100644 --- a/egs/yesno/ASR/README.md +++ b/egs/yesno/ASR/README.md @@ -1,15 +1,14 @@ ## Yesno recipe -You can run the recipe with **CPU**. +This is the simplest ASR recipe in `icefall`. - -[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing) - -The above Colab notebook finishes the training using **CPU** -within two minutes (50 epochs in total). - -The WER is +It can be run on CPU and takes less than 30 seconds to +get the following WER: ``` [test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ] ``` + +Please refer to + +for detailed instructions. diff --git a/egs/yesno/ASR/local/compile_hlg.py b/egs/yesno/ASR/local/compile_hlg.py index f2fafd013..9b6a4c5ba 100755 --- a/egs/yesno/ASR/local/compile_hlg.py +++ b/egs/yesno/ASR/local/compile_hlg.py @@ -80,14 +80,14 @@ def compile_HLG(lang_dir: str) -> k2.Fsa: LG.labels[LG.labels >= first_token_disambig_id] = 0 - assert isinstance(LG.aux_labels, k2.RaggedInt) - LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0 + assert isinstance(LG.aux_labels, k2.RaggedTensor) + LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0 LG = k2.remove_epsilon(LG) logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}") LG = k2.connect(LG) - LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0) + LG.aux_labels = LG.aux_labels.remove_values_eq(0) logging.info("Arc sorting LG") LG = k2.arc_sort(LG) diff --git a/egs/yesno/ASR/tdnn/README.md b/egs/yesno/ASR/tdnn/README.md new file mode 100644 index 000000000..2b6116f0a --- /dev/null +++ b/egs/yesno/ASR/tdnn/README.md @@ -0,0 +1,8 @@ + +## How to run this recipe + +You can find detailed instructions by visiting + + +It describes how to run this recipe and how to use +a pre-trained model with `./pretrained.py`. diff --git a/egs/yesno/ASR/tdnn/decode.py b/egs/yesno/ASR/tdnn/decode.py index b600c182c..325acf316 100755 --- a/egs/yesno/ASR/tdnn/decode.py +++ b/egs/yesno/ASR/tdnn/decode.py @@ -20,6 +20,7 @@ from icefall.utils import ( get_texts, setup_logger, store_transcripts, + str2bool, write_error_stats, ) @@ -44,6 +45,17 @@ def get_parser(): "consecutive checkpoints before the checkpoint specified by " "'--epoch'. ", ) + + parser.add_argument( + "--export", + type=str2bool, + default=False, + help="""When enabled, the averaged model is saved to + tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved. + pretrained.pt contains a dict {"model": model.state_dict()}, + which can be loaded by `icefall.checkpoint.load_checkpoint()`. + """, + ) return parser @@ -99,10 +111,10 @@ def decode_one_batch( feature = batch["inputs"] assert feature.ndim == 3 feature = feature.to(device) - # at entry, feature is [N, T, C] + # at entry, feature is (N, T, C) nnet_output = model(feature) - # nnet_output is [N, T, C] + # nnet_output is (N, T, C) batch_size = nnet_output.shape[0] supervision_segments = torch.tensor( @@ -279,6 +291,13 @@ def main(): logging.info(f"averaging {filenames}") model.load_state_dict(average_checkpoints(filenames)) + if params.export: + logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt") + torch.save( + {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt" + ) + return + model.to(device) model.eval() diff --git a/egs/yesno/ASR/tdnn/pretrained.py b/egs/yesno/ASR/tdnn/pretrained.py new file mode 100755 index 000000000..fb92110e3 --- /dev/null +++ b/egs/yesno/ASR/tdnn/pretrained.py @@ -0,0 +1,209 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +import math +from typing import List + +import k2 +import kaldifeat +import torch +import torchaudio +from model import Tdnn +from torch.nn.utils.rnn import pad_sequence + +from icefall.decode import get_lattice, one_best_decoding +from icefall.utils import AttributeDict, get_texts + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--words-file", + type=str, + required=True, + help="Path to words.txt", + ) + + parser.add_argument( + "--HLG", type=str, required=True, help="Path to HLG.pt." + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "feature_dim": 23, + "num_classes": 4, # [, N, SIL, Y] + "sample_rate": 8000, + "search_beam": 20, + "output_beam": 8, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + } + ) + return params + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + assert sample_rate == expected_sample_rate, ( + f"expected sample rate: {expected_sample_rate}. " + f"Given: {sample_rate}" + ) + # We use only the first channel + ans.append(wave[0]) + return ans + + +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + params.update(vars(args)) + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + + model = Tdnn( + num_features=params.feature_dim, + num_classes=params.num_classes, + ) + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"]) + model.to(device) + model.eval() + + logging.info(f"Loading HLG from {params.HLG}") + HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu")) + HLG = HLG.to(device) + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + + features = pad_sequence( + features, batch_first=True, padding_value=math.log(1e-10) + ) + + # Note: We don't use key padding mask for attention during decoding + with torch.no_grad(): + nnet_output = model(features) + + batch_size = nnet_output.shape[0] + supervision_segments = torch.tensor( + [[i, 0, nnet_output.shape[1]] for i in range(batch_size)], + dtype=torch.int32, + ) + + lattice = get_lattice( + nnet_output=nnet_output, + HLG=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + ) + + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + + hyps = get_texts(best_path) + word_sym_table = k2.SymbolTable.from_file(params.words_file) + hyps = [[word_sym_table[i] for i in ids] for ids in hyps] + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = ( + "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + ) + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/yesno/ASR/tdnn/train.py b/egs/yesno/ASR/tdnn/train.py index 04e1ab698..0f5506d38 100755 --- a/egs/yesno/ASR/tdnn/train.py +++ b/egs/yesno/ASR/tdnn/train.py @@ -60,6 +60,16 @@ def get_parser(): help="Number of epochs to train.", ) + parser.add_argument( + "--start-epoch", + type=int, + default=0, + help="""Resume training from from this epoch. + If it is positive, it will load checkpoint from + tdnn/exp/epoch-{start_epoch-1}.pt + """, + ) + return parser @@ -92,8 +102,6 @@ def get_params() -> AttributeDict: - start_epoch: If it is not zero, load checkpoint `start_epoch-1` and continue training from that checkpoint. - - num_epochs: Number of epochs to train. - - best_train_loss: Best training loss so far. It is used to select the model that has the lowest training loss. It is updated during the training. @@ -260,13 +268,13 @@ def compute_loss( """ device = graph_compiler.device feature = batch["inputs"] - # at entry, feature is [N, T, C] + # at entry, feature is (N, T, C) assert feature.ndim == 3 feature = feature.to(device) with torch.set_grad_enabled(is_training): nnet_output = model(feature) - # nnet_output is [N, T, C] + # nnet_output is (N, T, C) # NOTE: We need `encode_supervisions` to sort sequences with # different duration in decreasing order, required by @@ -420,6 +428,19 @@ def train_one_epoch( f"batch size: {batch_size}" ) + if tb_writer is not None: + tb_writer.add_scalar( + "train/current_loss", + loss_cpu / params.train_frames, + params.batch_idx_train, + ) + + tb_writer.add_scalar( + "train/tot_avg_loss", + tot_avg_loss, + params.batch_idx_train, + ) + if batch_idx > 0 and