mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-04 14:44:18 +00:00
codebook index extraction
This commit is contained in:
parent
cc1dcafc70
commit
0cb3303a5b
219
egs/librispeech/ASR/vq_pruned_transducer_stateless2/hubert_code_indices.py
Executable file
219
egs/librispeech/ASR/vq_pruned_transducer_stateless2/hubert_code_indices.py
Executable file
@ -0,0 +1,219 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (author: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
from quantization import Quantizer
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from lhotse.dataset import (
|
||||
K2SpeechRecognitionDataset,
|
||||
SingleCutSampler,
|
||||
)
|
||||
from lhotse.features.io import NumpyHdf5Writer
|
||||
from lhotse.dataset.input_strategies import AudioSamples
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from lhotse import CutSet, load_manifest
|
||||
|
||||
from hubert_utils import (
|
||||
extract_layers_result,
|
||||
load_hubert_model,
|
||||
get_parser,
|
||||
vq_config,
|
||||
)
|
||||
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
)
|
||||
|
||||
|
||||
def compute_codeindices(
|
||||
model: torch.nn.Module,
|
||||
processor: None,
|
||||
dl: torch.utils.data.DataLoader,
|
||||
quantizer: None,
|
||||
params: AttributeDict,
|
||||
writer: None,
|
||||
) -> List[Tuple[str, List[int]]]:
|
||||
"""Compute the framewise alignments of a dataset.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The neural network model.
|
||||
dl:
|
||||
Dataloader containing the dataset.
|
||||
params:
|
||||
Parameters for computing memory.
|
||||
Returns:
|
||||
Return a list of tuples. Each tuple contains two entries:
|
||||
- Utterance ID
|
||||
- memory embeddings
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
cuts = []
|
||||
total_frames = 0
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
|
||||
w2v_model = model.w2v_encoder.w2v_model
|
||||
layer_results = extract_layers_result(
|
||||
w2v_model, batch=batch, device=params.device
|
||||
)
|
||||
|
||||
assert len(layer_results) == params.total_layers
|
||||
memory_embeddings = layer_results[params.memory_layer - 1][0]
|
||||
encoder_memory = memory_embeddings.transpose(0, 1) # N, T, C
|
||||
|
||||
refine_indexes_iters = params.refine_iter
|
||||
|
||||
codebook_indices = quantizer.encode(
|
||||
encoder_memory, refine_indexes_iters=refine_indexes_iters
|
||||
)
|
||||
|
||||
# [N, T, C]
|
||||
codebook_indices = codebook_indices.to("cpu").numpy().astype(np.int8)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
cut_list = supervisions["cut"]
|
||||
assert len(cut_list) == codebook_indices.shape[0]
|
||||
|
||||
assert all(c.start == 0 for c in supervisions["cut"])
|
||||
for idx, cut in enumerate(cut_list):
|
||||
num_frames = supervisions["num_samples"][idx] // 320
|
||||
cut.codebook_indices = writer.store_array(
|
||||
key=cut.id,
|
||||
value=codebook_indices[idx][:num_frames],
|
||||
frame_shift=0.02,
|
||||
temporal_dim=0,
|
||||
start=0,
|
||||
)
|
||||
total_frames += num_frames
|
||||
|
||||
cuts += cut_list
|
||||
num_cuts += len(cut_list)
|
||||
logging.info(
|
||||
f"processed {total_frames} frames and {num_cuts} cuts;"
|
||||
f"{batch_idx}"
|
||||
f"refine_indexes_iters: {refine_indexes_iters}"
|
||||
)
|
||||
return CutSet.from_cuts(cuts)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
assert args.subset in ["clean-100", "clean-360", "other-500"], args.subset
|
||||
|
||||
assert args.return_cuts is True
|
||||
assert args.concatenate_cuts is False
|
||||
|
||||
params = AttributeDict()
|
||||
params.update(vars(args))
|
||||
params.update(vq_config)
|
||||
# job_idx is 0-based
|
||||
# manifest_idx is 1-based
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
params["device"] = device
|
||||
|
||||
cdidx_dir = (
|
||||
Path(params.data_dir)
|
||||
/ f"globalrandom-scaledquantizer-refine_iter-{params.refine_iter}-{params.num_utts}-{params.model_id}-{params.memory_layer}layer-{params.quantizer_id}-bytes_per_frame-{params.bytes_per_frame}-enable-refine-{params.enable_refine}"
|
||||
/ f"splits{params.num_splits}" # noqa: E501
|
||||
)
|
||||
cdidx_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
setup_logger(f"{cdidx_dir}/log/codebook_index")
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
quantizer_fn = (
|
||||
Path(params.memory_dir)
|
||||
/ f"globalrandom-{params.num_utts}-{params.model_id}-{params.memory_layer}layer-{params.quantizer_id}-bytes_per_frame_{params.bytes_per_frame}enable_refine_{params.enable_refine}-quantizer.pt"
|
||||
)
|
||||
assert os.path.isfile(quantizer_fn), f"{quantizer_fn}"
|
||||
|
||||
model, processor = load_hubert_model(params)
|
||||
|
||||
quantizer = Quantizer(
|
||||
dim=params.memory_embedding_dim,
|
||||
num_codebooks=params.bytes_per_frame,
|
||||
codebook_size=256,
|
||||
)
|
||||
|
||||
quantizer.load_state_dict(torch.load(quantizer_fn))
|
||||
quantizer = quantizer.to("cuda")
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
cuts = load_manifest(
|
||||
Path(params.ori_manifest_dir)
|
||||
/ f"cuts_train-{params.subset}.{params.manifest_idx}.json.gz"
|
||||
)
|
||||
sampler = SingleCutSampler(
|
||||
cuts,
|
||||
max_duration=params.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
dataset = K2SpeechRecognitionDataset(
|
||||
input_strategy=AudioSamples(),
|
||||
return_cuts=True,
|
||||
)
|
||||
dl = DataLoader(
|
||||
dataset,
|
||||
sampler=sampler,
|
||||
batch_size=None,
|
||||
num_workers=params.num_workers,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
with NumpyHdf5Writer(
|
||||
cdidx_dir / f"{params.subset}-{params.manifest_idx}"
|
||||
) as writer:
|
||||
cut_set = compute_codeindices(
|
||||
model=model,
|
||||
processor=processor,
|
||||
dl=dl,
|
||||
quantizer=quantizer,
|
||||
params=params,
|
||||
writer=writer,
|
||||
)
|
||||
cut_set.to_json(
|
||||
cdidx_dir
|
||||
/ f"cuts_train-{params.subset}-{params.manifest_idx}.json.gz"
|
||||
)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -62,8 +62,9 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--job-idx",
|
||||
"--manifest-idx",
|
||||
type=int,
|
||||
help="Split manifest is 1-based."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
|
Loading…
x
Reference in New Issue
Block a user