diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train_adapter.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train_adapter.py.swp index 0e04eb5cc..320f0b382 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train_adapter.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train_adapter.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train_adapter.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train_adapter.py index 1c9be54d4..5ac284746 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train_adapter.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train_adapter.py @@ -832,8 +832,9 @@ def compute_loss( batch_idx_train = params.batch_idx_train warm_step = params.warm_step - #texts = batch["supervisions"]["text"] - texts = batch["greedy pseudo text"] + texts = batch["supervisions"]["text"] + print(texts) + #texts = batch["greedy pseudo text"] token_ids = sp.encode(texts, out_type=int) y = k2.RaggedTensor(token_ids).to(device)