batch_idx % params.valid_interval == 0: compute_validation_loss( params=params, @@ -434,6 +455,12 @@ def train_one_epoch( f" best valid loss: {params.best_valid_loss:.4f} " f"best valid epoch: {params.best_valid_epoch}" ) + if tb_writer is not None: + tb_writer.add_scalar( + "train/valid_loss", + params.valid_loss, + params.batch_idx_train, + ) params.train_loss = tot_loss / tot_frames diff --git a/icefall/decode.py b/icefall/decode.py index bcc869e99..e678e4622 100644 --- a/icefall/decode.py +++ b/icefall/decode.py @@ -15,44 +15,12 @@ # limitations under the License. import logging -from typing import Dict, List, Optional, Tuple, Union +from typing import Dict, List, Optional, Union import k2 -import kaldialign import torch -import torch.nn as nn -from icefall.lexicon import Lexicon - - -def _get_random_paths( - lattice: k2.Fsa, - num_paths: int, - use_double_scores: bool = True, - scale: float = 1.0, -): - """ - Args: - lattice: - The decoding lattice, returned by :func:`get_lattice`. - num_paths: - It specifies the size `n` in n-best. Note: Paths are selected randomly - and those containing identical word sequences are remove dand only one - of them is kept. - use_double_scores: - True to use double precision floating point in the computation. - False to use single precision. - scale: - It's the scale applied to the lattice.scores. A smaller value - yields more unique paths. - Returns: - Return a k2.RaggedInt with 3 axes [seq][path][arc_pos] - """ - saved_scores = lattice.scores.clone() - lattice.scores *= scale - path = k2.random_paths(lattice, num_paths=num_paths, use_double_scores=True) - lattice.scores = saved_scores - return path +from icefall.utils import get_texts def _intersect_device( @@ -67,7 +35,7 @@ def _intersect_device( CUDA OOM error. The arguments and return value of this function are the same as - k2.intersect_device. + :func:`k2.intersect_device`. """ num_fsas = b_fsas.shape[0] if num_fsas <= batch_size: @@ -86,8 +54,8 @@ def _intersect_device( for start, end in splits: indexes = torch.arange(start, end).to(b_to_a_map) - fsas = k2.index(b_fsas, indexes) - b_to_a = k2.index(b_to_a_map, indexes) + fsas = k2.index_fsa(b_fsas, indexes) + b_to_a = k2.index_select(b_to_a_map, indexes) path_lattice = k2.intersect_device( a_fsas, fsas, b_to_a_map=b_to_a, sorted_match_a=sorted_match_a ) @@ -108,10 +76,9 @@ def get_lattice( ) -> k2.Fsa: """Get the decoding lattice from a decoding graph and neural network output. - Args: nnet_output: - It is the output of a neural model of shape `[N, T, C]`. + It is the output of a neural model of shape `(N, T, C)`. HLG: An Fsa, the decoding graph. See also `compile_HLG.py`. supervision_segments: @@ -141,10 +108,12 @@ def get_lattice( subsampling_factor: The subsampling factor of the model. Returns: - A lattice containing the decoding result. + An FsaVec containing the decoding result. It has axes [utt][state][arc]. """ dense_fsa_vec = k2.DenseFsaVec( - nnet_output, supervision_segments, allow_truncate=subsampling_factor - 1 + nnet_output, + supervision_segments, + allow_truncate=subsampling_factor - 1, ) lattice = k2.intersect_dense_pruned( @@ -159,8 +128,304 @@ def get_lattice( return lattice +class Nbest(object): + """ + An Nbest object contains two fields: + + (1) fsa. It is an FsaVec containing a vector of **linear** FSAs. + Its axes are [path][state][arc] + (2) shape. Its type is :class:`k2.RaggedShape`. + Its axes are [utt][path] + + The field `shape` has two axes [utt][path]. `shape.dim0` contains + the number of utterances, which is also the number of rows in the + supervision_segments. `shape.tot_size(1)` contains the number + of paths, which is also the number of FSAs in `fsa`. + + Caution: + Don't be confused by the name `Nbest`. The best in the name `Nbest` + has nothing to do with `best scores`. The important part is + `N` in `Nbest`, not `best`. + """ + + def __init__(self, fsa: k2.Fsa, shape: k2.RaggedShape) -> None: + """ + Args: + fsa: + An FsaVec with axes [path][state][arc]. It is expected to contain + a list of **linear** FSAs. + shape: + A ragged shape with two axes [utt][path]. + """ + assert len(fsa.shape) == 3, f"fsa.shape: {fsa.shape}" + assert shape.num_axes == 2, f"num_axes: {shape.num_axes}" + + if fsa.shape[0] != shape.tot_size(1): + raise ValueError( + f"{fsa.shape[0]} vs {shape.tot_size(1)}\n" + "Number of FSAs in `fsa` does not match the given shape" + ) + + self.fsa = fsa + self.shape = shape + + def __str__(self): + s = "Nbest(" + s += f"Number of utterances:{self.shape.dim0}, " + s += f"Number of Paths:{self.fsa.shape[0]})" + return s + + @staticmethod + def from_lattice( + lattice: k2.Fsa, + num_paths: int, + use_double_scores: bool = True, + lattice_score_scale: float = 0.5, + ) -> "Nbest": + """Construct an Nbest object by **sampling** `num_paths` from a lattice. + + Each sampled path is a linear FSA. + + We assume `lattice.labels` contains token IDs and `lattice.aux_labels` + contains word IDs. + + Args: + lattice: + An FsaVec with axes [utt][state][arc]. + num_paths: + Number of paths to **sample** from the lattice + using :func:`k2.random_paths`. + use_double_scores: + True to use double precision in :func:`k2.random_paths`. + False to use single precision. + scale: + Scale `lattice.score` before passing it to :func:`k2.random_paths`. + A smaller value leads to more unique paths at the risk of being not + to sample the path with the best score. + Returns: + Return an Nbest instance. + """ + saved_scores = lattice.scores.clone() + lattice.scores *= lattice_score_scale + # path is a ragged tensor with dtype torch.int32. + # It has three axes [utt][path][arc_pos] + path = k2.random_paths( + lattice, num_paths=num_paths, use_double_scores=use_double_scores + ) + lattice.scores = saved_scores + + # word_seq is a k2.RaggedTensor sharing the same shape as `path` + # but it contains word IDs. Note that it also contains 0s and -1s. + # The last entry in each sublist is -1. + # It axes is [utt][path][word_id] + if isinstance(lattice.aux_labels, torch.Tensor): + word_seq = k2.ragged.index(lattice.aux_labels, path) + else: + word_seq = lattice.aux_labels.index(path) + word_seq = word_seq.remove_axis(word_seq.num_axes - 2) + + # Each utterance has `num_paths` paths but some of them transduces + # to the same word sequence, so we need to remove repeated word + # sequences within an utterance. After removing repeats, each utterance + # contains different number of paths + # + # `new2old` is a 1-D torch.Tensor mapping from the output path index + # to the input path index. + _, _, new2old = word_seq.unique( + need_num_repeats=False, need_new2old_indexes=True + ) + + # kept_path is a ragged tensor with dtype torch.int32. + # It has axes [utt][path][arc_pos] + kept_path, _ = path.index(new2old, axis=1, need_value_indexes=False) + + # utt_to_path_shape has axes [utt][path] + utt_to_path_shape = kept_path.shape.get_layer(0) + + # Remove the utterance axis. + # Now kept_path has only two axes [path][arc_pos] + kept_path = kept_path.remove_axis(0) + + # labels is a ragged tensor with 2 axes [path][token_id] + # Note that it contains -1s. + labels = k2.ragged.index(lattice.labels.contiguous(), kept_path) + + # Remove -1 from labels as we will use it to construct a linear FSA + labels = labels.remove_values_eq(-1) + + if isinstance(lattice.aux_labels, k2.RaggedTensor): + # lattice.aux_labels is a ragged tensor with dtype torch.int32. + # It has 2 axes [arc][word], so aux_labels is also a ragged tensor + # with 2 axes [arc][word] + aux_labels, _ = lattice.aux_labels.index( + indexes=kept_path.values, axis=0, need_value_indexes=False + ) + else: + assert isinstance(lattice.aux_labels, torch.Tensor) + aux_labels = k2.index_select(lattice.aux_labels, kept_path.values) + # aux_labels is a 1-D torch.Tensor. It also contains -1 and 0. + + fsa = k2.linear_fsa(labels) + fsa.aux_labels = aux_labels + # Caution: fsa.scores are all 0s. + # `fsa` has only one extra attribute: aux_labels. + return Nbest(fsa=fsa, shape=utt_to_path_shape) + + def intersect(self, lattice: k2.Fsa, use_double_scores=True) -> "Nbest": + """Intersect this Nbest object with a lattice, get 1-best + path from the resulting FsaVec, and return a new Nbest object. + + The purpose of this function is to attach scores to an Nbest. + + Args: + lattice: + An FsaVec with axes [utt][state][arc]. If it has `aux_labels`, then + we assume its `labels` are token IDs and `aux_labels` are word IDs. + If it has only `labels`, we assume its `labels` are word IDs. + use_double_scores: + True to use double precision when computing shortest path. + False to use single precision. + Returns: + Return a new Nbest. This new Nbest shares the same shape with `self`, + while its `fsa` is the 1-best path from intersecting `self.fsa` and + `lattice`. Also, its `fsa` has non-zero scores and inherits attributes + for `lattice`. + """ + # Note: We view each linear FSA as a word sequence + # and we use the passed lattice to give each word sequence a score. + # + # We are not viewing each linear FSAs as a token sequence. + # + # So we use k2.invert() here. + + # We use a word fsa to intersect with k2.invert(lattice) + word_fsa = k2.invert(self.fsa) + + if hasattr(lattice, "aux_labels"): + # delete token IDs as it is not needed + del word_fsa.aux_labels + + word_fsa.scores.zero_() + word_fsa_with_epsilon_loops = k2.remove_epsilon_and_add_self_loops( + word_fsa + ) + + path_to_utt_map = self.shape.row_ids(1) + + if hasattr(lattice, "aux_labels"): + # lattice has token IDs as labels and word IDs as aux_labels. + # inv_lattice has word IDs as labels and token IDs as aux_labels + inv_lattice = k2.invert(lattice) + inv_lattice = k2.arc_sort(inv_lattice) + else: + inv_lattice = k2.arc_sort(lattice) + + if inv_lattice.shape[0] == 1: + path_lattice = _intersect_device( + inv_lattice, + word_fsa_with_epsilon_loops, + b_to_a_map=torch.zeros_like(path_to_utt_map), + sorted_match_a=True, + ) + else: + path_lattice = _intersect_device( + inv_lattice, + word_fsa_with_epsilon_loops, + b_to_a_map=path_to_utt_map, + sorted_match_a=True, + ) + + # path_lattice has word IDs as labels and token IDs as aux_labels + path_lattice = k2.top_sort(k2.connect(path_lattice)) + + one_best = k2.shortest_path( + path_lattice, use_double_scores=use_double_scores + ) + + one_best = k2.invert(one_best) + # Now one_best has token IDs as labels and word IDs as aux_labels + + return Nbest(fsa=one_best, shape=self.shape) + + def compute_am_scores(self) -> k2.RaggedTensor: + """Compute AM scores of each linear FSA (i.e., each path within + an utterance). + + Hint: + `self.fsa.scores` contains two parts: acoustic scores (AM scores) + and n-gram language model scores (LM scores). + + Caution: + We require that ``self.fsa`` has an attribute ``lm_scores``. + + Returns: + Return a ragged tensor with 2 axes [utt][path_scores]. + Its dtype is torch.float64. + """ + saved_scores = self.fsa.scores + + # The `scores` of every arc consists of `am_scores` and `lm_scores` + self.fsa.scores = self.fsa.scores - self.fsa.lm_scores + + am_scores = self.fsa.get_tot_scores( + use_double_scores=True, log_semiring=False + ) + self.fsa.scores = saved_scores + + return k2.RaggedTensor(self.shape, am_scores) + + def compute_lm_scores(self) -> k2.RaggedTensor: + """Compute LM scores of each linear FSA (i.e., each path within + an utterance). + + Hint: + `self.fsa.scores` contains two parts: acoustic scores (AM scores) + and n-gram language model scores (LM scores). + + Caution: + We require that ``self.fsa`` has an attribute ``lm_scores``. + + Returns: + Return a ragged tensor with 2 axes [utt][path_scores]. + Its dtype is torch.float64. + """ + saved_scores = self.fsa.scores + + # The `scores` of every arc consists of `am_scores` and `lm_scores` + self.fsa.scores = self.fsa.lm_scores + + lm_scores = self.fsa.get_tot_scores( + use_double_scores=True, log_semiring=False + ) + self.fsa.scores = saved_scores + + return k2.RaggedTensor(self.shape, lm_scores) + + def tot_scores(self) -> k2.RaggedTensor: + """Get total scores of FSAs in this Nbest. + + Note: + Since FSAs in Nbest are just linear FSAs, log-semiring + and tropical semiring produce the same total scores. + + Returns: + Return a ragged tensor with two axes [utt][path_scores]. + Its dtype is torch.float64. + """ + scores = self.fsa.get_tot_scores( + use_double_scores=True, log_semiring=False + ) + return k2.RaggedTensor(self.shape, scores) + + def build_levenshtein_graphs(self) -> k2.Fsa: + """Return an FsaVec with axes [utt][state][arc].""" + word_ids = get_texts(self.fsa, return_ragged=True) + return k2.levenshtein_graph(word_ids) + + def one_best_decoding( - lattice: k2.Fsa, use_double_scores: bool = True + lattice: k2.Fsa, + use_double_scores: bool = True, ) -> k2.Fsa: """Get the best path from a lattice. @@ -181,200 +446,143 @@ def nbest_decoding( lattice: k2.Fsa, num_paths: int, use_double_scores: bool = True, - scale: float = 1.0, + lattice_score_scale: float = 1.0, ) -> k2.Fsa: """It implements something like CTC prefix beam search using n-best lists. - The basic idea is to first extra n-best paths from the given lattice, - build a word seqs from these paths, and compute the total scores - of these sequences in the log-semiring. The one with the max score + The basic idea is to first extract `num_paths` paths from the given lattice, + build a word sequence from these paths, and compute the total scores + of the word sequence in the tropical semiring. The one with the max score is used as the decoding output. Caution: Don't be confused by `best` in the name `n-best`. Paths are selected - randomly, not by ranking their scores. + **randomly**, not by ranking their scores. + + Hint: + This decoding method is for demonstration only and it does + not produce a lower WER than :func:`one_best_decoding`. Args: lattice: - The decoding lattice, returned by :func:`get_lattice`. + The decoding lattice, e.g., can be the return value of + :func:`get_lattice`. It has 3 axes [utt][state][arc]. num_paths: It specifies the size `n` in n-best. Note: Paths are selected randomly - and those containing identical word sequences are remove dand only one + and those containing identical word sequences are removed and only one of them is kept. use_double_scores: True to use double precision floating point in the computation. False to use single precision. - scale: - It's the scale applied to the lattice.scores. A smaller value - yields more unique paths. + lattice_score_scale: + It's the scale applied to the `lattice.scores`. A smaller value + leads to more unique paths at the risk of missing the correct path. Returns: - An FsaVec containing linear FSAs. + An FsaVec containing **linear** FSAs. It axes are [utt][state][arc]. """ - path = _get_random_paths( + nbest = Nbest.from_lattice( lattice=lattice, num_paths=num_paths, use_double_scores=use_double_scores, - scale=scale, + lattice_score_scale=lattice_score_scale, ) + # nbest.fsa.scores contains 0s - # word_seq is a k2.RaggedInt sharing the same shape as `path` - # but it contains word IDs. Note that it also contains 0s and -1s. - # The last entry in each sublist is -1. - word_seq = k2.index(lattice.aux_labels, path) - # Note: the above operation supports also the case when - # lattice.aux_labels is a ragged tensor. In that case, - # `remove_axis=True` is used inside the pybind11 binding code, - # so the resulting `word_seq` still has 3 axes, like `path`. - # The 3 axes are [seq][path][word_id] + nbest = nbest.intersect(lattice) + # now nbest.fsa.scores gets assigned - # Remove 0 (epsilon) and -1 from word_seq - word_seq = k2.ragged.remove_values_leq(word_seq, 0) + # max_indexes contains the indexes for the path with the maximum score + # within an utterance. + max_indexes = nbest.tot_scores().argmax() - # Remove sequences with identical word sequences. - # - # k2.ragged.unique_sequences will reorder paths within a seq. - # `new2old` is a 1-D torch.Tensor mapping from the output path index - # to the input path index. - # new2old.numel() == unique_word_seqs.tot_size(1) - unique_word_seq, _, new2old = k2.ragged.unique_sequences( - word_seq, need_num_repeats=False, need_new2old_indexes=True - ) - # Note: unique_word_seq still has the same axes as word_seq - - seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0) - - # path_to_seq_map is a 1-D torch.Tensor. - # path_to_seq_map[i] is the seq to which the i-th path belongs - path_to_seq_map = seq_to_path_shape.row_ids(1) - - # Remove the seq axis. - # Now unique_word_seq has only two axes [path][word] - unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0) - - # word_fsa is an FsaVec with axes [path][state][arc] - word_fsa = k2.linear_fsa(unique_word_seq) - - # add epsilon self loops since we will use - # k2.intersect_device, which treats epsilon as a normal symbol - word_fsa_with_epsilon_loops = k2.add_epsilon_self_loops(word_fsa) - - # lattice has token IDs as labels and word IDs as aux_labels. - # inv_lattice has word IDs as labels and token IDs as aux_labels - inv_lattice = k2.invert(lattice) - inv_lattice = k2.arc_sort(inv_lattice) - - path_lattice = _intersect_device( - inv_lattice, - word_fsa_with_epsilon_loops, - b_to_a_map=path_to_seq_map, - sorted_match_a=True, - ) - # path_lat has word IDs as labels and token IDs as aux_labels - - path_lattice = k2.top_sort(k2.connect(path_lattice)) - - tot_scores = path_lattice.get_tot_scores( - use_double_scores=use_double_scores, log_semiring=False - ) - - # RaggedFloat currently supports float32 only. - # If Ragged is wrapped, we can use k2.RaggedDouble here - ragged_tot_scores = k2.RaggedFloat( - seq_to_path_shape, tot_scores.to(torch.float32) - ) - - argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores) - - # Since we invoked `k2.ragged.unique_sequences`, which reorders - # the index from `path`, we use `new2old` here to convert argmax_indexes - # to the indexes into `path`. - # - # Use k2.index here since argmax_indexes' dtype is torch.int32 - best_path_indexes = k2.index(new2old, argmax_indexes) - - path_2axes = k2.ragged.remove_axis(path, 0) - - # best_path is a k2.RaggedInt with 2 axes [path][arc_pos] - best_path = k2.index(path_2axes, best_path_indexes) - - # labels is a k2.RaggedInt with 2 axes [path][token_id] - # Note that it contains -1s. - labels = k2.index(lattice.labels.contiguous(), best_path) - - labels = k2.ragged.remove_values_eq(labels, -1) - - # lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so - # aux_labels is also a k2.RaggedInt with 2 axes - aux_labels = k2.index(lattice.aux_labels, best_path.values()) - - best_path_fsa = k2.linear_fsa(labels) - best_path_fsa.aux_labels = aux_labels - return best_path_fsa + best_path = k2.index_fsa(nbest.fsa, max_indexes) + return best_path -def compute_am_and_lm_scores( +def nbest_oracle( lattice: k2.Fsa, - word_fsa_with_epsilon_loops: k2.Fsa, - path_to_seq_map: torch.Tensor, -) -> Tuple[torch.Tensor, torch.Tensor]: - """Compute AM scores of n-best lists (represented as word_fsas). + num_paths: int, + ref_texts: List[str], + word_table: k2.SymbolTable, + use_double_scores: bool = True, + lattice_score_scale: float = 0.5, + oov: str = "", +) -> Dict[str, List[List[int]]]: + """Select the best hypothesis given a lattice and a reference transcript. + + The basic idea is to extract `num_paths` paths from the given lattice, + unique them, and select the one that has the minimum edit distance with + the corresponding reference transcript as the decoding output. + + The decoding result returned from this function is the best result that + we can obtain using n-best decoding with all kinds of rescoring techniques. + + This function is useful to tune the value of `lattice_score_scale`. Args: lattice: - An FsaVec, e.g., the return value of :func:`get_lattice` - It must have the attribute `lm_scores`. - word_fsa_with_epsilon_loops: - An FsaVec representing an n-best list. Note that it has been processed - by `k2.add_epsilon_self_loops`. - path_to_seq_map: - A 1-D torch.Tensor with dtype torch.int32. path_to_seq_map[i] indicates - which sequence the i-th Fsa in word_fsa_with_epsilon_loops belongs to. - path_to_seq_map.numel() == word_fsas_with_epsilon_loops.arcs.dim0(). - Returns: - Return a tuple containing two 1-D torch.Tensors: (am_scores, lm_scores). - Each tensor's `numel()' equals to `word_fsas_with_epsilon_loops.shape[0]` + An FsaVec with axes [utt][state][arc]. + Note: We assume its `aux_labels` contains word IDs. + num_paths: + The size of `n` in n-best. + ref_texts: + A list of reference transcript. Each entry contains space(s) + separated words + word_table: + It is the word symbol table. + use_double_scores: + True to use double precision for computation. False to use + single precision. + lattice_score_scale: + It's the scale applied to the lattice.scores. A smaller value + yields more unique paths. + oov: + The out of vocabulary word. + Return: + Return a dict. Its key contains the information about the parameters + when calling this function, while its value contains the decoding output. + `len(ans_dict) == len(ref_texts)` """ - assert len(lattice.shape) == 3 - assert hasattr(lattice, "lm_scores") + device = lattice.device - # k2.compose() currently does not support b_to_a_map. To void - # replicating `lats`, we use k2.intersect_device here. - # - # lattice has token IDs as `labels` and word IDs as aux_labels, so we - # need to invert it here. - inv_lattice = k2.invert(lattice) - - # Now the `labels` of inv_lattice are word IDs (a 1-D torch.Tensor) - # and its `aux_labels` are token IDs ( a k2.RaggedInt with 2 axes) - - # Remove its `aux_labels` since it is not needed in the - # following computation - del inv_lattice.aux_labels - inv_lattice = k2.arc_sort(inv_lattice) - - path_lattice = _intersect_device( - inv_lattice, - word_fsa_with_epsilon_loops, - b_to_a_map=path_to_seq_map, - sorted_match_a=True, + nbest = Nbest.from_lattice( + lattice=lattice, + num_paths=num_paths, + use_double_scores=use_double_scores, + lattice_score_scale=lattice_score_scale, ) - path_lattice = k2.top_sort(k2.connect(path_lattice)) + hyps = nbest.build_levenshtein_graphs() - # The `scores` of every arc consists of `am_scores` and `lm_scores` - path_lattice.scores = path_lattice.scores - path_lattice.lm_scores + oov_id = word_table[oov] + word_ids_list = [] + for text in ref_texts: + word_ids = [] + for word in text.split(): + if word in word_table: + word_ids.append(word_table[word]) + else: + word_ids.append(oov_id) + word_ids_list.append(word_ids) - am_scores = path_lattice.get_tot_scores( - use_double_scores=True, log_semiring=False + refs = k2.levenshtein_graph(word_ids_list, device=device) + + levenshtein_alignment = k2.levenshtein_alignment( + refs=refs, + hyps=hyps, + hyp_to_ref_map=nbest.shape.row_ids(1), + sorted_match_ref=True, ) - path_lattice.scores = path_lattice.lm_scores - - lm_scores = path_lattice.get_tot_scores( - use_double_scores=True, log_semiring=False + tot_scores = levenshtein_alignment.get_tot_scores( + use_double_scores=False, log_semiring=False ) + ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) - return am_scores.to(torch.float32), lm_scores.to(torch.float32) + max_indexes = ragged_tot_scores.argmax() + + best_path = k2.index_fsa(nbest.fsa, max_indexes) + return best_path def rescore_with_n_best_list( @@ -382,34 +590,32 @@ def rescore_with_n_best_list( G: k2.Fsa, num_paths: int, lm_scale_list: List[float], - scale: float = 1.0, + lattice_score_scale: float = 1.0, + use_double_scores: bool = True, ) -> Dict[str, k2.Fsa]: - """Decode using n-best list with LM rescoring. - - `lattice` is a decoding lattice with 3 axes. This function first - extracts `num_paths` paths from `lattice` for each sequence using - `k2.random_paths`. The `am_scores` of these paths are computed. - For each path, its `lm_scores` is computed using `G` (which is an LM). - The final `tot_scores` is the sum of `am_scores` and `lm_scores`. - The path with the largest `tot_scores` within a sequence is used - as the decoding output. + """Rescore an n-best list with an n-gram LM. + The path with the maximum score is used as the decoding output. Args: lattice: - An FsaVec. It can be the return value of :func:`get_lattice`. + An FsaVec with axes [utt][state][arc]. It must have the following + attributes: ``aux_labels`` and ``lm_scores``. Its labels are + token IDs and ``aux_labels`` word IDs. G: - An FsaVec representing the language model (LM). Note that it - is an FsaVec, but it contains only one Fsa. + An FsaVec containing only a single FSA. It is an n-gram LM. num_paths: - It is the size `n` in `n-best` list. + Size of nbest list. lm_scale_list: - A list containing lm_scale values. - scale: - It's the scale applied to the lattice.scores. A smaller value - yields more unique paths. + A list of float representing LM score scales. + lattice_score_scale: + Scale to be applied to ``lattice.score`` when sampling paths + using ``k2.random_paths``. + use_double_scores: + True to use double precision during computation. False to use + single precision. Returns: A dict of FsaVec, whose key is an lm_scale and the value is the - best decoding path for each sequence in the lattice. + best decoding path for each utterance in the lattice. """ device = lattice.device @@ -421,112 +627,32 @@ def rescore_with_n_best_list( assert G.device == device assert hasattr(G, "aux_labels") is False - path = _get_random_paths( + nbest = Nbest.from_lattice( lattice=lattice, num_paths=num_paths, - use_double_scores=True, - scale=scale, + use_double_scores=use_double_scores, + lattice_score_scale=lattice_score_scale, ) + # nbest.fsa.scores are all 0s at this point - # word_seq is a k2.RaggedInt sharing the same shape as `path` - # but it contains word IDs. Note that it also contains 0s and -1s. - # The last entry in each sublist is -1. - word_seq = k2.index(lattice.aux_labels, path) + nbest = nbest.intersect(lattice) + # Now nbest.fsa has its scores set + assert hasattr(nbest.fsa, "lm_scores") - # Remove epsilons and -1 from word_seq - word_seq = k2.ragged.remove_values_leq(word_seq, 0) + am_scores = nbest.compute_am_scores() - # Remove paths that has identical word sequences. - # - # unique_word_seq is still a k2.RaggedInt with 3 axes [seq][path][word] - # except that there are no repeated paths with the same word_seq - # within a sequence. - # - # num_repeats is also a k2.RaggedInt with 2 axes containing the - # multiplicities of each path. - # num_repeats.num_elements() == unique_word_seqs.tot_size(1) - # - # Since k2.ragged.unique_sequences will reorder paths within a seq, - # `new2old` is a 1-D torch.Tensor mapping from the output path index - # to the input path index. - # new2old.numel() == unique_word_seqs.tot_size(1) - unique_word_seq, num_repeats, new2old = k2.ragged.unique_sequences( - word_seq, need_num_repeats=True, need_new2old_indexes=True - ) - - seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0) - - # path_to_seq_map is a 1-D torch.Tensor. - # path_to_seq_map[i] is the seq to which the i-th path - # belongs. - path_to_seq_map = seq_to_path_shape.row_ids(1) - - # Remove the seq axis. - # Now unique_word_seq has only two axes [path][word] - unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0) - - # word_fsa is an FsaVec with axes [path][state][arc] - word_fsa = k2.linear_fsa(unique_word_seq) - - word_fsa_with_epsilon_loops = k2.add_epsilon_self_loops(word_fsa) - - am_scores, _ = compute_am_and_lm_scores( - lattice, word_fsa_with_epsilon_loops, path_to_seq_map - ) - - # Now compute lm_scores - b_to_a_map = torch.zeros_like(path_to_seq_map) - lm_path_lattice = _intersect_device( - G, - word_fsa_with_epsilon_loops, - b_to_a_map=b_to_a_map, - sorted_match_a=True, - ) - lm_path_lattice = k2.top_sort(k2.connect(lm_path_lattice)) - lm_scores = lm_path_lattice.get_tot_scores( - use_double_scores=True, log_semiring=False - ) - - path_2axes = k2.ragged.remove_axis(path, 0) + nbest = nbest.intersect(G) + # Now nbest contains only lm scores + lm_scores = nbest.tot_scores() ans = dict() for lm_scale in lm_scale_list: - tot_scores = am_scores / lm_scale + lm_scores - - # Remember that we used `k2.ragged.unique_sequences` to remove repeated - # paths to avoid redundant computation in `k2.intersect_device`. - # Now we use `num_repeats` to correct the scores for each path. - # - # NOTE(fangjun): It is commented out as it leads to a worse WER - # tot_scores = tot_scores * num_repeats.values() - - ragged_tot_scores = k2.RaggedFloat( - seq_to_path_shape, tot_scores.to(torch.float32) - ) - argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores) - - # Use k2.index here since argmax_indexes' dtype is torch.int32 - best_path_indexes = k2.index(new2old, argmax_indexes) - - # best_path is a k2.RaggedInt with 2 axes [path][arc_pos] - best_path = k2.index(path_2axes, best_path_indexes) - - # labels is a k2.RaggedInt with 2 axes [path][phone_id] - # Note that it contains -1s. - labels = k2.index(lattice.labels.contiguous(), best_path) - - labels = k2.ragged.remove_values_eq(labels, -1) - - # lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so - # aux_labels is also a k2.RaggedInt with 2 axes - aux_labels = k2.index(lattice.aux_labels, best_path.values()) - - best_path_fsa = k2.linear_fsa(labels) - best_path_fsa.aux_labels = aux_labels - + tot_scores = am_scores.values / lm_scale + lm_scores.values + tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) + max_indexes = tot_scores.argmax() + best_path = k2.index_fsa(nbest.fsa, max_indexes) key = f"lm_scale_{lm_scale}" - ans[key] = best_path_fsa - + ans[key] = best_path return ans @@ -534,25 +660,40 @@ def rescore_with_whole_lattice( lattice: k2.Fsa, G_with_epsilon_loops: k2.Fsa, lm_scale_list: Optional[List[float]] = None, + use_double_scores: bool = True, ) -> Union[k2.Fsa, Dict[str, k2.Fsa]]: - """Use whole lattice to rescore. + """Intersect the lattice with an n-gram LM and use shortest path + to decode. + + The input lattice is obtained by intersecting `HLG` with + a DenseFsaVec, where the `G` in `HLG` is in general a 3-gram LM. + The input `G_with_epsilon_loops` is usually a 4-gram LM. You can consider + this function as a second pass decoding. In the first pass decoding, we + use a small G, while we use a larger G in the second pass decoding. Args: lattice: - An FsaVec It can be the return value of :func:`get_lattice`. + An FsaVec with axes [utt][state][arc]. Its `aux_lables` are word IDs. + It must have an attribute `lm_scores`. G_with_epsilon_loops: - An FsaVec representing the language model (LM). Note that it - is an FsaVec, but it contains only one Fsa. + An FsaVec containing only a single FSA. It contains epsilon self-loops. + It is an acceptor and its labels are word IDs. lm_scale_list: - A list containing lm_scale values or None. + Optional. If none, return the intersection of `lattice` and + `G_with_epsilon_loops`. + If not None, it contains a list of values to scale LM scores. + For each scale, there is a corresponding decoding result contained in + the resulting dict. + use_double_scores: + True to use double precision in the computation. + False to use single precision. Returns: - If lm_scale_list is not None, return a dict of FsaVec, whose key - is a lm_scale and the value represents the best decoding path for - each sequence in the lattice. - If lm_scale_list is not None, return a lattice that is rescored - with the given LM. + If `lm_scale_list` is None, return a new lattice which is the intersection + result of `lattice` and `G_with_epsilon_loops`. + Otherwise, return a dict whose key is an entry in `lm_scale_list` and the + value is the decoding result (i.e., an FsaVec containing linear FSAs). """ - assert len(lattice.shape) == 3 + # Nbest is not used in this function assert hasattr(lattice, "lm_scores") assert G_with_epsilon_loops.shape == (1, None, None) @@ -560,19 +701,22 @@ def rescore_with_whole_lattice( lattice.scores = lattice.scores - lattice.lm_scores # We will use lm_scores from G, so remove lats.lm_scores here del lattice.lm_scores - assert hasattr(lattice, "lm_scores") is False assert hasattr(G_with_epsilon_loops, "lm_scores") # Now, lattice.scores contains only am_scores # inv_lattice has word IDs as labels. - # Its aux_labels are token IDs, which is a ragged tensor k2.RaggedInt + # Its `aux_labels` is token IDs inv_lattice = k2.invert(lattice) num_seqs = lattice.shape[0] b_to_a_map = torch.zeros(num_seqs, device=device, dtype=torch.int32) - while True: + + max_loop_count = 10 + loop_count = 0 + while loop_count <= max_loop_count: + loop_count += 1 try: rescoring_lattice = k2.intersect_device( G_with_epsilon_loops, @@ -588,12 +732,15 @@ def rescore_with_whole_lattice( f"num_arcs before pruning: {inv_lattice.arcs.num_elements()}" ) - # NOTE(fangjun): The choice of the threshold 1e-7 is arbitrary here - # to avoid OOM. We may need to fine tune it. - inv_lattice = k2.prune_on_arc_post(inv_lattice, 1e-7, True) + # NOTE(fangjun): The choice of the threshold 1e-9 is arbitrary here + # to avoid OOM. You may need to fine tune it. + inv_lattice = k2.prune_on_arc_post(inv_lattice, 1e-9, True) logging.info( f"num_arcs after pruning: {inv_lattice.arcs.num_elements()}" ) + if loop_count > max_loop_count: + logging.info("Return None as the resulting lattice is too large") + return None # lat has token IDs as labels # and word IDs as aux_labels. @@ -603,112 +750,37 @@ def rescore_with_whole_lattice( return lat ans = dict() - # - # The following implements - # scores = (scores - lm_scores)/lm_scale + lm_scores - # = scores/lm_scale + lm_scores*(1 - 1/lm_scale) - # saved_am_scores = lat.scores - lat.lm_scores for lm_scale in lm_scale_list: am_scores = saved_am_scores / lm_scale lat.scores = am_scores + lat.lm_scores - best_path = k2.shortest_path(lat, use_double_scores=True) + best_path = k2.shortest_path(lat, use_double_scores=use_double_scores) key = f"lm_scale_{lm_scale}" ans[key] = best_path return ans -def nbest_oracle( - lattice: k2.Fsa, - num_paths: int, - ref_texts: List[str], - lexicon: Lexicon, - scale: float = 1.0, -) -> Dict[str, List[List[int]]]: - """Select the best hypothesis given a lattice and a reference transcript. - - The basic idea is to extract n paths from the given lattice, unique them, - and select the one that has the minimum edit distance with the corresponding - reference transcript as the decoding output. - - The decoding result returned from this function is the best result that - we can obtain using n-best decoding with all kinds of rescoring techniques. - - Args: - lattice: - An FsaVec. It can be the return value of :func:`get_lattice`. - Note: We assume its aux_labels contain word IDs. - num_paths: - The size of `n` in n-best. - ref_texts: - A list of reference transcript. Each entry contains space(s) - separated words - lexicon: - It is used to convert word IDs to word symbols. - scale: - It's the scale applied to the lattice.scores. A smaller value - yields more unique paths. - Return: - Return a dict. Its key contains the information about the parameters - when calling this function, while its value contains the decoding output. - `len(ans_dict) == len(ref_texts)` - """ - path = _get_random_paths( - lattice=lattice, - num_paths=num_paths, - use_double_scores=True, - scale=scale, - ) - - word_seq = k2.index(lattice.aux_labels, path) - word_seq = k2.ragged.remove_values_leq(word_seq, 0) - unique_word_seq, _, _ = k2.ragged.unique_sequences( - word_seq, need_num_repeats=False, need_new2old_indexes=False - ) - unique_word_ids = k2.ragged.to_list(unique_word_seq) - assert len(unique_word_ids) == len(ref_texts) - # unique_word_ids[i] contains all hypotheses of the i-th utterance - - results = [] - for hyps, ref in zip(unique_word_ids, ref_texts): - # Note hyps is a list-of-list ints - # Each sublist contains a hypothesis - ref_words = ref.strip().split() - # CAUTION: We don't convert ref_words to ref_words_ids - # since there may exist OOV words in ref_words - best_hyp_words = None - min_error = float("inf") - for hyp_words in hyps: - hyp_words = [lexicon.word_table[i] for i in hyp_words] - this_error = kaldialign.edit_distance(ref_words, hyp_words)["total"] - if this_error < min_error: - min_error = this_error - best_hyp_words = hyp_words - results.append(best_hyp_words) - - return {f"nbest_{num_paths}_scale_{scale}_oracle": results} - - def rescore_with_attention_decoder( lattice: k2.Fsa, num_paths: int, - model: nn.Module, + model: torch.nn.Module, memory: torch.Tensor, memory_key_padding_mask: Optional[torch.Tensor], sos_id: int, eos_id: int, - scale: float = 1.0, + lattice_score_scale: float = 1.0, ngram_lm_scale: Optional[float] = None, attention_scale: Optional[float] = None, + use_double_scores: bool = True, ) -> Dict[str, k2.Fsa]: - """This function extracts n paths from the given lattice and uses - an attention decoder to rescore them. The path with the highest - score is used as the decoding output. + """This function extracts `num_paths` paths from the given lattice and uses + an attention decoder to rescore them. The path with the highest score is + the decoding output. Args: lattice: - An FsaVec. It can be the return value of :func:`get_lattice`. + An FsaVec with axes [utt][state][arc]. num_paths: Number of paths to extract from the given lattice for rescoring. model: @@ -717,16 +789,16 @@ def rescore_with_attention_decoder( memory: The encoder memory of the given model. It is the output of the last torch.nn.TransformerEncoder layer in the given model. - Its shape is `[T, N, C]`. + Its shape is `(T, N, C)`. memory_key_padding_mask: - The padding mask for memory with shape [N, T]. + The padding mask for memory with shape `(N, T)`. sos_id: The token ID for SOS. eos_id: The token ID for EOS. - scale: - It's the scale applied to the lattice.scores. A smaller value - yields more unique paths. + lattice_score_scale: + It's the scale applied to `lattice.scores`. A smaller value + leads to more unique paths at the risk of missing the correct path. ngram_lm_scale: Optional. It specifies the scale for n-gram LM scores. attention_scale: @@ -734,97 +806,47 @@ def rescore_with_attention_decoder( Returns: A dict of FsaVec, whose key contains a string ngram_lm_scale_attention_scale and the value is the - best decoding path for each sequence in the lattice. + best decoding path for each utterance in the lattice. """ - # First, extract `num_paths` paths for each sequence. - # path is a k2.RaggedInt with axes [seq][path][arc_pos] - path = _get_random_paths( + nbest = Nbest.from_lattice( lattice=lattice, num_paths=num_paths, - use_double_scores=True, - scale=scale, + use_double_scores=use_double_scores, + lattice_score_scale=lattice_score_scale, ) + # nbest.fsa.scores are all 0s at this point - # word_seq is a k2.RaggedInt sharing the same shape as `path` - # but it contains word IDs. Note that it also contains 0s and -1s. - # The last entry in each sublist is -1. - word_seq = k2.index(lattice.aux_labels, path) + nbest = nbest.intersect(lattice) + # Now nbest.fsa has its scores set. + # Also, nbest.fsa inherits the attributes from `lattice`. + assert hasattr(nbest.fsa, "lm_scores") - # Remove epsilons and -1 from word_seq - word_seq = k2.ragged.remove_values_leq(word_seq, 0) + am_scores = nbest.compute_am_scores() + ngram_lm_scores = nbest.compute_lm_scores() - # Remove paths that has identical word sequences. - # - # unique_word_seq is still a k2.RaggedInt with 3 axes [seq][path][word] - # except that there are no repeated paths with the same word_seq - # within a sequence. - # - # num_repeats is also a k2.RaggedInt with 2 axes containing the - # multiplicities of each path. - # num_repeats.num_elements() == unique_word_seqs.tot_size(1) - # - # Since k2.ragged.unique_sequences will reorder paths within a seq, - # `new2old` is a 1-D torch.Tensor mapping from the output path index - # to the input path index. - # new2old.numel() == unique_word_seq.tot_size(1) - unique_word_seq, num_repeats, new2old = k2.ragged.unique_sequences( - word_seq, need_num_repeats=True, need_new2old_indexes=True - ) + # The `tokens` attribute is set inside `compile_hlg.py` + assert hasattr(nbest.fsa, "tokens") + assert isinstance(nbest.fsa.tokens, torch.Tensor) - seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0) - - # path_to_seq_map is a 1-D torch.Tensor. - # path_to_seq_map[i] is the seq to which the i-th path - # belongs. - path_to_seq_map = seq_to_path_shape.row_ids(1) - - # Remove the seq axis. - # Now unique_word_seq has only two axes [path][word] - unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0) - - # word_fsa is an FsaVec with axes [path][state][arc] - word_fsa = k2.linear_fsa(unique_word_seq) - - word_fsa_with_epsilon_loops = k2.add_epsilon_self_loops(word_fsa) - - am_scores, ngram_lm_scores = compute_am_and_lm_scores( - lattice, word_fsa_with_epsilon_loops, path_to_seq_map - ) - # Now we use the attention decoder to compute another - # score: attention_scores. - # - # To do that, we have to get the input and output for the attention - # decoder. - - # CAUTION: The "tokens" attribute is set in the file - # local/compile_hlg.py - token_seq = k2.index(lattice.tokens, path) - - # Remove epsilons and -1 from token_seq - token_seq = k2.ragged.remove_values_leq(token_seq, 0) - - # Remove the seq axis. - token_seq = k2.ragged.remove_axis(token_seq, 0) - - token_seq, _ = k2.ragged.index( - token_seq, indexes=new2old, axis=0, need_value_indexes=False - ) - - # Now word in unique_word_seq has its corresponding token IDs. - token_ids = k2.ragged.to_list(token_seq) - - num_word_seqs = new2old.numel() - - path_to_seq_map_long = path_to_seq_map.to(torch.long) - expanded_memory = memory.index_select(1, path_to_seq_map_long) + path_to_utt_map = nbest.shape.row_ids(1).to(torch.long) + # the shape of memory is (T, N, C), so we use axis=1 here + expanded_memory = memory.index_select(1, path_to_utt_map) if memory_key_padding_mask is not None: + # The shape of memory_key_padding_mask is (N, T), so we + # use axis=0 here. expanded_memory_key_padding_mask = memory_key_padding_mask.index_select( - 0, path_to_seq_map_long + 0, path_to_utt_map ) else: expanded_memory_key_padding_mask = None + # remove axis corresponding to states. + tokens_shape = nbest.fsa.arcs.shape().remove_axis(1) + tokens = k2.RaggedTensor(tokens_shape, nbest.fsa.tokens) + tokens = tokens.remove_values_leq(0) + token_ids = tokens.tolist() + nll = model.decoder_nll( memory=expanded_memory, memory_key_padding_mask=expanded_memory_key_padding_mask, @@ -833,55 +855,36 @@ def rescore_with_attention_decoder( eos_id=eos_id, ) assert nll.ndim == 2 - assert nll.shape[0] == num_word_seqs + assert nll.shape[0] == len(token_ids) attention_scores = -nll.sum(dim=1) - assert attention_scores.ndim == 1 - assert attention_scores.numel() == num_word_seqs if ngram_lm_scale is None: - ngram_lm_scale_list = [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0] + ngram_lm_scale_list = [0.01, 0.05, 0.08] + ngram_lm_scale_list += [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0] ngram_lm_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0] else: ngram_lm_scale_list = [ngram_lm_scale] if attention_scale is None: - attention_scale_list = [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0] + attention_scale_list = [0.01, 0.05, 0.08] + attention_scale_list += [0.1, 0.3, 0.5, 0.6, 0.7, 0.9, 1.0] attention_scale_list += [1.1, 1.2, 1.3, 1.5, 1.7, 1.9, 2.0] else: attention_scale_list = [attention_scale] - path_2axes = k2.ragged.remove_axis(path, 0) - ans = dict() for n_scale in ngram_lm_scale_list: for a_scale in attention_scale_list: tot_scores = ( - am_scores - + n_scale * ngram_lm_scores + am_scores.values + + n_scale * ngram_lm_scores.values + a_scale * attention_scores ) - ragged_tot_scores = k2.RaggedFloat(seq_to_path_shape, tot_scores) - argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores) - - best_path_indexes = k2.index(new2old, argmax_indexes) - - # best_path is a k2.RaggedInt with 2 axes [path][arc_pos] - best_path = k2.index(path_2axes, best_path_indexes) - - # labels is a k2.RaggedInt with 2 axes [path][token_id] - # Note that it contains -1s. - labels = k2.index(lattice.labels.contiguous(), best_path) - - labels = k2.ragged.remove_values_eq(labels, -1) - - # lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so - # aux_labels is also a k2.RaggedInt with 2 axes - aux_labels = k2.index(lattice.aux_labels, best_path.values()) - - best_path_fsa = k2.linear_fsa(labels) - best_path_fsa.aux_labels = aux_labels + ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores) + max_indexes = ragged_tot_scores.argmax() + best_path = k2.index_fsa(nbest.fsa, max_indexes) key = f"ngram_lm_scale_{n_scale}_attention_scale_{a_scale}" - ans[key] = best_path_fsa + ans[key] = best_path return ans diff --git a/icefall/graph_compiler.py b/icefall/graph_compiler.py index 23ac247e8..b4c87d964 100644 --- a/icefall/graph_compiler.py +++ b/icefall/graph_compiler.py @@ -106,7 +106,7 @@ class CtcTrainingGraphCompiler(object): word_ids_list = [] for text in texts: word_ids = [] - for word in text.split(" "): + for word in text.split(): if word in self.word_table: word_ids.append(self.word_table[word]) else: diff --git a/icefall/lexicon.py b/icefall/lexicon.py index f1127c7cf..6730bac49 100644 --- a/icefall/lexicon.py +++ b/icefall/lexicon.py @@ -157,7 +157,7 @@ class BpeLexicon(Lexicon): lang_dir / "lexicon.txt" ) - def convert_lexicon_to_ragged(self, filename: str) -> k2.RaggedInt: + def convert_lexicon_to_ragged(self, filename: str) -> k2.RaggedTensor: """Read a BPE lexicon from file and convert it to a k2 ragged tensor. @@ -200,19 +200,18 @@ class BpeLexicon(Lexicon): ) values = torch.tensor(token_ids, dtype=torch.int32) - return k2.RaggedInt(shape, values) + return k2.RaggedTensor(shape, values) - def words_to_piece_ids(self, words: List[str]) -> k2.RaggedInt: + def words_to_piece_ids(self, words: List[str]) -> k2.RaggedTensor: """Convert a list of words to a ragged tensor contained word piece IDs. """ word_ids = [self.word_table[w] for w in words] word_ids = torch.tensor(word_ids, dtype=torch.int32) - ragged, _ = k2.ragged.index( - self.ragged_lexicon, + ragged, _ = self.ragged_lexicon.index( indexes=word_ids, - need_value_indexes=False, axis=0, + need_value_indexes=False, ) return ragged diff --git a/icefall/utils.py b/icefall/utils.py index 2994c2d47..23b4dd6c7 100644 --- a/icefall/utils.py +++ b/icefall/utils.py @@ -26,7 +26,6 @@ from pathlib import Path from typing import Dict, Iterable, List, TextIO, Tuple, Union import k2 -import k2.ragged as k2r import kaldialign import torch import torch.distributed as dist @@ -147,12 +146,20 @@ def get_env_info(): } -# See -# https://stackoverflow.com/questions/4984647/accessing-dict-keys-like-an-attribute # noqa class AttributeDict(dict): - __slots__ = () - __getattr__ = dict.__getitem__ - __setattr__ = dict.__setitem__ + def __getattr__(self, key): + if key in self: + return self[key] + raise AttributeError(f"No such attribute '{key}'") + + def __setattr__(self, key, value): + self[key] = value + + def __delattr__(self, key): + if key in self: + del self[key] + return + raise AttributeError(f"No such attribute '{key}'") def encode_supervisions( @@ -187,7 +194,9 @@ def encode_supervisions( return supervision_segments, texts -def get_texts(best_paths: k2.Fsa) -> List[List[int]]: +def get_texts( + best_paths: k2.Fsa, return_ragged: bool = False +) -> Union[List[List[int]], k2.RaggedTensor]: """Extract the texts (as word IDs) from the best-path FSAs. Args: best_paths: @@ -195,30 +204,35 @@ def get_texts(best_paths: k2.Fsa) -> List[List[int]]: containing multiple FSAs, which is expected to be the result of k2.shortest_path (otherwise the returned values won't be meaningful). + return_ragged: + True to return a ragged tensor with two axes [utt][word_id]. + False to return a list-of-list word IDs. Returns: Returns a list of lists of int, containing the label sequences we decoded. """ - if isinstance(best_paths.aux_labels, k2.RaggedInt): + if isinstance(best_paths.aux_labels, k2.RaggedTensor): # remove 0's and -1's. - aux_labels = k2r.remove_values_leq(best_paths.aux_labels, 0) - aux_shape = k2r.compose_ragged_shapes( - best_paths.arcs.shape(), aux_labels.shape() - ) + aux_labels = best_paths.aux_labels.remove_values_leq(0) + # TODO: change arcs.shape() to arcs.shape + aux_shape = best_paths.arcs.shape().compose(aux_labels.shape) # remove the states and arcs axes. - aux_shape = k2r.remove_axis(aux_shape, 1) - aux_shape = k2r.remove_axis(aux_shape, 1) - aux_labels = k2.RaggedInt(aux_shape, aux_labels.values()) + aux_shape = aux_shape.remove_axis(1) + aux_shape = aux_shape.remove_axis(1) + aux_labels = k2.RaggedTensor(aux_shape, aux_labels.values) else: # remove axis corresponding to states. - aux_shape = k2r.remove_axis(best_paths.arcs.shape(), 1) - aux_labels = k2.RaggedInt(aux_shape, best_paths.aux_labels) + aux_shape = best_paths.arcs.shape().remove_axis(1) + aux_labels = k2.RaggedTensor(aux_shape, best_paths.aux_labels) # remove 0's and -1's. - aux_labels = k2r.remove_values_leq(aux_labels, 0) + aux_labels = aux_labels.remove_values_leq(0) - assert aux_labels.num_axes() == 2 - return k2r.to_list(aux_labels) + assert aux_labels.num_axes == 2 + if return_ragged: + return aux_labels + else: + return aux_labels.tolist() def store_transcripts( diff --git a/test/test_bpe_graph_compiler.py b/test/test_bpe_graph_compiler.py index 67d300b7d..e58c4f1c6 100755 --- a/test/test_bpe_graph_compiler.py +++ b/test/test_bpe_graph_compiler.py @@ -16,9 +16,10 @@ # limitations under the License. +from pathlib import Path + from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler from icefall.lexicon import BpeLexicon -from pathlib import Path def test(): diff --git a/test/test_decode.py b/test/test_decode.py new file mode 100644 index 000000000..7ef127781 --- /dev/null +++ b/test/test_decode.py @@ -0,0 +1,62 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" +You can run this file in one of the two ways: + + (1) cd icefall; pytest test/test_decode.py + (2) cd icefall; ./test/test_decode.py +""" + +import k2 +from icefall.decode import Nbest + + +def test_nbest_from_lattice(): + s = """ + 0 1 1 10 0.1 + 0 1 5 10 0.11 + 0 1 2 20 0.2 + 1 2 3 30 0.3 + 1 2 4 40 0.4 + 2 3 -1 -1 0.5 + 3 + """ + lattice = k2.Fsa.from_str(s, acceptor=False) + lattice = k2.Fsa.from_fsas([lattice, lattice]) + + nbest = Nbest.from_lattice( + lattice=lattice, + num_paths=10, + use_double_scores=True, + lattice_score_scale=0.5, + ) + # each lattice has only 4 distinct paths that have different word sequences: + # 10->30 + # 10->40 + # 20->30 + # 20->40 + # + # So there should be only 4 paths for each lattice in the Nbest object + assert nbest.fsa.shape[0] == 4 * 2 + assert nbest.shape.row_splits(1).tolist() == [0, 4, 8] + + nbest2 = nbest.intersect(lattice) + tot_scores = nbest2.tot_scores() + argmax = tot_scores.argmax() + best_path = k2.index_fsa(nbest2.fsa, argmax) + print(best_path[0]) diff --git a/test/test_utils.py b/test/test_utils.py index 2dd79689f..7ac52b289 100644 --- a/test/test_utils.py +++ b/test/test_utils.py @@ -60,7 +60,7 @@ def test_get_texts_ragged(): 4 """ ) - fsa1.aux_labels = k2.RaggedInt("[ [1 3 0 2] [] [4 0 1] [-1]]") + fsa1.aux_labels = k2.RaggedTensor("[ [1 3 0 2] [] [4 0 1] [-1]]") fsa2 = k2.Fsa.from_str( """ @@ -70,7 +70,7 @@ def test_get_texts_ragged(): 3 """ ) - fsa2.aux_labels = k2.RaggedInt("[[3 0 5 0 8] [0 9 7 0] [-1]]") + fsa2.aux_labels = k2.RaggedTensor("[[3 0 5 0 8] [0 9 7 0] [-1]]") fsas = k2.Fsa.from_fsas([fsa1, fsa2]) texts = get_texts(fsas) assert texts == [[1, 3, 2, 4, 1], [3, 5, 8, 9, 7]] @@ -108,3 +108,14 @@ def test_attribute_dict(): assert s["b"] == 20 s.c = 100 assert s["c"] == 100 + assert hasattr(s, "a") + assert hasattr(s, "b") + assert getattr(s, "a") == 10 + del s.a + assert hasattr(s, "a") is False + setattr(s, "c", 100) + s.c = 100 + try: + del s.a + except AttributeError as ex: + print(f"Caught exception: {ex}")